The Littlewood-Paley g-function associated with the Riemann-Liouville operator

Besma Amri, Lakhdar T. Rachdi

Abstract


First, we study the Gauss and Poisson semigroups connected with the Riemann-Liouville operator. Next, we dene and study the Littlewood-Paley g-function associated with the Riemann-Liouville operator for which we prove the Lp-boundedness for p ∈ ]1, 2].

Keywords


Riemann-Liouville operator; Fourier transform; Gauss semigroup; Poisson semigroup; Littlewood-Paley g-function

Mathematics Subject Classification


43A32; 42B25

References


Achour, A. and K. Trimèche. "La g-fonction de Littlewood-Paley associée à un opérateur différentiel singulier sur ]0;+1[." Ann. Inst. Fourier, Grenoble, 33 (1983): 203-226.

Annabi, H. and A. Fitouhi, "La g-fonction de Littlewood-Paley associée à une classe d'opérateurs différentiels sur ]0;+1[ contenant l'opérateur de Bessel." C. R. Acad. Sc. Paris, 303 (1986): 411-413.

Baccar, C., N.B. Hamadi and L.T. Rachdi. "Inversion formulas for Riemann-Liouville transform and its dual associated with singular partial dfferential operators." Int. J. Math. Math. Sci. 2006, Art. ID 86238, 26 pp.

---. "Best approximation for Weierstrass transform connected with Riemann-Liouville operator." Commun. Math. Anal. 5 (2008): 65-83.

Baccar, C. and L.T. Rachdi."Spaces of DLp -type and a convolution product associated with the Riemann-Liouville operators." Bull. Math. Anal. Appl. 1 (2009): 16-41.

Beurling, A. "The collected works of Arne Beurling." Vol.1-2. Boston: Birkhäuser, 1989.

Bonami, A., B. Demange and P. Jaming. "Hermite functions and uncertainty priciples for the Fourier and the widowed Fourier transforms." Rev. Mat. Iberoamericana 19 (2003): 23-55.

Cowling, M.G. and J.F. Price. "Generalizations of Heisenberg's inequality in Harmonic analysis." (Cortona, 1982). Lecture Notes in Math. 992 (1983): 443-449.

Dunford, N. and J.T. Schwartz. "Linear operators part I." New York: John Wiley & Sons, Inc., 1988.

Erdely A. et al. "Tables of integral transforms." Vol.2. New York: Mc Graw-Hill Book Compagny., 1954.

Erdely A. et al. "Asymptotic expansions." New-York: Dover publications, 1956.

Folland, G.B. and A. Sitaram. "The uncertainty principle: a mathematical survey." J. Fourier Anal. Appl., 3 (1997): 207-238.

Hardy, G.H. "A theorem concerning Fourier transforms." J. London. Math. Soc. 8 (1933): 227-231.

Lebedev, N.N. "Special functions and their applications." New-York: Dover publications, Inc., 1972.

Morgan, G.W. "A note on Fourier transforms." J. London. Math. Soc. 9 (1934): 178-192.

Omri, S. and L.T. Rachdi. "An Lp - Lq version of Morgan's theorem associated with Riemann-Liouville transform." Int. J. Math. Anal. 1 (2007): 805-824.

---. "Heisenberg-Pauli-Weyl uncertainty principle for the Riemann-Liouville Operator." JIPAM. J. Inequal. Pure Appl. Math. 9 (2008): Article 88, 23 pp.

Rachdi, L.T. and A. Rouz. "On the range of the Fourier transform connected with Riemann-Liouville operator." Ann. Math. Blaise Pascal, 16 (2009): 355-397.

Soltani, F. "Littlewood-Paley g-function in the Dunkl analysis on Rd." JIPAM. J. Inequal. Pure Appl. Math. 6 (2005): Article 84, 13 pp.

Stein, E.M. "Interpolation of linear operators." Trans. Amer. Math. Soc. 83 (1956): 482-492.

---. "Topics in harmonic analysis related to the Littlewood-Paley theory." Annals of Mathematics Studies 63. Princeton, N.J.: Princeton University Press; Tokyo: University of Tokyo Press, 1970.

Stein, E.M. and G.Weiss. "Introduction to Fourier analysis on Euclidean spaces." Princeton Mathematical Series 32. Princeton, N.J.: Princeton University Press, 1971.

Stempak, K. "La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel." C. R. Acad. Sci. Paris Sér. I Math. 303 (1986): 15-18.

Trimèche, K. "Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0;+1)." J. Math. Pures Appl. 60 (1981): 51-98.

---. "Inversion of the Lions transmutation operators using generalized wavelets." Appl. Comput. Harmon. Anal. 4 (1997): 97-112.

Watson, G.N. "A treatise on the theory of Bessel functions." Cambridge: Cambridge University Press, 1995.


Full Text: PDF

Download statistics: 2401

Licencja Creative Commons
This article by Besma Amri, Lakhdar T. Rachdi is governed by the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported licence.


e-ISSN: 2300-133X, ISSN: 2081-545X

Since 2017 Open Access in De Gruyter and CrossCheck access cofinanced by The Ministry of Science and Higher Education - Republic of Poland - DUN 775/P-DUN/2017 see more

The Journal is indexed in:
and others see Abstracting and Indexing list

AUPC SM is on the List of the Ministry’s scored journals with 20 points for 2019

Deklaracja dostępności cyfrowej