Local analytic solutions of a functional equation
Abstract
All analytic solutions of the functional equation
\[
|f(r\exp(i\theta))|^{2}+|f(1)|^{2}=|f(r)|^{2}+|f(\exp(i\theta))|^{2}
\]
in the annulus
\[
P:=\{z\in \mathbb{C}: 1-\epsilon\le|z|\le1+\epsilon\}
\]
and in the domain
\[
D:=\{z=re^{i\theta}\in \mathbb{C}: 1-\epsilon\le r \le 1+\epsilon, \theta\in (-\delta,\delta)\},
\]
are found.
\[
|f(r\exp(i\theta))|^{2}+|f(1)|^{2}=|f(r)|^{2}+|f(\exp(i\theta))|^{2}
\]
in the annulus
\[
P:=\{z\in \mathbb{C}: 1-\epsilon\le|z|\le1+\epsilon\}
\]
and in the domain
\[
D:=\{z=re^{i\theta}\in \mathbb{C}: 1-\epsilon\le r \le 1+\epsilon, \theta\in (-\delta,\delta)\},
\]
are found.
Download statistics: 3814
e-ISSN: 2300-133X, ISSN: 2081-545X
Since 2017 Open Access in De Gruyter and CrossCheck access cofinanced by The Ministry of Science and Higher Education - Republic of Poland - DUN 775/P-DUN/2017 see more
The Journal is indexed in:
AUPC SM is on the List of the Ministry’s scored journals with 20 points for 2019