Construction of an A-manifold on a principal torus bundle

Grzegorz Zborowski

Abstract


We construct a new example of an A-manifold, i.e. a Riemannian manifold with cyclic-parallel Ricci tensor. This condition can be viewed as a generalization of the Einstein condition. The underlying manifold for our construction is a principal torus bundle over Kähler-Einstein manifold with fibre a torus of arbitrary dimension.

Keywords


A-manifold; torus bundle; Ricci tensor

Mathematics Subject Classification


53C25

References


Besse, A. "Einstein Manifolds." Berlin, Heidelberg : Springer-Verlag, 1987.

Gray, A. "Einstein-like manifolds which are not Einstein." Geom. Dedicata 7 (1978): 259-280.

Jelonek, W. "On A-tensors in Riemannian geometry." preprint PAN, 551, 1995.

Kobayashi, S. "On compact Kähler manifolds with positive definite Ricci tensor." Ann. of Math. 74 (1961): 570-574.

---. "Principal fibre bundles with the 1-dimensional toroidal group." Tohoku Math. J. 8 (1956): 29-45.

O’Neill, B. "The fundamental equations of a submersion." Michigan Math. J. 13 (1966): 459-469.

Pedersen, H. and P. Todd. "The Ledger curvature conditions and D’Atri geometry." Differential Geom. Appl. 11 (1999): 155-162.

Wang, M.Y. and W. Ziller. "Einstein metrics on principal torus bundles." J. Differential Geom. 31 (1990): 215-248.


Full Text: PDF

Download statistics: 2449

Licencja Creative Commons
This article by Grzegorz Zborowski is governed by the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported licence.


e-ISSN: 2300-133X, ISSN: 2081-545X

Since 2017 Open Access in De Gruyter and CrossCheck access cofinanced by The Ministry of Science and Higher Education - Republic of Poland - DUN 775/P-DUN/2017 see more

The Journal is indexed in:
and others see Abstracting and Indexing list

AUPC SM is on the List of the Ministry’s scored journals with 20 points for 2019

Deklaracja dostępności cyfrowej