Maximal functions for Weinstein operator
Abstract
Keywords
Mathematics Subject Classification (2010)
References
Abdelkefi, Chokri. "Dunkl operators on Rd and uncentered maximal function." J. Lie Theory 20, no. 1 (2010): 113-125.
Ben Nahia, Zouhir, and Néjib Ben Salem. "Spherical harmonics and applications associated with theWeinstein operator." Potential Theory ICPT 94 (Kouty, 1994), 233-241. Berlin: de Gruyter, 1996.
Ben Nahia, Zouhir, and Néjib Ben Salem. "On a mean value property associated with the Weinstein operator." Potential Theory ICPT 94 (Kouty, 1994), 243-253. Berlin: de Gruyter, 1996.
Bloom, Walter R., and Zeng Fu Xu. "The Hardy-Littlewood maximal function for Chébli-Trimèche hypergroups." Applications of hypergroups and related measure algebras (Seattle, WA, 1993), 45–70. Vol. 183 of Contemp. Math. Providence, RI: Amer. Math. Soc., 1995.
Brelot, Marcel. "Équation de Weinstein et potentiels de Marcel Riesz" Séminaire de Théorie du Potentiel, no. 3 (Paris, 1976/1977), 18–38. Vol. 681 of Lecture Notes in Math. Berlin: Springer, 1978.
Clerc, Jean-Louis, and Elias Menachem Stein. "Lp-multipliers for noncompact symmetric spaces." Proc. Nat. Acad. Sci. U.S.A. 71 (1974): 3911-3912.
Connett, William C, and Alan L. Schwartz. "The Littlewood-Paley theory for Jacobi expansions." Trans. Amer. Math. Soc. 251 (1979): 219-234.
Connett, William C., and Alan L. Schwartz. "A Hardy-Littlewood maximal inequality for Jacobi type hypergroups." Proc. Amer. Math. Soc. 107, no. 1 (1989): 137-143.
Gaudry, Garth Ian, et all. "Hardy-Littlewood maximal functions on some solvable Lie groups." J. Austral. Math. Soc. Ser. A 45, no. 1 (1988): 78-82.
Hardy, Godfrey Harold, and John Edensor Littlewood. "A maximal theorem with function-theoretic applications." Acta Math. 54, no. 1 (1930): 81-116.
Hewitt, Edwin, and Karl Stromberg. Real and abstract analysis. A modern treatment of the theory of functions of a real variable. New-York: Springer-Verlag, 1965.
Leutwiler, Heinz. "Best constants in the Harnack inequality for the Weinstein equation." Aequationes Math. 34, no. 2-3 (1987): 304-315.
Stein, Elias Menachem. Singular integrals and differentiability properties of functions. Vol. 30 of Princeton Mathematical Series. Princeton, New Jersey: Princeton University Press, 1970.
Stempak, Krzysztof. "La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel." C. R. Acad. Sci. Paris Sér. I Math. 303, no. 1 (1986): 15-18.
Strömberg, Jan-Olov. "Weak type L1 estimates for maximal functions on noncompact symmetric spaces." Ann. of Math. (2) 114, no. 1 (1981): 115-126.
Thangavelu, Sundaram, and Yuan Xu. "Convolution operator and maximal function for the Dunkl transform." J. Anal. Math. 97 (2005): 25-55.
Torchinsky, Alberto. Real-variable nethods in harmonic analysis. Vol. 123 of Pure and applied mathematics. Orlando: Academic Press, 1986.
Watson, George Neville. A treatise on the theory of Bessel functions. Cambridge-New York-Oakleigh: Cambridge University Press, 1966.
Weinstein, Alexander. "Singular partial differential equations and their applications." Fluid dynamics and applied mathematics, 29-49. New York: Gordon and Breach, 1962.
Download statistics: 556
This article by Chokri Abdelkefi is governed by the Creative Commons Attribution-ShareAlike 4.0 International(CC BY-SA 4.0) licence.
Since 2017 Open Access in De Gruyter and CrossCheck access cofinanced by The Ministry of Science and Higher Education - Republic of Poland - DUN 775/P-DUN/2017 see more
The Journal is indexed in:
AUPC SM is on the List of the Ministry’s scored journals with 20 points for 2019