On the stability of the squares of some functional equations
Abstract
Keywords
Mathematics Subject Classification (2010)
References
Baker, J.A. "The stability of the cosine equation." Proc. Amer. Math. Soc. 80.3 (1980): 411–416.
Batko, B. "On the stability of an alternative functional equation." Math. Inequal. Appl. 8.4 (2005): 685–691.
Batko, B. "Superstability of the Cauchy equation with squares in finite-dimensional normed algebras." Aequationes Math. 89.3 (2015): 785–789.
Cholewa, P.W. "The stability of the sine equation." Proc. Amer. Math. Soc. 88.4 (1983): 631–634.
Hyers, D.H. "On the stability of the linear functional equation." Proc. Nat. Acad. Sci. U.S.A. 27 (1941): 222–224.
Hyers, D.H. and S.M. Ulam. "On approximate isometries." Bull. Amer. Math. Soc. 51 (1945): 288–292.
Kuczma, "An introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality." Second edition. Basel: Birkhäuser Verlag, 2008.
Moszner, Z. "Sur l’orientation d’un groupe." Tensor (N.S.) 48.1 (1989): 19–20.
Moszner, Z. "On stability of some functional equations and topology of their target spaces." Ann. Univ. Paedagog. Crac. Stud. Math. 11 (2012): 69–94.
Moszner, Z. "On the inverse stability of functional equations." Banach Center Publications 99 (2013): 111–121.
Omladic, M. and P. Šemrl. "On non linear perturbations of isometries." Math. Ann. 303.1 (1995): 617–628.
Żelazko, W. "Algebry Banacha." Biblioteka Matematyczna, Tom 32. Warsaw: PWN,1968.
Download statistics: 1821
This article by Zenon Moszner is governed by the Creative Commons Attribution-ShareAlike 4.0 International(CC BY-SA 4.0) licence.
Since 2017 Open Access in De Gruyter and CrossCheck access cofinanced by The Ministry of Science and Higher Education - Republic of Poland - DUN 775/P-DUN/2017 see more
The Journal is indexed in:
AUPC SM is on the List of the Ministry’s scored journals with 20 points for 2019