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Initial boundary value problem for a mechanical

system with local stroke change of stiffness

Abstract. The aim of this paper is to present a new method of solving the
initial boundary value problem for a mechanical system with local stroke
change of stiffness. The method is based on the theory of distributions.

1. Introduction

We consider the small vibrations of an Euler beam of the length [ in its
symmetry plane, with stroke change of stiffness of the beam described by the
function 8: (0,1) — R defined as follows

EJ, x € (0,21) U (x2,1),
B(x) =< 0, x € {x1, 22} (1)

+oo, 1z € (x1,x2).

The two joints of the beam are located respectively at the points with abscissae
x1 and xo, and their small vibrations are given by (see [3], [4], [5])

ou ou, _ ” _
%(x;", )f%(g:Z )| 04,5 1=1,2.

The main idea of this formula comes from the paper [3] and is based on a
sequential approach. The function U(z, t) is the deflection at the point x € (0, 1)
at the moment ¢, 5;7’ denotes the second derivative of the Dirac distribution
05, concentrated at the point z; .

The small vibrations of the system under consideration are described by
the equation

0? 0°U 03U 0*U
92 B(x) 972 + aoJaxgat + h@)ﬁ = f(=,1), (2)
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where agJ = const; h(z) denotes the distribution of the beam masses; f(z,t)
is the distribution of the external forces applied to the beam in its symmetry
plane.

Since there are the joints respectively at points x; and x5, the function

U(.,t) € C°((0,1) N C*((0, 1) \ {1, 22})

and it is linear in the interval (z1,22) with respect to the absolute stiffness of
this element.

We could describe the vibration of our beam by the methods of classical
mathematical analysis but this requires taking into consideration the vibrations
of three elements of a beam (0, 1), (x1, z2) and (z1,1). It is both arduous and
labour-concerning.

The purpose of this paper is to present a new method of determining the
beam vibrations. The point of the matter is that the real situation is modelled
as follows. The absolutely stiff part of the beam we describe as the only point of
mass located in z1 (i.e., welet x5 = 21 = %(Jcl +125)) which bears all dynamical
reactions that appear in this stiff part of the beam (this needs a distributional
description). The method gives us the possibility to find the discontinuous at
x1 solutions of the substitute beam. It is achieved by introducing 47 into the
initial boundary problem substituting the real problem. Then we return to
the real problem by the connection of the points z; and x5 fitting the segment
y(x,t) = p(t)xz + ¢(t) in the interval (x1,x2) to make continuous the solution
of the real problem.

The mass of the stiff element of the beam and its dynamical reaction located
at the point x7 are analytically characterized by pF(x2 — x1) — the mass of
the absolutely stiff part of the beam (x1,22) and by %plFl (vg — x1)? — its
moment of inertia, computed with respect to the middle point %(Jcl + z2)
of this part of the beam. The symbols p, p1, F, F} stand for the densities
and for the cross-section areas of the parts (0,21) U (z2,1) and (z1,x2) of the
beam, respectively. The equation for the function W (z,t),z € (0,1) \ (z1,x2)
representing vibrations of the substitute beam is of form (10), cf. Section 3.

The knowledge of W (x,t), the solution of the initial boundary problem of
the substitute beam, and of the fact that it is impossible to bend the absolutely
stiff element (its vibrations are planar) provide the possibility of construction
of the function U(x,t), the solution of the real beam in the interval (0,1), via
the formula

W(x,t), x € (0,21) U (x2,1)
a(t)x + b(t), z € (1, 22).

Ulz,t) = { (3)

Since W (zy,t) = a(t)zy + b(t), W(z3,t) = a(t)zz + b(t) the continuity at x;
and x5 yields
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xd,t) = Wiz, o1 W (25 ,t) — 2oW (27,
a(t) — W( 2 at) W( 1 7t), b(t) — W( t) W( t). (4)

T2 —T1 T2 — T1

2. Preliminaries

Let us define the internal damping of the beam

g , x € (0,21) U (x2,1)
a(z) =40, z € {x1, 72} (5)
a1, x € (x1,22)

EJ? LS <03‘T1) U (x27l>
Blx) =40, x € {z1,22}
M, x € (x1,22)

Here E denotes the Young modulus, J is the axial moment of inertia, M is
defined as the stiffness (we assume that M = const).

One edgepoint of the beam is fixed while the other is slidable.

Now let au assume that there are no external forces and therefore, the
small transversal vibrations of the beam under consideration are described by
the formula

0? 02U o*U 02U
5z (80 5 + alo) gy ) + 1) G =0 (6)

U(.,t) € C°({0,1)) N C*((0, 1) U (z2,1)), U(z,t) = ax + b, x € (z1,72), a,b-
const.; h(z) = pF + p1Fi(z2 — 1)0,.
The constants a and b are chosen so that U(.,t) € C°((0,1)).

The boundary conditions are

ou ou
U(Oat) =0, U(lat) =0, %(Oat) =0, %(lvt) =0. (7)

The initial conditions are as follows

U(z,0) = p1(x), a—U(a:,O) = ¢a(x) for x € (0,1)

ot (8)
©1(0) = p1(1), ©2(0) = p2(0).
Let us assume the physical conditions:
0*U *U , .
=St =0, =, )
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3. Method of generalized functions

The initial boundary problem (3), (4), (5), (6) of the vibrations of the
substitute beam is described by the formula

(a) EJagTVZ +040J%+(pF+p1F1(m2 —331)5;51)0;—:2[/

(b) + 1 <83V6Vx(§§+2’t) SRALLER > o,

(©) n P1F1(33122— x1)? (GQV[;(;TJ) 3 52‘%(;1_,75)) 5 (10)
(d) +72 <a5g2§”£2’ 0 f"”gzggg; ‘) > o

where

(a) the coefficients at 6,, and ¢}, are used to describe the dynamics of the
part (1, 22); (see [4])

(b) o} refers to the joint of the substitute beam; (see [5])
(d) 67" leads to the discontinuous solution;
(c) 6}, characterizes the pair of the forces in z1; (see [4]),

and 7 and 7, are the parameters that fit to obtain the continuous solution of
the problem and to make the units matching.

We are using the Fourier method to solve the eigenproblem associated to
the substitute problem under consideration.

Let us assume (with the constant p and q)

W(z,t) = X (2)T(t), (11)
a(t) =pT'(t),  b(t) =qT(t).
Substituting (11) into (6), after some calculations, we obtain

T ~EJXV )
- = = —w
T+ 2T D ’

where
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D = (pF + p1F10z, (x2 — 11)) X
+ (X' (@) = X'(27))0%,

+ (X" () — X" (21))57]
1 _
+ (s —2) (X (@]) - X(21))3,
and the constant —w? is negative to obtain positive eigenvalues.

Hence

a0w2

T+ 5 T +w?T =0, (12)

X1V _\x = p1F1(:C2 7331)"‘)2

EJ X,
p1 Py (zg — 21)%w? _
Bl W o) - x (),
- (13)
1 _
(X () - X ),
2
Yow _
+ E—J(Xm(fﬂf) — X" (21))dy;
Fu?
where A = £
k. The solution of equation (13)
We write, for short,
itz . w? T2 — X1
f.— 5 =T = X2, @.——QEJ, n:i= 5

The general solution of (13) is given by (we omit the standard calculations)

X(z) = Pcos Az + @Qsin Az + R chAz + S shiz

* 4mfiin@X(S)H(fv — &) [shA(z — &) — sin \(z — &)
pl?fz@ (X’(aif) - X'(xf)) H(z — &) [chA(x — &) — cos A(z — &)]

+ 228 (X (o)~ X(o7)) Hw — &) [shA(w — &) + sin Az — &)

+720 (X" (23) = X" (7)) H(z — €) [chA(z — &) + cos Mz — €)],



10 CElzbieta Bratuszewska

where H denotes the Heaviside function of the unit jump, i.e.,

Hxz—-c)=1, z>c, H(xz—¢)=0, z <c, H(x—c) =

5, r = cC.

According to the idea of the method when adapting the solution of the equation
(13) to the intervals (0,z1) U (z2,1) we get

X (x) = Pcos Az + @ sin Az + RchAz + SshAx

4p1 F1n© _  x1 + T2 X1+ T2
X H(x —
X [shA(x — o +a:2) —sin Az — o +a:2)
3p1F1’I72@

e {H(x — 22) X (z3) [chA(z — 22) — cos A\(z — 2)]

— H(x —21)X (27 ) [chA(x — x1) — cos AM(x — z1)]} +
+mO{H(x —z1)(p — X'(27)) [shA(x — 1) + sin \(x — z1)]
+ H(x — 22) (X' (zF) — p) [shA(z — 22) +sin Mz — x2)]}
+720{—H(z — 21) X" (27) [chA(z — z1) + cos A\(z — x1)]

+ H(z — 22) X" (x3) [chA(x — 29) + cos Az — x2)]}.

According to the shape of the function
W(z,t) = X (z)T(¢)

and the initial-boundary conditions given by the formulas (8), (9) we obtain
the system of thirteen linear equations with thirteen unknown values

P’ Q’ R7 S’ X(£)7 X(m;)’ X(x;r)’ Xl(xf), Xl(x;r)7 XIII(CL‘;)7 X”I(mé‘r)) p) q

The equations are:

1. X(0)=0+=P+Q=0,

2 X'(0)=0< R+S5=0,

3. X (1) =0 <= PcosAl + Qsin Xl + RchAl + SchAl =0,
4. X'(l) =0 <= —Psin Nl + Q cos Xl + Rsh\l + Sch\l = 0,
5. X"(x1) =0 <= —A?Pcos \x; — A’ Qsin \z; + A2 Rcha,

1
4+ A2Sshar; — gplFmQ@X(a?I) =0,
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10.
11.

12.
13.

X"(x3) = 0 <= —A?P cos Axg — \?Q sin Azy + A2 RchAzg + A2 SshAzy
4p1 F1n?©
N2
+m0O[p — X'(z7)]\[sh2An — sin 2]
— 120X (x7)A%[ch2An — cos 2\n] = 0,

X(€) = PcosAé+ Qsin A + RchA€ + SshA¢

X (&)[shAn + sin An]

2
+ 2EU0 o ey — cos A
+ uo [X'(x3) — p][shAn + sin \y]

A
— 70X" (z3)[chAn + cos A1l

) = PcosAry + QsinA\x; + RchAzy + Sshzy,

n
X(23) = PcosAza + QsinAza + RehAza + Sshas
4p1Fin?0O
AT
_ mFin’e

3N

? [p — X'(z7)][sh2A\n + sin 27|
_ 29

)
+ 290X (7)),

X (&)[shAn — sin An]
X (27)[ch2An + cos 2]
+

X" (27 )[ch2An + cos 2An]

) = —PAsinAz; + QAcos A\z1 + RAshAzy + SAchAxy,

1

X'(z3) = —PAsinAzg + Q) cos Aza + RAshAzy + SAchAz,
2p1F17’]@

3
1O X7 [ch2A 2
T[P* (z1)][ch2An + cos 227
+ 701X (x3) — q][ch2An + cos 2\n]
_ 0

A

X"(x7) = MPsindx; — A3Q cos \xy + A>Pchaz; 4+ A3SshAxy,

X (&)[ch2An — cos 2)n)

+

X" (z7)A[sh2An — sin 2\n),

1
X"(xF) = MPsinAzg — A3Q cos A\xg + A* PchAzg + A3 SshAxy
n 2p1F1n©

3 X (&)[chAn + cos A7]
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1
- E)\plFln@X(xf)[shQ)\n — sin 2\

+ A2910[p — X'(x7)][ch2\n — cos 2\n]
— N30 X" (x7)[sh2\n + sin 2)\1].

The system of the linear equations given above has infinite number of solu-
tions ([2]) and it represents the eigenproblem under consideration. The details
of the calculations as well as the explicit solution of the initial boundary prob-
lem will be dealt with in a subsequent paper. The problem considered in this
paper is also discussed in [5] but in the approach of L. Schwartz [4].

Assuming that the determinant of the matrix of the system 1.-13. of the
linear equations is equal to zero we obtain the eigenvalues equation. There
is a countable number of such eigenvalues A, so we can create an increasing
sequence of \,, . In consequence we put Ay, , Ty, , X (), Dn , ¢n into the formulas
(12) (13) instead of, respectively, A, T, X, p, ¢, and form the solution of (10)

W(x,t) =Y Xn(x)(anTin(t) + bnTan(t)),

where T1,(t) and T5,(t) are the linearly independent particular solutions of
(12) while

~ [ Xa(2), x € (0,21) U (x2,1)
o) = {pnerqn, x € (r1,22) '
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