

FOLIA 233

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XVII (2018)

Olufemi J. Ogunsola and Ifeyinwa E. Daniel Pseudo-amenability and pseudo-contractibility of restricted semigroup algebra

Communicated by Justyna Szpond

Abstract. In this article the pseudo-amenability and pseudo-contractibility of restricted semigroup algebra $l_r^1(S)$ and semigroup algebra, $l^1(S_r)$ on restricted semigroup, S_r are investigated for different classes of inverse semigroups such as Brandt semigroup, and Clifford semigroup. We particularly show the equivalence between pseudo-amenability and character amenability of restricted semigroup algebra on a Clifford semigroup and semigroup algebra on a restricted semigroup. Moreover, we show that when $S = M^0(G, I)$ is a Brandt semigroup, pseudo-amenability of $l^1(S_r)$ is equivalent to its pseudocontractibility.

1. Introduction

The notions of pseudo-amenability and pseudo-contractibility in Banach algebra which were introduced in [9], have been studied for different classes of semigroups. The notable ones among these are the research work in [7], [8] and [19]. The authors in [7] particularly showed that for a Brandt semigroup $S = M^0(G, I)$, the semigroup algebra $l^1(S)$ is pseudo-contractible if and only G and I are finite.

Recently, the notions of module pseudo-amenability and module pseudo-contractibility in Banach algebras were introduced in [2], where necessary and sufficient conditions were particularly obtained for the semigroup algebra $l^1(S)$ and its dual to be $l^1(E)$ -module pseudo-amenable for every inverse semigroup S with subsemigroup E of idempotent.

AMS (2010) Subject Classification: Primary: 46H20; Secondary: 46H10, 46H25.

Keywords and phrases: pseudo-amenable, pseudo-contractible, restricted semigroup, semi-group algebra.

The concept of restricted representation for an inverse semigroup S was introduced in [11] and the restricted forms of some important Banach algebras on Swere studied by the same author.

In [14], the amenability of restricted semigroup algebras was studied where it was shown that for an inverse semigroup S, $l_r^1(S)$ is amenable if and only if $l^1(S)$ is amenable. The authors in [13] continued further study on restricted semigroups by investigating character amenability of restricted semigroup algebras and show that for an inverse semigroup S, the restricted semigroup algebra $l_r^1(S)$ is character amenable if and only if $l^1(S_r)$ is character amenable and that for the same inverse semigroup, the semigroup algebra $l^1(S_r)$ on restricted semigroup S_r is character amenable if and only if $l^1(S)$ is character amenable.

In this paper, S is a discrete semigroup and $l^1(S)$ is a discrete semigroup algebra. We show the pseudo-amenability and pseudo-contractibility of restricted semigroup algebra $l_r^1(S)$ and semigroup algebra $l^1(S_r)$ on restricted semigroup S_r .

2. Preliminaries and definitions

In this section, we recall some standard notations and define some basic concepts that are relevant to this study.

Let A be a Banach algebra. A derivation $D: A \to X$ is approximately inner if there is a net $(x_{\alpha}) \subset X$ such that

$$D(a) = \lim_{\alpha \to a} (a \cdot x_{\alpha} - x_{\alpha} \cdot a)$$
 for all $a \in A$.

The limit is being taken in $(X, \|\cdot\|)$, i.e. $D(a) = \lim_{\alpha} \delta_{\alpha}(a)$, where $(\delta_{x_{\alpha}})$ is a net of inner derivations.

The Banach algebra A is approximately amenable if for each Banach A-bimodule X, every continuous derivation $D: A \to X$ is approximately inner.

Let A be a Banach algebra, a *character on* A is a homomorphism $\varphi \colon A \to \mathbb{C}$. A character φ is a non-zero linear functional on A such that

$$\varphi(ab) = \varphi(a)\varphi(b)$$
 for all $a, b \in A$.

By Φ_A we denote the set of all characters on A, called the *character space of* A.

Let A be a Banach algebra and let $\varphi \in \Phi_A$. A is left φ -amenable if every continuous derivation $D: A \to X'$ is inner for every $X \in M^A_{\varphi_r}$, where $M^A_{\varphi_r}$ denotes the class of Banach A-bimodule X for which the right module action of A on X is given by

$$x.a = \varphi(a)x$$
 for all $a \in A, x \in X, \varphi \in \Phi_A$.

A right φ -amenable Banach algebra is similarly defined. Algebra A is left (right) character amenable if it is left (right) φ -amenable for every $\varphi \in \Phi_A$. Finally we say that A is character amenable if it is both left and right amenable.

A Banach algebra A is said to be *pseudo-amenable* if there is a net $(m_{\alpha})_{\alpha \in I} \subseteq A \widehat{\otimes} A$, (not necessarily bounded) called an approximate diagonal for A, such that for each $a \in A$,

$$a.m_{\alpha} - m_{\alpha}.a \to 0$$
 and $\pi(m_{\alpha})a \to a$

Moreover, A is pseudo-contractible if there is an approximate diagonal $(m_{\alpha})_{\alpha \in I}$ for A which is central, that is $a.m_{\alpha} = m_{\alpha}.a$ for each $a \in A$ and $\alpha \in I$.

Suppose that A and B are Banach algebras. We denote the projective tensor product of A and B by $A \widehat{\otimes} B$. The Banach algebra $A \widehat{\otimes} A$ is a Banach A-bimodule with the following actions

$$a.(b \otimes c) = ab \otimes c, \quad (b \otimes c).a = b \otimes ca \quad \text{for all } a, b, c \in A.$$

Let A be a Banach algebra and let I be a non-empty set. We denote by $\mathbb{M}_{I}(A)$, the set of $I \times I$ matrices (a_{ij}) with entries in A such that

$$||(a_{ij})|| = \sum_{i,j \in I} ||a_{ij}|| < \infty,$$

see [16]. Then $\mathbb{M}_{I}(A)$ with the usual matrix multiplication is a Banach algebra that belongs to the class of l^{1} -Munn algebras ([15]). It is an easy verification that the map $\theta \colon \mathbb{M}_{I}(A) \to \mathbb{M}_{I}(\mathbb{C}) \widehat{\otimes} A$ defined by

$$\theta((a_{ij})) = \sum_{i,j \in I} E_{ij} \otimes a_{ij}, \qquad (a_{ij}) \in \mathbb{M}_I(A),$$

is an isometric isomorphism of Banach algebras, where (E_{ij}) are the matrix units in $\mathbb{M}_{I}(\mathbb{C})$.

Let $\{A_{\alpha} : \alpha \in I\}$ be a collection of Banach algebras. Then the l^1 -direct sum of A_{α} is denoted by $l^1 - \bigoplus \{A_{\alpha} : \alpha \in I\}$, which is a Banach algebra with componentwise operations.

A non empty set S with an associative binary operation denoted by

$$S \times S \to S, \qquad (s,t) \mapsto st$$

is called a *semigroup*. For example, $(\mathbb{N}, +)$, $(\mathbb{Z}, +)$ and $\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$ with binary operation

$$(m_1, n_1).(m_2, n_2) = (m_1 + m_2, n_2)$$

are semigroups.

The following definitions are recalled from [12]. Let S be a semigroup.

- (i) Let $s \in S$. An element $s^* \in S$ is called an *inverse* of s if $ss^*s = s$ and $s^*ss^* = s^*$.
- (*ii*) An element $s \in S$ is called *regular* if there exists $t \in S$ with sts = s.
- (iii) An element $s \in S$ is called *completely regular* if there exists $t \in S$ with sts = s and ts = st.
- (iv) S is called *regular* if each $s \in S$ is a regular element.
- (v) S is called *completely regular* if each $s \in S$ is a completely regular element.
- (vi) S is called an *inverse semigroup* if every element in S has a unique inverse.
- (vii) An element $p \in S$ is called an *idempotent* if $p^2 = p$; the set of idempotents of S is denoted by E(S).
- (viii) S is called a *semilattice* if it commutes and E(S) = S.

- (ix) S is called a *band semigroup* if it is a semilattice.
- (x) S is called a *rectangular band semigroup* if it is a band semigroup and if S is regular.

An inverse semigroup S is called a *Clifford semigroup* if $ss^{-1} = s^{-1}s$ for each $s \in S$.

Let S be a Clifford semigroup and let $s \in S$. Then $s \in G_{ss^{-1}}$ and hence S is a disjoint union of the groups G_p , $p \in E(S)$, that is $S = \bigcup_{p \in E(S)} G_p$ where G_p 's are the maximal subgroups of S.

Let S be a non-empty set. Then

$$l^1(S) = \Big\{ f \in \mathbb{C}^S: \ \sum_{s \in S} |f(s)| < \infty \Big\},$$

with the norm $\|\cdot\|_1$ given by $\|f\|_1 = \sum_{s \in S} |f(s)|$ for $f \in l^1(S)$. We write δ_s for the characteristic function of $\{s\}$ when $s \in S$.

Now suppose that S is a semigroup. For $f, g \in l^1(S)$ we set

$$(f*g)(t) = \Big\{ \sum f(r)g(s) : r, s \in S, rs = t \Big\}, \qquad t \in S,$$

so that $f * g \in l^1(S)$. It is standard that $(l^1(S), *)$ is a Banach algebra, called the *semigroup algebra on S*. Elements of $l^1(S)$ are of the form $f = \sum_{s \in S} \alpha_s \delta_s$ and the dual space of $l^1(S)$ with the duality

$$\langle f, \lambda \rangle = \sum_{s \in S} f(s)\lambda(s), \qquad f \in l^1(S), \ \lambda \in l^\infty(S).$$

Notice that $l^1(S)$ is commutative if and only if S is abelian and $l^1(S^{\#}) = l^1(S)^{\#}$. If $f \in l^1(S)$, then f = 0 on S except at most on a countable subset of S. In other words, the set $D = \{s \in S : f(s) \neq 0\}$ is at most countable since if $D_n = \{s \in S : |f(s)| \geq \frac{1}{n}\}, D = \bigcup_{n \in \mathbb{N}} D_n$. There is always one character in the Banach algebra $l^1(S)$, this is the *augmentation character*.

Let T be a subsemigroup of a semigroup S. Then

$$\Phi_{l^1(T)} = \{\varphi_s | _{l^1(T)} : \varphi_s \in \Phi_{l^1(S)} \}.$$

See [4, Chapter 4] for details about this algebra.

3. General results

In this section, we prove some general results which are useful in establishing our main results on restricted semigroup algebras.

For a semigroup S, $l^1(S) \widehat{\otimes} l^1(S)$ is isometrically isomorphic to $l^1(S \times S)$, and so, we identify $(l^1(S) \widehat{\otimes} l^1(S))''$ with $l^1(S \times S)''$. We define the bimodule operations under this identification as follows. Let $M \in (l^{\infty}(S \times S))'$ and $s \in S$, then for all $f \in l^{\infty}(S \times S)$,

$$Ms(f) = M(sf), \qquad sM(f) = M(fs),$$

where

$$fs(u,v) = f(su,v), \qquad sf(u,v) = f(u,vs).$$

[93]

Clearly, $l^1(S)$ is a Banach $l^1(S)$ -bimodule. In the case where S is a semilattice, $l^1(S)$ is a commutative $l^1(S)$ -module. The dual module action of $s \in S$ on the dual space $l^1(S)' = l^{\infty}(S)$ is given by

$$\langle t, s.\lambda \rangle = \langle ts, \lambda \rangle, \qquad \langle t, \lambda.s \rangle = \langle st, \lambda \rangle, \qquad t \in S.$$

With this module action, it follows that a continuous linear map $D: l^1(S) \to l^\infty(S)$ is a derivation if and only if

$$\langle r, D(st) \rangle = \langle tr, D(s) \rangle + \langle rs, D(t) \rangle, \qquad r, s, t \in S$$

and D is inner if and only if there exists $\lambda \in l^{\infty}(S)$ such that

$$\langle t, D(s) \rangle = \langle ts - st, \lambda \rangle, \qquad s, t \in l^1(S).$$

For a Banach algebra A, we recall from [18] that a Banach A-bimodule X is *pseudo-unital* if $X = \{a.x.b: a, b \in A, x \in X\}$, and X is *essential* if the linear hull of $\{a.x.b: a, b \in A, x \in X\}$ is dense in X. If A has a bounded approximate identity and X is essential, then X is *pseudo-unital*.

By following similar argument as in [18, Proposition 2.1.5], we have the following results.

Proposition 3.1

Let A be a Banach algebra with a bounded approximate identity. Then A is pseudoamenable if and only if every continuous derivation $D: A \to X'$ is approximately inner for each pseudo-unital Banach A-bimodule X.

Theorem 3.2

Let S be a semilattice and let $l^1(S)$ have a bounded approximate identity. Then $l^1(S)$ is pseudo-amenable if and only if every continuous derivation $D: l^1(S) \to X'$ is approximately inner for each pseudo-unital Banach A-bimodule X.

Proof. Suppose $l^1(S)$ is pseudo-amenable, then there exists an approximate diagonal $m_{\alpha} \in l^1(S \times S)$ for $l^1(S)$ such that $m_{\alpha}\delta_s - \delta_s m_{\alpha} \to 0$ and $\pi m_{\alpha}\delta_s \to \delta_s$. Let $D: l^1(S) \to X'$ be a bounded derivation and suppose X is a pseudo-unital $l^1(S)$ -bimodule. Then for each $x \in X$ there exist $f, g \in l^1(S)$ and there is $y \in X$ such that y = f.x.g. Since D is bounded there exists M > 0 such that $\|D\| \leq M$. Let $D \circ \pi = \Phi: l^1(S) \widehat{\otimes} l^1(S) \to X'$ be defined by $\Phi(\delta_s \otimes e_{\alpha}) = D(\delta_s).e_{\alpha}$, where $\pi: l^1(S) \widehat{\otimes} l^1(S) \to l^1(S)$ is an induced product map and e_{α} is the bounded approximate identity in $l^1(S)$. Clearly, Φ is a bounded Banach $l^1(S)$, we have

$$\Phi(m_{\alpha}.\delta_s - \delta_s.m_{\alpha}) = \Phi(m_{\alpha})\delta_s - \delta_s.\Phi(m_{\alpha}) \to D(\delta_s)e_{\alpha}.$$

Let $\Phi(m_{\alpha}) = -\Psi_{\alpha}$. Then we have $D(\delta_s) \cdot e_{\alpha} = \delta_s \cdot \Psi_{\alpha} - \Psi_{\alpha} \delta_s$. Now

$$\langle f.x.g, \Phi(\delta_s \otimes e_\alpha) \rangle = \langle y, D(\delta_s).e_\alpha \rangle$$

implies that $\langle y, D(\delta_s) \rangle = \lim_{\alpha} \langle y, D(\delta_s) e_{\alpha} \rangle$. Since X is a pseudo-unital Banach $l^1(S)$ -module, then $D(\delta_s).e_{\alpha} \to D(\delta_s)$ in the weak* topology of X'. Hence $D(\delta_s) = \lim_{\alpha} D(\delta_s)e_{\alpha} = \lim_{\alpha} (\delta_s \Psi_{\alpha} - \Psi_{\alpha}\delta_s)$. This clearly shows Ψ_{α} is a net in X' and hence every continuous derivation D is approximately inner for each pseudo-unital Banach A-bimodule X.

Conversely, suppose every continuous derivation $D: A \to X'$ is approximately inner, then $l^1(S)$ is approximately amenable. Since $l^1(S)$ has a bounded approximate identity, hence it follows from [9, Proposition 3.2] that $l^1(S)$ is pseudoamenable.

Proposition 3.3

Let A be a Banach algebra and let $M_J(A)$ be a unital Banach algebra where J is a non empty set. Then A is pseudo-amenable if and only if $M_J(A)$ is pseudoamenable.

Proof. It is a well-known result that

$$M_J(A) \cong M_J(\mathbb{C})\widehat{\otimes}A.$$

If $M_J(A)$ is pseudo-amenable, then by [9, Proposition 2.2], $M_J(\mathbb{C})\widehat{\otimes}A$ is pseudo-amenable. Hence, it suffices to say that A is pseudo-amenable.

Conversely, if A is pseudo-amenable, then $M_J(A)$ is clearly pseudo-amenable by the same result as in [9].

Proposition 3.4

Let S be an inverse semigroup with E(S) finite. Then $l^1(S)$ is pseudo-amenable if and only if $l^1(E(S))$ is pseudo-amenable.

Proof. Let $T: S \to E(S)$ be defined by $Ts = ss^*$. Then T extends to a norm decreasing linear map $T: l^1(S) \to l^1(E(S))$ defined by $T\delta_s = \delta_{ss^*} = \delta_e$. Suppose $l^1(S)$ is pseudo-amenable, then there exists an approximate diagonal $m_\alpha \in l^1(S) \widehat{\otimes} l^1(S)$ such that $m_\alpha \delta_s - \delta_s m_\alpha \to 0$ and $\pi m_\alpha \delta_s - \delta_s \to 0$. Let

$$\|T\delta_s - \delta_e\| < \epsilon/2. \tag{1}$$

For each $m_{\alpha} \in l^1(S \times S)$ we have

$$\|Tm_{\alpha}\delta_s - \delta_e + \delta_e - T\delta_s m_{\alpha}\| < \epsilon/2 + \epsilon/2$$

and

$$\|Tm_{\alpha}\delta_{s} - T\delta_{s}m_{\alpha}\| \le \|T\| \|m_{\alpha}\delta_{s} - \delta_{s}m_{\alpha}\| < \epsilon.$$
⁽²⁾

Suppose $||T|| \leq 1$, then $m_{\alpha}\delta_s - \delta_s m_{\alpha} \to 0$. Putting $T\delta_s = \delta_e$ in (2) we have $||m_{\alpha}\delta_e - \delta_e m_{\alpha}|| < \epsilon$, which implies that $m_{\alpha}\delta_e - \delta_e m_{\alpha} \to 0$. This shows that m_{α} is an approximate diagonal for $l^1(E(S))$. Now let $\pi : l^1(S \times S) \to l^1(S)$ be an induced product map. We consider the composition map $T \circ \pi : l^1(S \times S) \to l^1(E(S))$. Then for every $\delta_s \in l^1(S)$, we have

$$\|T\pi m_{\alpha}\delta_s - T\delta_s\| < \epsilon/2. \tag{3}$$

Combining (1) and (3) gives

 $\|\pi m_{\alpha}\delta_{e} - \delta_{e}\| = \|\pi m_{\alpha}T\delta_{s} - \delta_{e}\| = \|T\pi m_{\alpha}\delta_{s} - T\delta_{s} + T\delta_{s} - \delta_{e}\| < \epsilon,$

so that $\pi m_{\alpha} \delta_e - \delta_e \to 0$. This clearly shows that $l^1(E(S))$ is pseudo-amenable. The converse is clear.

Proposition 3.5

Let S be an inverse semigroup. Then $l^1(S)$ is pseudo-amenable if and only if S is finite.

Proof. Suppose that S is finite, then it is amenable [5]. Let G be a maximal group homomorphic image of S, then by [5, Theorem 1], G is amenable. It then follows from [19, Theorem 3], that $l^1(S)$ is pseudo-amenable.

Conversely, suppose $l^1(S)$ is pseudo-amenable, then G is an amenable group [8, Corollary 3.8]. By Theorem [5, Theorem 1], S is amenable, thus this implies that S is finite.

We recall the definition of a biflat Banach algebra. A Banach algebra A is *biflat* if the dual of the diagonal map $\triangle^* \colon A^* \to (A \widehat{\otimes} A)^*$ has a bounded left inverse which is an A-bimodule homomorphism [18, Definition 4.3.21]. Equivalently, we define a biflat Banach algebra as follows. Let A be a Banach algebra and let $\rho \colon A \to (A \widehat{\otimes} A)''$ be an A-bimodule. A is said to be biflat if there is a canonical embedding $\triangle^{**} \circ \rho$ of A into A'' [18, Lemma 4.3.22].

Theorem 3.6

Let S be a finite semilattice. If $l^1(S)$ is biflat then

- (i) there is an isometric isomorphism between $l^{\infty}(S)$ and $l^{\infty}(S \times S)$,
- (*ii*) *it is pseudo-contractible*.

Proof. Let $\rho: l^1(S) \to l^{\infty}(S \times S)'$ be an algebra homomorphism. Since $l^1(S)$ is biflat, then there exists a canonical embedding map $k_{l^1(S)}: l^1(S) \to l^{\infty}(S)'$. Let $\pi': l^{\infty}(S) \to l^{\infty}(S \times S)$ be defined by $\pi'(\Phi) = \Psi$ for $\Phi \in l^{\infty}(S), \Psi \in l^{\infty}(S \times S)$, where $\pi: l^1(S \times S) \to l^1(S)$ is a diagonal map. We note that $\rho(\delta_s) \in l^{\infty}(S \times S)'$ for $\delta_s \in l^1(S)$. Hence

$$\rho(\delta_s)\Psi = \langle \Psi, \rho(\delta_s) \rangle. \tag{4}$$

If $k_{l^1(S)}(\delta_s) \in l^\infty(S)'$, then

$$k_{l^{1}(S)}\delta_{s}(\Phi) = \langle \Phi, k_{l^{1}(S)}(\delta_{s}) \rangle = \langle \Phi, \pi''\rho(\delta_{s}) \rangle = \langle \pi'(\Phi), \rho(\delta_{s}) \rangle = \langle \Psi, \rho(\delta_{s}) \rangle.$$
(5)

From $\|\pi'' \circ \rho\| \leq \|\rho\| = \|\pi''\| \leq 1$. Let $\pi''|_{l^1(S)\widehat{\otimes}l^1(S)} = \pi$, then $\pi \subseteq \pi''$ and $\|\pi\| \leq \|\pi''\| \leq 1$. By considering (4) and (5),

$$\rho(\delta_s)\Psi = k_{l^1(S)}(\delta_s)\Phi,$$

then we can conclude that $l^{\infty}(S) \cong l^{\infty}(S \times S)$.

Now suppose $M \in l^1(S \times S)$ is a diagonal element for $l^1(S)$, then $\pi M \in l^1(S)$ and hence $\rho \pi M = \rho(\delta_s) = \pi M = (\delta_s)$. Now for each $\delta_s \in l^1(S)$ we have $\pi M \delta_s = \delta_s$. We can therefore conclude that M is a central approximate diagonal for $l^1(S)$ as $M\delta_s = \delta_s M$.

[95]

4. Results on restricted semigroup algebras

In this section we shall consider the pseudo-amenability properties of the restricted semigroup $l_r^1(S)$ and that of the semigroup algebra on restricted semigroup S_r . For details on restricted semigroups and restricted semigroup algebra, see [11] and [14].

For any inverse semigroup S, the restricted product of elements s and t of S is st if $s^*s = tt^*$ and undefined otherwise. The set S with this restricted product \bullet forms a discrete groupoid [10, 3.1.4]. Adjoining a zero element 0, to this groupoid and putting $0^* = 0$ gives an inverse semigroup S_r [10, 3.3.3] with the multiplication rule

$$s \bullet t = \begin{cases} st, & \text{if } s^*s = tt^*, \\ 0, & \text{otherwise,} \end{cases}$$

for $s, t \in S \cup \{0\}$, which is called in [11], the *restricted semigroup* of S.

It is clear that $E(S_r) = E(S) \cup \{0\}$. Suppose S is a *-semigroup, given a Banach space $l^1(S)$ with the usual l^1 -norm, we set $\tilde{f}(x) = \overline{f(x)}$ and define the following multiplication on $l^1(S)$,

$$(f \bullet g)(s) = \sum_{s^*s = tt^*} f(st)g(t^*), \qquad s \in S.$$

Then $(l^1(S), \bullet)$, with the l^1 -norm is a Banach *-algebra denoted by $l_r^1(S)$, called the restricted semigroup algebra of S. For a restricted semigroup S_r of an inverse semigroup S the set $l^1(S_r)$ is called the semigroup algebra on the restricted semigroup S_r .

4.1. Pseudo-amenability of restricted semigroup algebras

In this section, we give some results about pseudo-amenable restricted semigroup algebras and a pseudo-amenable semigroup algebra on a restricted semigroup S_r .

Theorem 4.1

Let S be an inverse semigroup with E(S) finite. Then $l^1(S_r)$ is pseudo-amenable if and only if each G_i is an amenable group while G_i is the corresponding group in the Brandt semigroup S_i .

Proof. Suppose each G_i is an amenable group, then each S_i is amenable for $S_i = \bigcup_{i=1}^n G_i$. Now from the fact that $S_r = \bigcup_{i \in I} S_i$ for Brandt semigroups S_i and by using [19, Theorem 3], we get that $l^1(S_r)$ is pseudo-amenable.

Conversely, suppose $l^1(S_r)$ is pseudo-amenable and since $l^1(S_r) = \bigcup l^1(S_i)$, then S_i is an amenable semigroup for each i [7, Theorem 3.1]. Thus, each G_i is an amenable group.

THEOREM 4.2 Let $S = M^0(G, I)$ be a Brandt semigroup. Then $l^1(S_r)$ is pseudo-amenable if and only if S_r has finitely many idempotents.

[96]

Proof. Suppose S_r has finitely many idempotents, then $l^1(S_r)$ has a bounded approximate identity, [14, Theorem 3.6]. Let $S = S_r$ be as in [14, Example 1.2] and suppose $l^1(S_r)$ is approximately amenable, then by Proposition 3.1, it is pseudo-amenable.

Conversely, if $l^1(S_r)$ is approximately amenable and has a bounded approximate identity, then by [9, Proposition 3.2] it is pseudo-amenable and has a bounded approximate identity. It then follows from [14, Theorem 3.6] that S_r has finitely many idempotents.

PROPOSITION 4.3

Let S be an inverse semigroup. The restricted semigroup algebra $l_r^1(S)$ is pseudoamenable if and only if $l^1(S_r)$ is pseudo-amenable.

Proof. Suppose $l^1(S_r)$ is pseudo-amenable and $\mathbb{C}\delta_0$ is a closed ideal of $l^1(S_r)$, if $\mathbb{C}\delta_0$ has a bounded approximate identity, then $\mathbb{C}\delta_0$ is pseudo-amenable [9, Corollary 2.7]. Let there exist an epimorphism $\theta: l^1(S_r) \to l^1_r(S)$ which kernel is $\mathbb{C}\delta_0$. By [11, Theorem 3.7], $l^1(S_r)/\mathbb{C}\delta_0$ is isometrically isomorphic to $l^1_r(S)$. Hence $l^1_r(S)$ is pseudo-amenable by [9, Theorem 2.2].

Proposition 4.4

Let S be a left cancellative semigroup. $l^1(S_r)$ is pseudo-amenable if and only if $l^1(S_r)$ has a bounded approximate identity.

Proof. Suppose $l^1(S_r)$ has a bounded approximate identity, then S has finitely many idempotents [14, Theorem 3.6]. Then, by [14, Corollary 3.7], $l^1(S_r)$ is amenable. It then follows from [7, Theorem 3.6] and Proposition 4.3 that $l^1(S_r)$ is pseudo-amenable.

Conversely, suppose $l^1(S_r)$ is pseudo-amenable and S_r is an amenable group [7, Theorem 3.6], then S is equally an amenable group. This implies that S is finite and hence has finitely many idempotents. Then by [14, Theorem 3.6], $l^1(S_r)$ has a bounded approximate identity.

Corollary 4.5

If an inverse semigroup S is infinite and $l^1(S)$ has no bounded approximate identity, then $l^1(S)$, $l^1(S_r)$ and $l^1_r(S)$ are not pseudo-amenable.

Proposition 4.6

Let $S = \bigcup_{i=1} G_i$ be a Clifford semigroup with E(S) finite. Then the following are equivalent

- (i) $l_r^1(S)$ is pseudo-amenable,
- (ii) $l^1(S_r)$ is pseudo-amenable,
- (iii) G_i is an amenable group for each *i*.

Proof. Equivalence $(i) \Leftrightarrow (ii)$ follows from Proposition 4.3.

To show $(ii) \Leftrightarrow (iii)$ observe that $S_r = S \cup \{0\}$. Let $S_i = G_i \cup \{0\}$ for $i = 1, 2, \ldots, n$, then each S_i is a Brandt semigroup with the group G_i . Thus $S_r = \bigcup_{i=1} S_i$ with $S_i \cap S_j = S_i S_j = \{0\}$ and so the result follows by applying Theorem 4.1.

To prove $(iii) \Leftrightarrow (i)$ suppose that each G_i is an amenable group, then by Theorem 4.1 and Proposition 4.3, $l_r^1(S)$ is pseudo-amenable.

Proposition 4.7

Let $S = M^0(G, I, n)$ be a Brandt semigroup and let $l^1(S)$ be a unital Banach algebra. Then $l_r^1(S)$ is pseudo-amenable if and only if $M_n(l^1(G))$ is pseudo-amenable.

Proof. Suppose G is discrete then $L^1(G) = l^1(G)$. If G is amenable then $l^1(G)$ is pseudo-amenable, see [9, Proposition 4.1]. Let $S = S_r$ therefore $l^1(S) = l^1(S_r)$ [14, Example 1.2]. Let $l_r^1(S) = l^1(S)/\mathbb{C}\delta_0 \cong M^0(l^1(G), I, n)$, where $\mathbb{C}\delta_0$ is a closed ideal of $l^1(S_r)$. Now put $\tilde{A} = l_r^1(S)$ and $A = l^1(G)$, then the result follows from Proposition 3.3.

We recall that $S_r = S \cup \{0\}$. We have $l^1(E_r) = (l^1(E \cup [0]), \bullet)$ as a subalgebra of $l^1(S_r)$. Hence $l^1(E_r) \subseteq l^1(S_r)$. Now suppose S_r is a finite semilattice. Let $A = l^1(S_r)$ and let $A_{s_r} = l^1(E_r)$. Hence $A = l^1 \oplus A_{s_r} : A_{s_r}A_{t_r} \subset A_{st_r}, s_r, t_r \in S_r$. Clearly, each A_{s_r} is a closed subalgebra of A.

Proposition 4.8

Let S_r be a finite semilattice and let A be a Banach algebra graded over S_r . Then A is pseudo-amenable if and only if each A_{s_r} is pseudo-amenable.

The following is a modified Example of [14, Example 3.9].

Example 4.9

Let $S_r = \mathbb{N}_{\wedge}$, where $m \wedge n = \max(m, n)$ and $n^* = n$ for $m, n \in \mathbb{N}$ with $E(S_r) = S_r$ not finite. Hence $l^1(S_r)$ is not pseudo-amenable.

Proposition 4.10

Let S be an inverse semigroup. Then $l^1(S_r)$ is pseudo-amenable if and only if it is character amenable.

Proof. Suppose $l^1(S_r)$ is pseudo-amenable and we have that $l^1(S_r) = l^1(S \cup \{0\})$, then $l^1(S)$ is pseudo-amenable. By Proposition 3.5, S is finite and thus has a finite set of idempotent elements. Using the converse of [13, Proposition 4.2(ii)], we obtain that $l^1(S_r)$ is character amenable.

Conversely, if $l^1(S_r)$ is character amenable, then by [13, Theorem 3.3], it has a bounded approximate identity. Now suppose S is left cancellative, then by Proposition 4.4, $l^1(S_r)$ is pseudo-amenable.

Theorem 4.11

Let S be an inverse semigroup. Then $l^1(S_r)$ is pseudo-amenable if and only if S_r has principal series.

Proof. Let

$$S_r = (S_1 \cup \ldots \cup S_n) \supsetneq (S_1 \cup \ldots \cup S_{n-1}) \supsetneq \ldots \supsetneq (S_1 \cup S_2) \supsetneq (S_1) \supsetneq \{0\} \supsetneq \emptyset$$

be the chain of S. Clearly S_r is finite and so is S, since $(S_r) = S \cup \{0\}$. Thus by Proposition 3.5, $l^1(S)$ is pseudo-amenable. It then suffice to say that if $l^1(S_r) = l^1(S \cup \{0\})$ and $l^1(S)$ is pseudo-amenable, then $l^1(S_r)$ is pseudo-amenable.

[98]

Conversely, if S is a Brandt semigroup, and $l^1(S_r)$ is pseudo-amenable, then by Theorem 4.2, S_r has finitely many idempotents. By [14, Lemma 2.3], it follows that S_r has principal series.

4.2. Pseudo-contractibility of restricted semigroup algebras

In this section, we prove some results about pseudo-contractible restricted semigroup algebras and pseudo-contractible semigroup algebras on restricted semigroup.

Proposition 4.12

Let S be an inverse semigroup with finitely non-zero idempotent set. If $l_r^1(S)$ is pseudo-contractible such that there is an epimorphism $\theta: l_r^1(S) \to l_r^1(E(S))$, then

- (i) $l_r^1(S)$ has left identity,
- (*ii*) S is a semilattice.

Proof. Let M_{α} a central approximate diagonal for $l_r^1(S)$. Suppose $e \in E(S)$ and $\pi: l_r^1(S) \widehat{\otimes} l_r^1(S) \to l_r^1(S)$ is an induced product map. If $\pi M_{\alpha} \in l_r^1(S)$, then $\theta \pi M_{\alpha} = \delta_e$ for $\delta_e \in l_r^1(E(S)$. Now for each $\delta_s \in l_r^1(S)$, $\theta \pi M_{\alpha} \delta_s = \delta_e \delta_s = \delta_s$. Hence we can conclude that δ_e is a left identity in $l_r^1(S)$.

(*ii*) Clearly E(S) is is a commutative subsemigroup of S. Then it suffices to show that $l_r^1(E(S)) \subset l_r^1(S)$. Let δ_e be a left identity in $l_r^1(S)$. For each $\delta_s \in l_r^1(S)$ we have $\delta_e \delta_s = \theta \pi M_\alpha \delta_s = \delta_s$. If $\delta_e \in l_r^1(E(S))$ and $l_r^1(E(S))$ is closed in $l_r^1(S)$ then $\delta_e \delta_e = \delta_e \delta_s$ We then conclude that S is a semilattice.

Proposition 4.13

Let S be a semilattice. Then $l_r^1(S)$ is pseudo-contractible if and only if $l_r^1(E(S))$ is pseudo-contractible.

Proof. Suppose $l_r^1(S)$ is pseudo-contractible, then $m \in l_r^1(S \times S)$ is a central diagonal for $l_r^1(S)$ such that $m\delta_s = \delta_s m$ and $\pi m\delta_s = \delta_s$. Let $T: l_r^1(S) \to l_r^1(E(S))$ be a norm decreasing linear map defined by $T\delta_s = \delta_e$, $\delta_s \in l_r^1(S)$ and $\delta_e \in l_r^1(E(S))$. Let $\pi: l_r^1(S \times S) \to l_r^1(S)$ be an induced product map. Clearly, $\pi m \in l_r^1(S)$ and since ||T|| = 1, we have

$$||T(\pi m)|| = ||\delta_e|| = ||T\pi m - T\delta_s|| \le ||T|| ||\pi m - \delta_s|| \le ||\pi m - \delta_s||,$$

thus we get $\pi m - \delta_s \to 0$ and $\pi m = \delta_s$.

Suppose M is a diagonal element for $l_r^1(E(S))$ and $\pi M \in l_r^1(E(S))$, then $T\pi m = \pi M$, so $T\delta_s = \pi M = \delta_e$. Hence for each δ_e in $l_r^1(E(S))$, $\pi M\delta_e = \delta_e$. Then $\pi m = \pi M$. This implies that m = M and thus M is a central diagonal for $l_r^1(E(S))$. Therefore $m\delta_s = M\delta_s = M\delta_e$, since S is a semilattice. Then $M\delta_e = \delta_e M$ and $\pi M\delta_e = \delta_e$. Hence the proof is completed.

Arens in [1] defined two products \Box and \diamond on the bidual A'' of Banach algebra A; A'' is a Banach algebra with respect to each of these products and each algebra contains A as a closed subalgebra. These products are called the first and second Arens products on A'', respectively. For the general theory of Arens products see [3, 4, 6].

Now let the restricted semigroup algebra be denoted by $B_r(S)$. In the particular case:

$$\delta_s \bullet \delta_t = \begin{cases} \delta_{st}, \ s^*s = tt^*, \\ 0, \ \text{otherwise}, \end{cases} \quad s, t \in S,$$

see [17]. We identify the characteristic function of $\{(s,t)\}$ for $B_r(S \times S)$ by setting $\delta_{(s,t)} = \delta_s \otimes \delta_t$, so this induceds a Banach algebra isometric isomorphism from $B_r(S) \widehat{\otimes} B_r(S)$ onto $B_r(S \times S)$. With this identification $B_r(S \times S)$ is a Banach $B_r(S)$ -bimodule. We also identify $(B_r(S) \widehat{\otimes} B_r(S))''$ with $B_r(S \times S)''$.

Now we show the module action of Arens regular restricted semigroup algebra. For $\delta_{\lambda}^r \in B_r(S)'$ we have

$$\langle \delta_s, \delta_t. \delta_\lambda^r \rangle = \langle \delta_{st}, \delta_\lambda^r \rangle, \quad \langle \delta_s, \delta_\lambda^r \delta_t \rangle = \langle \delta_{ts}, \delta_\lambda^r \rangle, \qquad \delta_s, \delta_t \in B_r(S).$$

Now for $\delta_{\lambda}^r \in B_r(S)'$ and $\delta_{\Phi}^r \in B_r(S)''$ we define $\delta_{\lambda}^r \cdot \delta_{\Phi}^r$ and $\delta_{\Phi}^r \cdot \delta_{\lambda}^r$ by

$$\langle \delta_s, \delta^r_\lambda, \delta^r_\Phi \rangle = \langle \delta^r_\Phi, \delta_s, \delta^r_\lambda \rangle, \quad \langle \delta_s, \delta^r_\Phi, \delta^r_\lambda \rangle = \langle \delta_\Phi, \delta^r_\lambda, \delta_s \rangle, \qquad \delta_s \in B_r(S).$$

Finally, for $\delta^r_{\Phi}, \delta^r_{\Psi} \in B_r(S)''$ we define

$$\langle \delta^r_{\Phi} \Box \delta^r_{\Psi}, \delta^r_{\lambda} \rangle = \langle \delta^r_{\Phi}, \delta^r_{\Psi}. \delta^r_{\lambda} \rangle, \quad \langle \delta^r_{\Phi} \diamond \delta^r_{\Psi}, \delta^r_{\lambda} \rangle = \langle \delta^r_{\Psi}, \delta^r_{\lambda}. \delta^r_{\Phi} \rangle \qquad \delta^r_{\lambda} \in B_r(S)'.$$

Theorem 4.14

Let $B_r(S)$ be an Arens regular restricted semigroup algebra. If $B_r(S)''$ is amenable then $B_r(S)$ is pseudo-contractible.

Proof. Let m_{α}^{r} and M^{r} be an approximate diagonal and virtual diagonal for $B_{r}(S)$, respectively. Let $\pi: B_{r}(S) \widehat{\otimes} B_{r}(S) \to B_{r}(S)$ be an induced product map and let $k_{B_{r}(S)}: B_{r}(S) \to B_{r}(S)''$ be a canonical embedding map. We have the composition map $k_{B_{r}(S)} \circ \pi: B_{r}(S) \widehat{\otimes} B_{r}(S) \to B_{r}(S)''$ such that

$$||k_{B_r(S)} \circ \pi m_\alpha \delta_s|| \le ||\pi'' M^r \delta_s||, \qquad \delta_s \in B_r(S), \ M^r \in B_r(S \times S)''.$$

Suppose $||k_{B_r(S)}|| \leq 1$, then $||\pi m_{\alpha}^r|| = ||\pi'' M^r||$. Since $\pi''|_{B_r(S \times S)} = \pi$ we have $\pi \subseteq \pi''$. Since m_{α}^r is weak* convergent to M^r in $(B_r(S) \widehat{\otimes} B_r(S))''$, then $m_{\alpha}^r \subseteq M^r$. Since $B_r(S)$ is a closed subalgebra of $B_r(S)''$, then it is amenable, this confirms the existence of virtual diagonal M^r in $B_r(S)$. By Goldstein's Theorem, $M^r = w^* \lim_{\alpha} (\delta_s m_{\alpha}^r - m_{\alpha}^r \delta_s) = 0$ for each $\delta_s \in B_r(S)$. Then

$$\pi'' w^* \lim_{\alpha} (\delta_s m_{\alpha}^r - m_{\alpha}^r \delta_s) = w^* \lim_{\alpha} \pi (\delta_s m_{\alpha}^r - m_{\alpha}^r \delta_s) = 0.$$

Clearly, ker $\pi \subset B_r(S)''$. Since ker π is closed in $B_r(S \times S)$, then for each $m_{\alpha}^r \in B_r(S \times S)$ and $M^r \in B_r(S)''$, m_{α}^r is closed in M^r . This shows that m_{α} is a central approximate diagonal. Hence if $M^r \delta_s = \delta_s M^r$, then $m_{\alpha}^r . \delta_s = \delta_s . m_{\alpha}^r$ and $\pi m_{\alpha}^r \delta_s = \delta_s$. Therefore, this shows that $B_r(S)$ is pseudo-contractible.

[100]

PROPOSITION 4.15 Let $S = M^0(G, I)$ be a Brandt semigroup. Then the following are equivalent

- (i) $l^1(S_r)$ is pseudo-contractible,
- (ii) $l^1(S_r)$ is pseudo-amenable.

Proof. $(i) \Rightarrow (ii)$. By Example 1.2 in [14], $S = S_r$ and so $l^1(S) = l^1(S_r)$. Now suppose $l^1(S_r)$ is pseudo-contractible, then G and I are finite [7, Corollary 2.5]. The finiteness of I implies that G is amenable [5, Theorem 7]. Using Theorem 3 [19], yields that $l^1(S_r)$ is pseudo-amenable.

 $(ii) \Rightarrow (i)$. Suppose $l^1(S_r)$ is pseudo-amenable and $l^1(S) = l^1(S_r)$ as in the above argument, G is amenable [8, Corollary 3.8]. Hence G and I are finite and so by Corollary 2.5 [7], $l^1(S_r)$ is pseudo-contractible.

References

- Arens, Richard. "The adjoint of a bilinear operation." Proc. Amer. Math. Soc. 2, (1951): 839-848. Cited on 99.
- Bodaghi, Abasalt, and Ali Jabbari. "Module pseudo-amenability of Banach algebras." An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 63, no. 3 (2017): 449-461. Cited on 89.
- [3] Dales, H. G. Banach algebras and automatic continuity. Vol. 24 of London Mathematical Society Monographs. New Series. New York: Oxford Science Publications, The Clarendon Press, Oxford University Press, 2000. Cited on 99.
- [4] Dales, H. G., and A.T.-M. Lau, and D. Strauss. "Banach algebras on semigroups and on their compactifications." *Mem. Amer. Math. Soc.* 205, no. 966 (2010): i-165. Cited on 92 and 99.
- [5] Duncan, John, and Isaac Namioka. "Amenability of inverse semigroups and their semigroup algebras." *Proc. Roy. Soc. Edinburgh Sect. A* 80, no. 3-4 (1978): 309-321. Cited on 95 and 101.
- [6] Duncan, John, and S.A.R. Hosseiniun. "The second dual of a Banach algebra." Proc. Roy. Soc. Edinburgh Sect. A 84, no. 3-4, (1979): 309-325. Cited on 99.
- [7] Essmaili, M., and M. Rostami, and A.R. Medghalchi. "Pseudo-contractibility and pseudo-amenability of semigroup algebras." *Arch. Math. (Basel)* 97, no. 2 (2011): 167-177. Cited on 89, 96, 97 and 101.
- [8] Essmaili, M., and M. Rostami, and A. Pourabbas. "Pseudo-amenability of certain semigroup algebras." *Semigroup Forum* 82, no. 3 (2011): 478-484. Cited on 89, 95 and 101.
- Ghahramani, F., and Y. Zhang. "Pseudo-amenable and pseudo-contractible Banach algebras." *Math. Proc. Cambridge Philos. Soc.* 142, no. 1 (2007): 111-123. Cited on 89, 94, 97 and 98.
- [10] Lawson, Mark V. Inverse semigroups. The theory of partial symmetries. River Edge, NJ: World Scientific Publishing Co., Inc., 1998. Cited on 96.
- [11] Amini, Massoud, and Alireza Medghalchi. "Restricted algebras on inverse semigroups. I. Representation theory." *Math. Nachr.* 279, no. 16 (2006): 1739-1748. Cited on 90, 96 and 97.

- [12] Mewomo, O.T. "Notions of amenability on semigroup algebras." J. Semigroup Theory Appl. 2013 (2013): art id. 8. Cited on 91.
- [13] Mewomo, O. T., and O.J. Ogunsola. "On character amenability of restricted semigroup algebras." *Proc. Jangjeon Math. Soc.* 19, no. 3 (2016): 591-607. Cited on 90 and 98.
- [14] Mehran, Mohammad and Massoud Amini. "Amenability of restricted semigroup algebras." Int. J. Math. Anal. (Ruse) 4, no. 1-4 (2010): 17-28. Cited on 90, 96, 97, 98, 99 and 101.
- [15] Munn, W. D. "A class of irreducible matrix representations of an arbitrary inverse semigroup." Proc. Glasgow Math. Assoc. 5 (1961): 41-48. Cited on 91.
- [16] Ramsden, Paul. "Biflatness of semigroup algebras." Semigroup Forum 79, no. 3 (2009): 515-530. Cited on 91.
- [17] Rostami, Mehdi, and Abdolrasoul Pourabbas, and Morteza Essmaili. "Approximate amenability of certain inverse semigroup algebras." Acta Math. Sci. Ser. B (Engl. Ed.) 33, no. 2 (2013): 565-577. Cited on 100.
- [18] Runde, Volker. Lectures on amenability. Vol. 1774 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2002. Cited on 93 and 95.
- [19] Sadr, Maysam Maysami. "Pseudo-amenability of Brandt semigroup algebras." *Comment. Math. Univ. Carolin.* 50, no. 3 (2009): 413-419. Cited on 89, 95, 96 and 101.

Olufemi J. Ogunsola Federal University of Agriculture Abeokuta Nigeria E-mail: jibfem@yahoo.com

Ifeyinwa E. Daniel Spiritan University Nneochi Abia State Nigeria E-mail: ifey-inwadaniel@yahoo.com

Received: March 26, 2018; final version: July 17, 2018; available online: December 7, 2018.