Bi-Bazilevič functions of complex order involving Ruscheweyh type q-difference operator
Abstract
Keywords
Mathematics Subject Classification (2010)
References
Ali, Rosihan M. et all. "Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions." Appl. Math. Lett. 25, no. 3 (2012): 344–351.
Brannan, David A., and James Clunie, and William E. Kirwan. "Coefficient estimates for a class of star-like functions." Canad. J. Math. 22 (1970): 476–485.
Aspects of Contemporary Complex Analysis. Edited by David A. Brannan and James G. Clunie. London: Academic Press, 1980.
Brannan, David A., and T.S. Taha. "On some classes of bi-univalent functions."Studia Univ. Babes-Bolyai Math. 31, no. 2 (1986): 70–77.
Bulut, Serap. "Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator." Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 66, no. 1 (2017): 108–114.
Deniz, Erhan. "Certain subclasses of bi-univalent functions satisfying subordinateconditions." J. Class. Anal. 2, no. 1 (2013): 49–60.
Frasin, Basem A., and Mohamed K. Aouf. "New subclasses of bi-univalent functions." Appl. Math. Lett. 24, no. 9 (2011): 1569–1573.
Jackson, F.H. "On q-functions and a certain difference operator." Trans. Royal Soc. Edinburgh 46, no. 2 (1909): 253–281.
Hayami, Toshio, and Shigeyoshi Owa. "Coefficient bounds for bi-univalent functions." PanAmer. Math. J. 22, no. 4 (2012): 15–26.
Inayat Noor, Khalida. "On Bazilevic functions of complex order." Nihonkai Math. J. 3, no. 2 (1992): 115–124.
Kanas, Stanisława, and Dorina Raducanu. "Some class of analytic functions related to conic domains." Math. Slovaca 64, no. 5 (2014): 1183–1196.
Lewin, Mordechai. "On a coefficient problem for bi-univalent functions." Proc. Amer. Math. Soc. 18 (1967): 63–68.
Ma, Wan Cang, and David Minda. "A unified treatment of some special classes of univalent functions." In Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169. Vol I of Conf. Proc. Lecture Notes Anal. Cambridge, MA: Int. Press, 1994
Netanyahu, Elisha. "The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z < 1." Arch. Rational Mech. Anal. 32 (1969): 100–112.
Pommerenke, Christian. Univalent functions. Vol. 25 of Mathematische Lehrbücher. Göttingen: Vandenhoeck & Ruprecht, 1975.
Srivastava, H. M., and G. Murugusundaramoorthy, and K. Vijaya. "Coefficient estimates for some families of bi-Bazilevic functions of the Ma-Minda type involving the Hohlov operator." J. Class. Anal. 2, no. 2, (2013): 167–181.
Srivastava, Hari M., and Akshaya K. Mishra, and Priyabrat Gochhayat. "Certain subclasses of analytic and bi-univalent functions." Appl. Math. Lett. 23, no. 10, (2010): 1188–1192.
Taha, T.S. Topics in Univalent Function Theory, Ph.D. Thesis. London: University of London, 1981.
Download statistics: 1292
This article by Gangadharan Murugusundaramoorthy, Serap Bulut is governed by the Creative Commons Attribution-ShareAlike 4.0 International(CC BY-SA 4.0) licence.
Since 2017 Open Access in De Gruyter and CrossCheck access cofinanced by The Ministry of Science and Higher Education - Republic of Poland - DUN 775/P-DUN/2017 see more
The Journal is indexed in:
AUPC SM is on the List of the Ministry’s scored journals with 20 points for 2019