*-g-frames in tensor products of Hilbert C*-modules
Abstract
Keywords
Mathematics Subject Classification (2010)
References
Alijani, Azadeh. "Generalized frames with C*-valued bounds and their operator duals." Filomat 29, no. 7 (2015): 1469–1479.
Alijani, Azadeh, and Mohammad Ali Dehghan. "G-frames and their duals for Hilbert C*-modules. Bull. Iranian Math. Soc. 38, no. 3 (2012): 567–580.
Asgari, Mohammad Sadegh, and Amir Khosravi. "Frames and bases of subspaces in Hilbert spaces." J. Math. Anal. Appl. 308, no. 2 (2005): 541–553.
Bounader, Nordine, and Samir Kabbaj. "*-g-frames in hilbert C*-modules." J. Math. Comput. Sci. 4, no. 2 (2014) 246–256.
Christensen, Ole. An introduction to frames and Riesz bases. Applied and Numerical Harmonic Analysis. Boston, MA: Birkhäuser Boston, Inc. 2003.
Christensen, Ole, and Yonina C. Eldar. "Oblique dual frames and shift-invariant spaces." Appl. Comput. Harmon. Anal. 17, no. 1 (2004): 48–68.
Conway, John B. A course in operator theory. Vol. 21 of Graduate Studies in Mathematics. Providence, RI: American Mathematical Society, 2000.
Davidson, Kenneth R. C*-algebras by example. Vol. 6 of Fields Institute Monographs. Providence, RI: American Mathematical Society, 1996.
Duffin, Richard J., and A. C. Schaeffer. "A class of nonharmonic Fourier series." Trans. Amer. Math. Soc. 72 (1952): 341–366.
Frank, Michael, and David R. Larson. "A module frame concept for Hilbert C*- modules." In Contemp. Math.247, 207–233. Providence, RI: Amer. Math. Soc., 1999.
Gabor, Denis. "Theory of communications." Journal of the Institution of Electrical Engineers 93 (1946): 429–457.
Hsu, Ming-Hsiu, and Ngai-Ching Wong. "Inner products and module maps of Hilbert C*-modules." Matimyas Matematika 34, no. 1-2 (2011): 56–62.
Khosravi, Amir, and Behrooz Khosravi. "Frames and bases in tensor products of Hilbert spaces and Hilbert C*-modules." Proc. Indian Acad. Sci. Math. Sci. 117, no. 1 (2007): 1–12.
Khosravi, Amir, and Behrooz Khosravi. "Fusion frames and g-frames in Hilbert C*-modules." Int. J. Wavelets Multiresolut. Inf. Process. 6, no. 3 (2008): 433–446.
Lance, E. Christopher. Hilbert C*-modules. A toolkit for operator algebraists. Vol. 210 of London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 1995.
Li, Shidong, and Hidemitsu Ogawa. "Pseudoframes for subspaces with applications." J. Fourier Anal. Appl. 10, no. 4 (2004): 409–431.
Download statistics: 1228
This article by Mohamed Rossafi, Samir Kabbaj is governed by the Creative Commons Attribution-ShareAlike 4.0 International(CC BY-SA 4.0) licence.
Since 2017 Open Access in De Gruyter and CrossCheck access cofinanced by The Ministry of Science and Higher Education - Republic of Poland - DUN 775/P-DUN/2017 see more
The Journal is indexed in:
AUPC SM is on the List of the Ministry’s scored journals with 20 points for 2019