The class Bp for weighted generalized Fourier transform inequalities
Abstract
Keywords
Mathematics Subject Classification (2010)
References
Abdelkefi, C. et al. "Besov-type spaces on Rd and integrability for the Dunkl transform." SIGMA Symmetry Integrability Geom. MethodsAppl. 5 (2009): Paper 019.
Abdelkefi, C. "Weighted function spaces and Dunkl transform." Mediterr. J. Math. 9.3 (2012): 499–513.
Beckner, W. "Pitt’s inequality and the uncertainty principle." Proc. Amer. Math. Soc. 123.6 (1995):1897–1905.
Benedetto, J.J. and H.P. Heinig. "Weighted Fourier inequalities: new proofs and generalizations." J. Fourier Anal. Appl. 9.1 (2003): 1–37.
Bennett, C. and R. Sharpley. "Interpolation of operators." Pure and Applied Mathematics 129. Boston, MA: Academic Press, Inc., 1988.
de Jeu, M.F.E. "The Dunkl transform." Invent. Math. 113.1 (1993): 147–162.
Dunkl, C.F. "Differential-difference operators associated to reflection groups." Trans. Amer. Math. Soc. 311.1 (1989): 167–183.
Dunkl, C.F. "Integral kernels with reflection group invariance." Canad. J. Math. 43.6 (1991): 1213–1227.
Hardy, G.H. "Note on a theorem of Hilbert." Math. Z. 6.3-4 (1920): 314–317.
Hardy, G.H., J.E. Littlewood and G. Pólya. "Inequalities." 2d ed., Cambridge: Cambridge University Press, 1952.
Heinig, H.P. "Weighted norm inequalities for classes of operators.", Indiana Univ. Math. J. 33.4 (1984): 573–582.
Jodeit, M. Jr. and A. Torchinsky. "Inequalities for Fourier transforms.", Studia Math. 37 (1970/71): 245–276.
Maz’ja, V.G. "Sobolev spaces." Springer Series in Soviet Mathematics. Berlin: Springer-Verlag, 1985.
Rösler, M. and M. Voit. "Markov processes related with Dunkl operators." Adv. in Appl. Math. 21.4 (1998): 575–643.
Rösler, M. "Dunkl operators: theory and applications." Orthogonal polynomials and special functions (Leuven, 2002). Lecture Notes in Math. 1817. Berlin: Springer, 2003: 93–135.
Sawyer, E. "Boundedness of classical operators on classical Lorentz spaces." Studia Math. 96.2 (1990): 145–158.
Stein, E.M. "Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals." Princeton Mathematical Series 43. Monographs in Harmonic Analysis III. Princeton, NJ: Princeton University Press, 1993.
Download statistics: 1658
This article by Chokri Abdelkefi, Mongi Rachdi is governed by the Creative Commons Attribution-ShareAlike 4.0 International(CC BY-SA 4.0) licence.
Since 2017 Open Access in De Gruyter and CrossCheck access cofinanced by The Ministry of Science and Higher Education - Republic of Poland - DUN 775/P-DUN/2017 see more
The Journal is indexed in:
AUPC SM is on the List of the Ministry’s scored journals with 20 points for 2019