Multivalued second order differential problem
Abstract
Let K be a closed convex cone with nonempty interior in a real Banach space and let F,G,H: K → cc(K) be three given continuous additive set-valued functions. We study the existence and uniqueness of a solution of the second order differential problem
D2(t,x) = Φ(t,H(x))
Φ(0,x) = F(x), DΦ(t,x)|t=0 = G(x)
for t ≥ 0 and x ∈ K, where DΦ(t,x) and D2Φ(t,x) denote the Hukuhara derivative and the second Hukuhara derivative of Φ(t,x) with respect to t.
Keywords
Mathematics Subject Classification
References
Berge, C. "Topological Spaces." Edinburgh and London: Oliver and Boyd, 1963.
Castaing, C. and M. Valadier "Convex Analysis and Measurable Multifunctions." Lecture Notes in Mathematics, 580. Berlin-New York: Springer-Verlag, 1977.
Dinghas, A. "Zum Minkowskischen Integralbegriff abgeschlossener Mengen." Math. Z. 66 (1956): 173-188.
Hukuhara, M. "Intégration des applications mesurables dont la valeur est un compact convexe." Funkcial. Ekvac. 10 (1967): 205-223.
Mainka-Niemczyk, E. "Some properties of set-valued sine families." Opuscula Math. 32 (2012): 157-168.
---. "Integral representation of set-valued sine families." J. Appl. Anal. 18.2 (2012): 243-258.
Nikodem, K. "K-convex and K-concave set-valued functions." Zeszyty Nauk. Politech. Łódz., Mat. 559. Rozprawy Nauk. 114, 1989.
Piszczek, M. "Second Hukuhara derivative and cosine family of linear set-valued functions." Annales Acad. Paed. Crac. Stud. Math. 5 (2006): 87-98.
---. "On multivalued cosine families." J. Appl. Anal. 13 (2007): 57-76.
---. "On a multivalued second order differential problem with Hukuhara derivative." Opuscula Math. 28 (2008): 151-161.
---. "On multivalued iteration semigroups." Aequationes Math. 81 (2011): 97-108.
Rådström, H. "An embedding theorem for spaces of convex sets." Proc. Amer. Math. Soc. 3 (1952): 165-169.
Smajdor, A. "On regular multivalued cosine families." Ann. Math. Sil. 13 (1999): 271-280.
---. "Hukuhara’s derivative and concave iteration semigroups of linear setvalued functions." J. Appl. Anal. 8 (2002): 297-305.
---. "On a multivalued differential problem." Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003): 1877-1882.
Smajdor, W. "Superadditive set-valued functions and Banach-Steinhaus theorem." Rad. Mat. 3 (1987): 203-214.
Download statistics: 2346
Since 2017 Open Access in De Gruyter and CrossCheck access cofinanced by The Ministry of Science and Higher Education - Republic of Poland - DUN 775/P-DUN/2017 see more
The Journal is indexed in:
AUPC SM is on the List of the Ministry’s scored journals with 20 points for 2019