Some properties of analytic sets with proper projections

Justyna Szpond

Abstract


We give an affective criterion when an analytic set with proper projection is algebraic. We take an ideal of polynomials vanishing on the set then we construct a polydisc convenient for reduction. If this polydisc is "large enough" we can apply the division theorem in the ring of formal power series convergent in this polydisc to prove that the set is algebraic.

Keywords


algebraic set, analytic set; proper projection

Mathematics Subject Classification


13P10; 14P20

References


Apel, J. et al. "Reduction of everywhere convergent power series with respect to Gröbner bases." J. Pure Appl. Algebra 110 (1996): 113-129.

Cox, D., J. Little and D. O'Shea. "Ideals, Varietes, and Algorithms." New York: Springer-Verlag, 1997.

Grauert, H. and R. Remmert. "Analytische Stellenalgebren." Berlin: Springer-Verlag, 1971.

Kreuzer, M. and L. Robiano. "Computational Commutative Algebra." Berlin Heidelberg: Springer-Verlag, 2000.

Rudin, W. "A geometric criterion for algebraic varieties." J. Math. Mech. 17.7 (1968): 671-683.

Szpond, J. "Reduction of Power Series in a Polidisc with Respect to Gröbner Basis." Bull. Polish Acad. Sci. Math. 53 (2005): 137-145.

Tworzewski, P. "Intersections of Analytic Sets with Linear Subspaces." Ann. Sc. Norm. Super Pisa Cl. Sci. (4) 17.2 (1990): 227-271.


Full Text: PDF

Download statistics: 2346



e-ISSN: 2300-133X, ISSN: 2081-545X

Since 2017 Open Access in De Gruyter and CrossCheck access cofinanced by The Ministry of Science and Higher Education - Republic of Poland - DUN 775/P-DUN/2017 see more

The Journal is indexed in:
and others see Abstracting and Indexing list

AUPC SM is on the List of the Ministry’s scored journals with 20 points for 2019

Deklaracja dostępności cyfrowej