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Yufeng Wang, Yanjin WangOn shwarz-type boundary-value problems ofpolyanalyti equation on a triangleAbstrat. Wewill onsider the Shwarz-type boundary-value problems (BVPs)of the polyanalyti equation on an isoseles orthogonal triangle. In ontrastto [20℄, the expression of its unique solution is expliitly obtained by thedi�erent deomposition of polyanalyti funtions.1. IntrodutionVarious kinds of BVPs of partial di�erential equations (PDEs) have been solvedby the Riemann-Hilbert tehnique [13℄, and BVPs of omplex PDEs have beenwidely disussed by omplex analyti methods, see for example [2�12, 14�19, 21℄.The Shwarz-type BVP is one of a basi problem, whih is losely onneted withother type BVPs.In [21℄, we have onsidered the Shwarz-type BVP of the nonhomogeneousCauhy-Riemann equation on an isoseles orthogonal triangle with three verties
0, 1, i. Suh an triangle domain is denoted as ∆. The following result is obtainedby the tehnique of plane parqueting used in [7℄.Theorem 1.1 ([21℄)The Shwarz-type BVP of the nonhomogeneous Cauhy-Riemann equation

{

∂z̄w(z) = f(z), z ∈ ∆, f ∈ Lp(∆;C), p > 2,

[Rew]+(t) = ρ(t), t ∈ ∂∆, ρ ∈ C(∂∆;C)
(1.1)is solvable and its solution an be represented as

w(z) = Sα[ρ](z) +Aα[f ](z) + i Imw(α), z ∈ ∆, (1.2)AMS (2000) Subjet Classi�ation: 30E25, 30G30, 31A25, 45E05.The �rst author is supported by NNSF of China (#10871150) and RFDP of Higher Edutionof China (#20060486001). The seond author is supported by Tianyuan Fund of Mathematis(#10926188).Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.
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Sα[ρ](z) =
1

πi

∫

∂∆

ρ(ζ)
∑

m,n

[

gm,n(ζ, z)−
gm,n(ζ, α) + gm,n(ζ, α)

2

]

dζ,

Aα[f ](z) = −
1

π

∫

∆

{f(ζ)Gα(ζ, z)− f(ζ)Gα(ζ, z)} dξ dη,

z ∈ ∆ (1.3)with
Gα(ζ, z) =

∑

m,n

[gm,n(ζ, z)− gm,n(ζ, α)] (1.4)and
gm,n(ζ, z) =

1

ζ − z − 2m− 2ni
+

1

ζ + iz − (2m+ 1)− (2n+ 1)i

+
1

ζ − iz − (2m+ 1)− (2n− 1)i
+

1

ζ + z − (2m+ 2)− 2ni
,where the double series is uniformly onvergent along the retangles with enter atthe origin.The following result is obtained by Heinrih Begehr and Tatyana Vaitekhovih[8℄.Theorem 1.2 (Theorem 2 in [8℄)The Shwarz problem

∂z̄w = f in D
+, f ∈ Lp(D

+;C), p > 2,

Rew = γ on ∂D+, γ ∈ C(∂D+;R), γ(1) = γ(−1) = 0,

1

π

π
∫

0

Imw(eiϕ) dϕ = c, c ∈ Ris uniquely solvable by
w(z) =

1

2πi

∫

|ζ|=1, Im ζ>0

γ(ζ)
( ζ + z

ζ − z
−

ζ + z

ζ − z

) dζ

ζ

+
1

πi

1
∫

−1

γ(t)
( 1

t− z
−

z

1− zt

)

dt

−
1

π

∫

D+

{

f(ζ)
[ 1

ζ − z
−

z

1− zζ

]

− f(ζ)
[ 1

ζ − z
−

z

1− zζ

]}

dξ dη

+ ic, z ∈ D
+,

(1.5)
where D+ is the upper half unit dis.



On shwarz-type boundary-value problems of polyanalyti equation on a triangle [71℄The solutions (1.2) and (1.5) onsist of three parts: the linear integral, the areaintegral and the free term. For example, in (1.2), Sα[ρ](z) is the linear integral,
Aα[f ](z) is the area integral and iImw(α) is the free term. For the solution (1.5),the free term ic is determined by the funtion value on the half unit irumferene.However, for the solution (1.2), the free term is determined by the funtion valueat one point α ∈ ∆.In [10℄, the Shwarz-type BVP of polyanlyti equation has been solved by theiteration. Basing on Theorem 1.1, we will investigate the Shwarz-type BVP ofpolyanalyti equation on the triangle domain ∆. Beause of the distintion of freeterms, the Shwarz-type BVPs of the polyanalyti equation in the triangle ∆ aredi�erent from the orresponding BVPs in [20℄.The properties of polyanalyti funtions have been exposed in [1℄. The deom-position of polyanalyti funtions or polyharmoni funtions plays very importantrole in solving BVPs of higher order PDEs, see for example [2, 11, 16�18℄. In thisartile, we will make use of the speial deomposition of polyanalyti funtions tosolve the Shwarz-type BVP of the polyanalyti equation in the triangle ∆, andthe unique solution is expliitly obtained.In what follows, α is always a �xed omplex onstant and α ∈ ∆, and theCauhy-Riemann operator is

∂z̄ =
∂

∂z
=

1

2

( ∂

∂x
+ i

∂

∂y

)

.2. Boundary behavior of the poly-Shwarz operatorSimilarly to [20℄, we introdue the poly-Shwarz operator Sα,n on the triangle
∆ as follows

Sα,n[ρ0, ρ1, . . . , ρn−1](z)

=

n−1
∑

k=0

(−1)k

k!

1

2πi

∫

∂∆

(ζ − z + ζ − z)kρk(ζ)[Gα(ζ, z) +Gᾱ(ζ, z)] dζ, (2.1)
z ∈ ∆,where Gα and Gᾱ are de�ned by (1.4), and kernel densities ρ0, ρ1, . . . , ρn−1 ∈

C(∂∆;R). Obviously Sα,0 = Sα, where Sα is the Shwarz-type operator de�nedin (1.3).Theorem 2.1If ρ0, ρ1, . . . , ρn−1 ∈ C(∂∆;R), then
∂nSα,n[ρ0, ρ1, . . . , ρn−1]

∂zn
(z) = 0, z ∈ ∆, (2.2)where the operator Sα,n is de�ned by (2.1).
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Sα,n[ρ0, ρ1, . . . , ρn−1](z)

=

n−1
∑

k=0

(−1)k

k!

1

2πi

∫

∂∆

k
∑

ℓ=0

(

k

ℓ

)

(ζ + ζ)ℓ(−z − z)k−ℓρk(ζ)[Gα(ζ, z) +Gᾱ(ζ, z)] dζ

=
n−1
∑

k=0

(−1)k

k!

k
∑

ℓ=0

(

k

ℓ

)

(−z − z)k−ℓ 1

2πi

∫

∂∆

(ζ + ζ)ℓρk(ζ)[Gα(ζ, z) +Gᾱ(ζ, z)] dζ

=

n−1
∑

k=0

(−1)k

k!

k
∑

ℓ=0

(

k

ℓ

)

(−z − z)k−ℓSα,0[ρk,ℓ](z), z ∈ ∆ (2.3)with
ρk,ℓ(ζ) = (ζ + ζ)ℓρk(ζ). (2.4)Hene

∂nSα,n[ρ0, ρ1, . . . , ρn−1]

∂zn
(z) =

n−1
∑

k=0

(−1)k

k!

k
∑

ℓ=0

(

k

ℓ

)

[ ∂n

∂zn
(−z − z)k−ℓ

]

Sα,0[ρk,ℓ](z)

= 0.This ompletes the proof.Theorem 2.2If ρ0, ρ1, . . . , ρn−1 ∈ C(∂∆;R), then
{

Re
[∂ℓSα,n[ρ0, ρ1, . . . , ρn−1]

∂zℓ

]}+

(t) = ρℓ(t), t ∈ ∂∆, ℓ = 0, 1, . . . , n− 1, (2.5)where the operator Sα,n is de�ned by (2.1).Proof. When ℓ = 0,
∂ℓSα,n[ρ0, ρ1, . . . , ρn−1]

∂zℓ
(z) =

∂0Sα,n[ρ0, ρ1, . . . , ρn−1]

∂z0
(z)

= Sα,n[ρ0, ρ1, . . . , ρn−1](z).By Theorem 3.3 in [21℄ and (2.3), one has
{Re[Sα,n[ρ0, ρ1, . . . , ρn−1]]}

+(t) =

n−1
∑

k=0

(−1)k

k!

k
∑

ℓ=0

(

k

ℓ

)

(−t− t)k−ℓρk,ℓ(t)

=

n−1
∑

k=1

(−1)k

k!
(t+ t− t− t)kρk(t) + ρ0(t) (2.6)

= ρ0(t), t ∈ ∂∆,where ρk,ℓ is de�ned by (2.4). When ℓ = 1, 2, . . . , n− 1, one easily gets
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∂ℓSα,n[ρ0, ρ1, . . . , ρn−1]

∂zℓ
(z)

=

n−1
∑

k=ℓ

(−1)k−ℓ

(k − ℓ)!

1

2πi

∫

∂∆

(ζ − z + ζ − z)k−ℓρk(ζ)[Gα(ζ, z) +Gᾱ(ζ, z)] dζ (2.7)
=

n−1
∑

k=ℓ

(−1)k−ℓ

(k − ℓ)!

k−ℓ
∑

j=0

(

k − ℓ

j

)

(−z − z)k−ℓ−jSα,0[ρk,j ](z), z ∈ ∆.Similarly to the proof of the previous part, (2.5) is valid for ℓ = 1, 2, . . . , n− 1.Remark 2.3By (2.3) and (2.7), if ρ0, ρ1, . . . , ρn−1 ∈ C(∂∆;R), then
∂ℓSα,n[ρ0, ρ1, . . . , ρn−1]

∂zℓ
(α)

=

n−1
∑

k=ℓ

(−1)k−ℓ

(k − ℓ)!

k−ℓ
∑

j=0

(

k − ℓ

j

)

(−α− α)k−ℓ−jSα,0[ρk,j ](α), ℓ = 0, 1, 2, . . . , n− 1are real numbers sine Sα,0[ρk,ℓ](α) ∈ R aording to [21℄.3. Pompeiu-type operator on the triangleIn this setion, the following area integral operator is introdued as in [20℄
Aα,ℓ[f ](z)

=
(−1)ℓ

π(ℓ − 1)!

∫

∆

(ζ − z + ζ − z)ℓ−1[f(ζ)Gα(ζ, z)− f(ζ)Gα(ζ, z)] dξ dη, (3.1)
z ∈ ∆, ℓ = 1, 2, . . .with f ∈ Lp(∆;C), p > 2, where Gα is de�ned by (1.4). The operator Aα,ℓ isalled the Pompeiu-type operator here. When ℓ = 1, (3.1) is just

Aα,1[f ](z) = Aα[f ](z), z ∈ ∆, (3.2)where Aα is de�ned in (1.3). We assume that Aα,0[f ](z) = f(z), z ∈ ∆ in thefollowing. By Theorem 4.1 in [21℄, Aα,1[f ] ∈ C(∂∆;C) and
∂

∂z
Aα,1[f ](z) = Aα,0[f ](z), z ∈ ∆. (3.3)Theorem 3.1If f ∈ Lp(∆;C), p > 2, then

∂

∂z
Aα,ℓ[f ](z) = Aα,ℓ−1[f ](z), z ∈ ∆, ℓ = 1, 2, 3, . . . (3.4)
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∂n

∂zn
Aα,n[f ](z) = f(z), z ∈ ∆, (3.5)where Aα,ℓ is the Pompeiu-type operator de�ned by (3.1).Proof. When ℓ = 1, (3.4) is just (3.3). When ℓ > 1, one has

Aα,ℓ[f ](z) =
(−1)ℓ−1

(ℓ− 1)!

ℓ−1
∑

k=0

(

ℓ− 1

k

)

(−z − z)ℓ−k−1Aα,1[fk](z), z ∈ ∆ (3.6)with
fk(ζ) = (ζ + ζ)kf(ζ), k = 0, 1, . . . , ℓ− 1. (3.7)Thus

∂

∂z
Aα,ℓ[f ](z)

=
(−1)ℓ−1

(ℓ − 1)!

ℓ−1
∑

k=0

(

ℓ− 1

k

)

{( ∂

∂z
(−z − z)ℓ−k−1

)

Aα,1[fk](z)

+ (−z − z)ℓ−k−1 ∂

∂z
Aα,1[fk](z)

}

= Aα,ℓ−1[f ](z),sine ∂
∂z
Aα,1[fk](z) = 0. Using (3.4) repeatedly, we easily gets (3.5).Theorem 3.2If f ∈ Lp(∆;C), p > 2, then {ReAα,ℓ[f ]}

+(t) = 0, t ∈ ∂∆ for ℓ = 1, 2, 3, . . .,where Aα,ℓ is de�ned by (3.1).Proof. This theorem diretly follows from
Re {Aα,ℓ[f ](z)} =

(−1)ℓ−1

(ℓ − 1)!

ℓ−1
∑

k=0

(

ℓ− 1

k

)

(−z − z)ℓ−k−1Re {Aα,1[fk](z)}, z ∈ ∆and
{ReAα,1[fk]}

+(t) = 0, t ∈ ∂∆,where fk is de�ned by (3.7).Remark 3.3Sine Gα(ζ, α) = Gα(ζ, α) = 0, one has
Aα,ℓ[f ](α) = 0, ℓ = 1, 2, 3, . . . .



On shwarz-type boundary-value problems of polyanalyti equation on a triangle [75℄4. Shwarz-type BVPs of polyanalyti equation on the triangleSimilarly to [20℄, by an appropriate deomposition of polyanalyti funtions,the following lemma is obtained.Lemma 4.1The homogeneous Shwarz-type BVP of the homogeneous polyanalyti equation
{

∂n
z̄ w(z) = 0, z ∈ ∆,

[Re(∂k
z̄w)]

+(t) = 0, t ∈ ∂∆, k = 0, 1, . . . , n− 1
(4.1)is solvable and its solution an be represented as

w(z) =

n−1
∑

k=0

(z − α+ z − α)k

k!
ick (4.2)with ck = Im(∂k

z̄w)(α) ∈ R for k = 0, 1, 2, . . . , n− 1.Proof. The homogeneous polyanalyti equation (∂n
z̄ w)(z) = 0, z ∈ ∆ impliesthat w is a polyanalyti funtion. Hene w an be uniquely deomposed as [11℄

w(z) =

n−1
∑

k=0

(z − α+ z − α)k

k!
ϕk(z), z ∈ ∆, (4.3)where ϕk is analyti on the triangle domain ∆. Substituting (4.3) into the bound-ary onditions in (4.1), one has the boundary behaviors of analyti funtions

[Reϕk]
+(t) = 0, t ∈ ∂∆, k = 0, 1, . . . , n− 1, (4.4)and hene

ϕk(z) ≡ ick, ck ∈ R, k = 0, 1, . . . , n− 1by Theorem 1.1. By the diret omputation, ck = Im(∂k
z̄w)(α), k = 0, 1, . . . , n−1.In general, we have the following result.Theorem 4.2The Shwarz-type BVP of the polyanalyti equation











(∂n
z̄ w)(z) = f(z), z ∈ ∆, f ∈ Lp(∆;C), p > 2,

[Re(∂k
z̄w)]

+(t) = ρk(t), t ∈ ∂∆, ρk ∈ C(∂∆;R), k = 0, 1, . . . , n− 1,

Im(∂k
z̄w)(α) = ak, k = 0, 1, . . . , n− 1

(4.5)is solvable and its unique solution an be written as
w(z) = Sα,n[ρ0, ρ1, . . . , ρn−1](z) +Aα,n[f ](z)

+
n−1
∑

k=0

(z − α+ z − α)k

k!
iak, z ∈ ∆,

(4.6)where the operators Sα,n, Aα,n are de�ned by (2.1) and (3.1), respetively, and
ak, k = 0, 1, 2, . . . , n− 1 are n given real onstants.



[76℄ Yufeng Wang, Yanjin WangProof. Firstly, let
w0(z) = Sα,n[ρ0, ρ1, . . . , ρn−1](z) +Aα,n[f ](z), z ∈ ∆,where the operators Sα,n, Aα,n are de�ned by (2.1) and (3.1), respetively. ByTheorems 2.1 and 3.1,

∂nw0

∂zn
(z) = f(z), z ∈ ∆.By Theorems 2.2 and 3.2, one has

[

Re
∂kw0

∂zk

]+

(t) = ρk(t), t ∈ ∂∆, k = 0, 1, . . . , n− 1.Hene w0 is a speial solution of the Shwarz-type BVP (4.5) of the polyanalytiequation. Seondly, let
w(z) = w0(z) + w1(z), z ∈ ∆. (4.7)Substituting w(z) de�ned by (4.7) into (4.5), one easily gets











(∂n
z̄ w1)(z) = 0, z ∈ ∆,

[Re(∂k
z̄w1)]

+(t) = 0, t ∈ ∂∆, k = 0, 1, . . . , n− 1,

Im(∂k
z̄w1)(α) = ak, k = 0, 1, . . . , n− 1

(4.8)whih is just the homogeneous Shwarz-type BVP (4.1) of the polyanalyti fun-tion. The third formula in (4.8) is obtained by Remarks 2.3 and 3.3. Finally, byLemma 4.1,
w1(z) =

n−1
∑

k=0

(z − α+ z − α)k

k!
ickwith ck = Im(∂k
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