Annales Universitatis Paedagogicae Cracoviensis

Studia Mathematica IX (2010)

Andrzej Mach, Zenon Moszner
 Unstable (Stable) system of stable (unstable) functional equations

Abstract

In this note the answer to a question by Z. Moszner from the paper [1] about connections of stability of separate equations and the system of them, is given.

Let \mathcal{K} denote the class of real functions $\mathcal{K}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$. In this note, the following functional equation (or the system of equations) is considered

$$
\begin{equation*}
L(f)=R(f) \quad\left(\text { or } L_{1}(f)=R_{1}(f), L_{2}(f)=R_{2}(f)\right) \tag{1}
\end{equation*}
$$

where $f \in \mathcal{K}, L, L_{1}, L_{2}, R, R_{1}, R_{2}: \mathcal{K} \rightarrow \mathcal{K}$.

Definition

We say that the equation (or the system of equations) (1) is stable in the class \mathcal{K}, if for every $\varepsilon>0$ there exists a $\delta>0$ such that for every function $g \in \mathcal{K}$ satisfying

$$
\begin{gathered}
|L(g(x))-R(g(x))| \leq \delta \\
\left(\text { or }\left|L_{1}(g(x))-R_{1}(g(x))\right| \leq \delta,\left|L_{2}(g(x))-R_{2}(g(x))\right| \leq \delta\right)
\end{gathered}
$$

for $x \in \mathbb{R}$, there exists a solution $f \in \mathcal{K}$ of equation (or the system of equations) (1) such that

$$
|f(x)-g(x)| \leq \varepsilon \quad \text { for } x \in \mathbb{R}
$$

It is observed in [1] that a system of two stable functional equations may be unstable, e.g. the system

$$
|f(x)|=f(x) \quad \text { and } \quad|f(x)|=-f(x)
$$

in the class $\{f: \mathbb{R} \rightarrow \mathbb{R} \backslash\{0\}\}$. Similarly, a system of functional equations may be stable even though the equations of this system are unstable, e.g. the system

$$
f(f(x))=x \quad \text { and } \quad f(f(x))=1
$$

in the class \mathcal{K}. These systems have no solutions.

[^0]Problem
Is this situation possible only if the system has no solutions?
This is Problem 8 in [1]. The answer to this problem is negative.
We consider the following system of functional equations in \mathcal{K} :

$$
\begin{equation*}
(|f(x)-1|-f(x)+1) \cdot f(x)=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
E(f(x))=0 \tag{3}
\end{equation*}
$$

here $E(u)$ denotes the integer part of u.
Proposition 1
The equations (2) and (3) - considered in the class \mathcal{K} - are stable separately, but not as a system. However there is an obvious solution $f_{0} \equiv 0$.

Proof. One can observe easily that the sets of solutions of the equations (2) and (3) - in the class \mathcal{K} - are as follows:

$$
\mathcal{S o l}(2)=\{f \in \mathcal{K}: f(\mathbb{R}) \subset[1,+\infty) \cup\{0\}\}
$$

and

$$
\operatorname{Sol}(3)=\{f \in \mathcal{K}: f(\mathbb{R}) \subset[0,1)\}
$$

Therefore

$$
\mathcal{S o l}(2) \cap \mathcal{S o l}(3)=\left\{f_{0} \equiv 0\right\}
$$

To prove the stability of equation (2), take $\varepsilon>0$ and put $\delta:=\min \left\{\frac{3}{2}, \frac{\varepsilon}{2}\right\}$. Set

$$
L(u)=(|u-1|-u+1) \cdot u \quad \text { for } u \in \mathbb{R} .
$$

Let $g \in \mathcal{K}$ and

$$
|L(g(x))| \leq \delta \quad \text { for } x \in \mathbb{R}
$$

Since

$$
g(x)<-\frac{1}{2} \Longrightarrow|L(g(x))|=2(1-g(x)) \cdot|g(x)|>1-g(x)>\frac{3}{2}
$$

we conclude that

$$
g(\mathbb{R}) \subset\left[-\frac{1}{2},+\infty\right)
$$

We also have

$$
\begin{equation*}
\left(g(x) \in\left[-\frac{1}{2}, \frac{1}{2}\right) \wedge|L(g(x))|=2(1-g(x)) \cdot|g(x)| \leq \delta\right) \Longrightarrow|g(x)| \leq \delta \leq \frac{\varepsilon}{2} \tag{4}
\end{equation*}
$$

since $2(1-g(x))>1$ in this case. Moreover,

$$
\begin{equation*}
\left(g(x) \in\left[\frac{1}{2}, 1\right) \wedge L(g(x))=2(1-g(x)) \cdot g(x) \leq \delta\right) \Longrightarrow 1-g(x) \leq \delta \leq \frac{\varepsilon}{2} \tag{5}
\end{equation*}
$$

since $2 g(x) \geq 1$ in this case.

Define

$$
f(x):= \begin{cases}0, & \text { if }-\frac{1}{2} \leq g(x)<\frac{1}{2} \\ 1+\delta, & \text { if } \frac{1}{2} \leq g(x)<1 \\ g(x), & \text { if } g(x) \geq 1\end{cases}
$$

Evidently $f \in \mathcal{S}$ ol(2). Moreover,

$$
|f(x)-g(x)|= \begin{cases}|g(x)|, & \text { if }-\frac{1}{2} \leq g(x)<\frac{1}{2} \\ 1-g(x)+\delta, & \text { if } \frac{1}{2} \leq g(x)<1 \\ 0, & \text { if } g(x) \geq 1\end{cases}
$$

By (4) and (5) we have

$$
|f(x)-g(x)| \leq \varepsilon \quad \text { for } x \in \mathbb{R}
$$

The proof of stability of equation (2) is finished.
To prove the stability of equation (3), take $\varepsilon>0$ and put $\delta:=\min \left\{\frac{1}{2}, \varepsilon\right\}$. Let $g \in \mathcal{K}$ and

$$
|E(g(x))| \leq \delta \quad \text { for } x \in \mathbb{R}
$$

We have

$$
g(x) \in[0,1) \quad \text { for } x \in \mathbb{R}
$$

so g is a solution of equation (3). This ends the proof of stability of equation (3).
To prove that the system of equations (2) and (3) is not stable, take $g_{n}(x)=$ $1-\frac{1}{n}$ for $n \in \mathbb{N}$ and $x \in \mathbb{R}$. We have

$$
E\left(g_{n}(x)\right)=0 \quad \text { and } \quad L\left(g_{n}(x)\right)=2 \cdot \frac{n-1}{n^{2}} \quad \text { for } n \in \mathbb{N}, x \in \mathbb{R}
$$

Let $\varepsilon:=\frac{1}{2}$. For every $\delta>0$ there exists an integer $n_{0} \geq 3$ such that $L\left(g_{n_{0}}(x)\right) \leq \delta$ and obviously $g_{n_{0}}(x)>\varepsilon$ for $x \in \mathbb{R}$.

Now, let us consider the following functional equations

$$
\begin{equation*}
(|f(x)-1|-f(x)+1) \cdot|f(x)|+|E(f(x))|=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
(|f(x)+1|+f(x)+1) \cdot|f(x)|+|E(-f(x))|=0 \tag{7}
\end{equation*}
$$

for $f \in \mathcal{K}$.

Proposition 2
The equations (6) and (7) are unstable separately and the system of these equations is stable. The function $f_{0} \equiv 0$ is only solution of (6) and of (7) thus of the system of equations (6), (7).

Proof. To prove the non-stability of equation (6) it is sufficient to consider the functions $g_{n}(x)=1-\frac{1}{n}$ for $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Similarly, to prove the non-stability of equation (7) we can consider $g_{n}(x)=-1+\frac{1}{n}$ for $n \in \mathbb{N}$ and $x \in \mathbb{R}$. To prove the stability of the system of these equations, take $\varepsilon>0$ and put $\delta:=\frac{1}{2}$. Set

$$
L_{1}(u)=(|u-1|-u+1) \cdot|u|+|E(u)| \quad \text { for } u \in \mathbb{R}
$$

and

$$
L_{2}(u)=(|u+1|+u+1) \cdot|u|+|E(-u)| \quad \text { for } u \in \mathbb{R}
$$

Let $g \in \mathcal{K}$ and

$$
\left|L_{1}(g(x))\right| \leq \delta \quad \text { and } \quad\left|L_{2}(g(x))\right| \leq \delta \quad \text { for } x \in \mathbb{R}
$$

We have

$$
(g(x)<0 \text { or } g(x) \geq 1) \Longrightarrow L_{1}(g(x)) \geq|E(g(x))| \geq 1
$$

Moreover,

$$
0<g(x)<1 \Longrightarrow L_{2}(g(x)) \geq|E(-g(x))|=1
$$

From the above $g(x)=f_{0}(x) \equiv 0$. This ends the proof of stability of the system of equations (6), (7).

Remark 1

We say that equation (or the system of equations) (1) is superstable in the class \mathcal{K} (b-stable in the class \mathcal{K}, respectively), if for every function $g \in \mathcal{K}$ for which $L(g(x))-R(g(x))\left(\right.$ or $L_{1}(g(x))-R_{1}(g(x))$ and $\left.L_{2}(g(x))-R_{2}(g(x))\right)$ is bounded, g is bounded or g is a solution of (1) (there exists a solution $f \in \mathcal{K}$ of (1) such that $g(x)-f(x)$ is bounded, respectively).

It is easy to see that the superstability of the equations of the system implies superstability of the system. The converse implication is not true. Indeed, the boundedness of the functions $g(2 x)-g(x)$ and $g(2 x)+g(x)$ implies the boundedness of the function g, so the system

$$
\begin{equation*}
f(2 x)=f(x) \quad \text { and } \quad f(2 x)=-f(x) \tag{8}
\end{equation*}
$$

is superstable. The function

$$
g(x):= \begin{cases}k, & \text { if } x \in A:=\left\{x \in \mathbb{R}: x=2^{k}, k \in \mathbb{Z}\right\} \\ 0, & \text { if } x \in \mathbb{R} \backslash A\end{cases}
$$

is unbounded and g does not satisfy the equation $f(2 x)=f(x)$, but the function $g(2 x)-g(x)$ is bounded. Similarly, the function

$$
g(x):= \begin{cases}(-1)^{k} \cdot k, & \text { if } x \in A \\ 0, & \text { if } x \in \mathbb{R} \backslash A\end{cases}
$$

is unbounded and g is not a solution of the equation $f(2 x)=-f(x)$, but the function $g(2 x)+g(x)$ is bounded. Therefore the equations in (8) are not superstable separately.

We encounter the same situation for b-stability. Namely, the system (8) is b-stable and the equations of this system are not b-stable. If we consider the system
$L_{1}(f(x))=[f(x)-x] \cdot f(x)=0 \quad$ and $\quad L_{2}(f(x))=\left[f(x)-\left(x+\frac{1}{x^{2}+1}\right)\right] \cdot f(x)=0$,
then one can observe that this system is not b-stable. Indeed, for $g(x)=x$ the functions $L_{1}(g(x))$ and $L_{2}(g(x))$ are bounded and $f(x)=0$ is the unique solution of the system. The separate equations of this system are b-stable, e.g. for $|(g(x)-x) \cdot g(x)| \leq M$ we have $|g(x)-x| \leq \sqrt{M}$ or $|g(x)| \leq \sqrt{M}$. The function

$$
f(x):= \begin{cases}x, & \text { if }|g(x)-x| \leq \sqrt{M}, \\ 0, & \text { if }|g(x)-x|>\sqrt{M} \text { and }|g(x)| \leq \sqrt{M},\end{cases}
$$

is a solution of the equation $L_{1}(f(x))=0$ and $g(x)-f(x)$ is bounded.
Remark 2
If at least one of the equations of the system is stable (or superstable, or b-stable, respectively) and every solution of this equation is a solution of the second equation of the system, then the system is stable (or superstable, or b-stable, respectively).

Remark 3
The stability of the system $L_{1}(f)=R_{1}(f)$ and $L_{2}(f)=R_{2}(f)$ is equivalent to the stability of the equation

$$
\left|L_{1}(f)-R_{1}(f)\right|+\left|L_{2}(f)-R_{2}(f)\right|=0 .
$$

References

[1] Z. Moszner, On the stability of functional equations, Aequationes Math. 77 (2009), 33-88.

Andrzej Mach
Institute of Mathematics
Jan Kochanowski University
Świętokrzyska 15
25-406 Kielce, Poland
E-mail: amach@ujk.edu.pl
Zenon Moszner
Institute of Mathematics
Pedagogical University
Podchorażych 2
30-084 Kraków, Poland
E-mail: zmoszner@ap.krakow.pl

[^0]: AMS (2000) Subject Classification: 39B82.

