Annales Universitatis Paedagogicae Cracoviensis

Studia Mathematica IX (2010)

Andrzej Mach, Zenon Moszner Unstable (Stable) system of stable (unstable) functional equations

Abstract. In this note the answer to a question by Z. Moszner from the paper [1] about connections of stability of separate equations and the system of them, is given.

Let \mathcal{K} denote the class of real functions $\mathcal{K} = \{f: \mathbb{R} \to \mathbb{R}\}$. In this note, the following functional equation (or the system of equations) is considered

$$L(f) = R(f)$$
 (or $L_1(f) = R_1(f), L_2(f) = R_2(f)$), (1)

where $f \in \mathcal{K}, L, L_1, L_2, R, R_1, R_2: \mathcal{K} \to \mathcal{K}$.

DEFINITION

We say that the equation (or the system of equations) (1) is stable in the class \mathcal{K} , if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for every function $g \in \mathcal{K}$ satisfying

$$|L(g(x)) - R(g(x))| \le \delta$$

(or $|L_1(g(x)) - R_1(g(x))| \le \delta$, $|L_2(g(x)) - R_2(g(x))| \le \delta$)

for $x \in \mathbb{R}$, there exists a solution $f \in \mathcal{K}$ of equation (or the system of equations) (1) such that

$$|f(x) - g(x)| \le \varepsilon$$
 for $x \in \mathbb{R}$.

It is observed in [1] that a system of two stable functional equations may be unstable, e.g. the system

$$|f(x)| = f(x)$$
 and $|f(x)| = -f(x)$

in the class $\{f: \mathbb{R} \to \mathbb{R} \setminus \{0\}\}$. Similarly, a system of functional equations may be stable even though the equations of this system are unstable, e.g. the system

$$f(f(x)) = x$$
 and $f(f(x)) = 1$

in the class \mathcal{K} . These systems have no solutions.

AMS (2000) Subject Classification: 39B82.

Volumes I-VII appeared as Annales Academiae Paedagogicae Cracoviensis Studia Mathematica.

Problem

Is this situation possible only if the system has no solutions?

This is Problem 8 in [1]. The answer to this problem is negative. We consider the following system of functional equations in \mathcal{K} :

$$(|f(x) - 1| - f(x) + 1) \cdot f(x) = 0$$
(2)

 and

$$E(f(x)) = 0, (3)$$

here E(u) denotes the integer part of u.

PROPOSITION 1

The equations (2) and (3) – considered in the class \mathcal{K} – are stable separately, but not as a system. However there is an obvious solution $f_0 \equiv 0$.

Proof. One can observe easily that the sets of solutions of the equations (2) and (3) – in the class \mathcal{K} – are as follows:

$$\mathcal{S}ol(2) = \{ f \in \mathcal{K} : f(\mathbb{R}) \subset [1, +\infty) \cup \{0\} \}$$

and

$$\mathcal{S}ol(3) = \{ f \in \mathcal{K} : f(\mathbb{R}) \subset [0,1) \}.$$

Therefore

$$\mathcal{S}ol(2) \cap \mathcal{S}ol(3) = \{ f_0 \equiv 0 \}.$$

To prove the stability of equation (2), take $\varepsilon > 0$ and put $\delta := \min\{\frac{3}{2}, \frac{\varepsilon}{2}\}$. Set

$$L(u) = (|u-1| - u + 1) \cdot u \quad \text{for } u \in \mathbb{R}.$$

Let $g \in \mathcal{K}$ and

$$|L(g(x))| \le \delta$$
 for $x \in \mathbb{R}$.

Since

$$g(x) < -\frac{1}{2} \Longrightarrow |L(g(x))| = 2(1 - g(x)) \cdot |g(x)| > 1 - g(x) > \frac{3}{2},$$

we conclude that

$$g(\mathbb{R}) \subset \left[-\frac{1}{2}, +\infty\right).$$

We also have

$$\left(g(x) \in \left[-\frac{1}{2}, \frac{1}{2}\right) \land |L(g(x))| = 2(1 - g(x)) \cdot |g(x)| \le \delta\right) \Longrightarrow |g(x)| \le \delta \le \frac{\varepsilon}{2} \quad (4)$$

since 2(1 - g(x)) > 1 in this case. Moreover,

$$\left(g(x) \in \left[\frac{1}{2}, 1\right) \land L(g(x)) = 2(1 - g(x)) \cdot g(x) \le \delta\right) \Longrightarrow 1 - g(x) \le \delta \le \frac{\varepsilon}{2}$$
(5)

since $2g(x) \ge 1$ in this case.

[44]

Define

$$f(x) := \begin{cases} 0, & \text{if } -\frac{1}{2} \le g(x) < \frac{1}{2}, \\ 1+\delta, & \text{if } \frac{1}{2} \le g(x) < 1, \\ g(x), & \text{if } g(x) \ge 1. \end{cases}$$

Evidently $f \in Sol(2)$. Moreover,

$$|f(x) - g(x)| = \begin{cases} |g(x)|, & \text{if } -\frac{1}{2} \le g(x) < \frac{1}{2}, \\ 1 - g(x) + \delta, & \text{if } \frac{1}{2} \le g(x) < 1, \\ 0, & \text{if } g(x) \ge 1. \end{cases}$$

By (4) and (5) we have

$$|f(x) - g(x)| \le \varepsilon$$
 for $x \in \mathbb{R}$.

The proof of stability of equation (2) is finished.

To prove the stability of equation (3), take $\varepsilon > 0$ and put $\delta := \min\{\frac{1}{2}, \varepsilon\}$. Let $g \in \mathcal{K}$ and

$$|E(g(x))| \le \delta \qquad \text{for } x \in \mathbb{R}.$$

We have

$$g(x) \in [0,1)$$
 for $x \in \mathbb{R}$,

so g is a solution of equation (3). This ends the proof of stability of equation (3).

To prove that the system of equations (2) and (3) is not stable, take $g_n(x) = 1 - \frac{1}{n}$ for $n \in \mathbb{N}$ and $x \in \mathbb{R}$. We have

$$E(g_n(x)) = 0$$
 and $L(g_n(x)) = 2 \cdot \frac{n-1}{n^2}$ for $n \in \mathbb{N}, x \in \mathbb{R}$.

Let $\varepsilon := \frac{1}{2}$. For every $\delta > 0$ there exists an integer $n_0 \ge 3$ such that $L(g_{n_0}(x)) \le \delta$ and obviously $g_{n_0}(x) > \varepsilon$ for $x \in \mathbb{R}$.

Now, let us consider the following functional equations

$$(|f(x) - 1| - f(x) + 1) \cdot |f(x)| + |E(f(x))| = 0$$
(6)

and

$$(|f(x) + 1| + f(x) + 1) \cdot |f(x)| + |E(-f(x))| = 0$$
(7)

for $f \in \mathcal{K}$.

PROPOSITION 2

The equations (6) and (7) are unstable separately and the system of these equations is stable. The function $f_0 \equiv 0$ is only solution of (6) and of (7) thus of the system of equations (6), (7).

Proof. To prove the non-stability of equation (6) it is sufficient to consider the functions $g_n(x) = 1 - \frac{1}{n}$ for $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Similarly, to prove the non-stability of equation (7) we can consider $g_n(x) = -1 + \frac{1}{n}$ for $n \in \mathbb{N}$ and $x \in \mathbb{R}$. To prove the stability of the system of these equations, take $\varepsilon > 0$ and put $\delta := \frac{1}{2}$. Set

$$L_1(u) = (|u - 1| - u + 1) \cdot |u| + |E(u)|$$
 for $u \in \mathbb{R}$

and

$$L_2(u) = (|u+1| + u + 1) \cdot |u| + |E(-u)| \quad \text{for } u \in \mathbb{R}.$$

Let $g \in \mathcal{K}$ and

$$|L_1(g(x))| \le \delta$$
 and $|L_2(g(x))| \le \delta$ for $x \in \mathbb{R}$.

We have

$$(g(x) < 0 \text{ or } g(x) \ge 1) \Longrightarrow L_1(g(x)) \ge |E(g(x))| \ge 1.$$

Moreover,

$$0 < g(x) < 1 \Longrightarrow L_2(g(x)) \ge |E(-g(x))| = 1.$$

From the above $g(x) = f_0(x) \equiv 0$. This ends the proof of stability of the system of equations (6), (7).

Remark 1

We say that equation (or the system of equations) (1) is superstable in the class \mathcal{K} (b-stable in the class \mathcal{K} , respectively), if for every function $g \in \mathcal{K}$ for which L(g(x)) - R(g(x)) (or $L_1(g(x)) - R_1(g(x))$ and $L_2(g(x)) - R_2(g(x))$) is bounded, g is bounded or g is a solution of (1) (there exists a solution $f \in \mathcal{K}$ of (1) such that g(x) - f(x) is bounded, respectively).

It is easy to see that the superstability of the equations of the system implies superstability of the system. The converse implication is not true. Indeed, the boundedness of the functions g(2x)-g(x) and g(2x)+g(x) implies the boundedness of the function g, so the system

$$f(2x) = f(x)$$
 and $f(2x) = -f(x)$ (8)

is superstable. The function

$$g(x) := \begin{cases} k, & \text{if } x \in A := \{ x \in \mathbb{R} : x = 2^k, k \in \mathbb{Z} \}, \\ 0, & \text{if } x \in \mathbb{R} \setminus A, \end{cases}$$

is unbounded and g does not satisfy the equation f(2x) = f(x), but the function g(2x) - g(x) is bounded. Similarly, the function

$$g(x) := \begin{cases} (-1)^k \cdot k, & \text{if } x \in A, \\ 0, & \text{if } x \in \mathbb{R} \setminus A \end{cases}$$

is unbounded and g is not a solution of the equation f(2x) = -f(x), but the function g(2x)+g(x) is bounded. Therefore the equations in (8) are not superstable separately.

Unstable (Stable) system of stable (unstable) functional equations

We encounter the same situation for b-stability. Namely, the system (8) is b-stable and the equations of this system are not b-stable. If we consider the system

$$L_1(f(x)) = [f(x) - x] \cdot f(x) = 0$$
 and $L_2(f(x)) = \left[f(x) - \left(x + \frac{1}{x^2 + 1}\right)\right] \cdot f(x) = 0$

then one can observe that this system is not b-stable. Indeed, for g(x) = x the functions $L_1(g(x))$ and $L_2(g(x))$ are bounded and f(x) = 0 is the unique solution of the system. The separate equations of this system are b-stable, e.g. for $|(g(x) - x) \cdot g(x)| \leq M$ we have $|g(x) - x| \leq \sqrt{M}$ or $|g(x)| \leq \sqrt{M}$. The function

$$f(x) := \begin{cases} x, & \text{if } |g(x) - x| \le \sqrt{M}, \\ 0, & \text{if } |g(x) - x| > \sqrt{M} \text{ and } |g(x)| \le \sqrt{M}, \end{cases}$$

is a solution of the equation $L_1(f(x)) = 0$ and g(x) - f(x) is bounded.

Remark 2

If at least one of the equations of the system is stable (or superstable, or b-stable, respectively) and every solution of this equation is a solution of the second equation of the system, then the system is stable (or superstable, or b-stable, respectively).

Remark 3

The stability of the system $L_1(f) = R_1(f)$ and $L_2(f) = R_2(f)$ is equivalent to the stability of the equation

$$|L_1(f) - R_1(f)| + |L_2(f) - R_2(f)| = 0.$$

References

 Z. Moszner, On the stability of functional equations, Aequationes Math. 77 (2009), 33-88.

> Andrzej Mach Institute of Mathematics Jan Kochanowski University Świętokrzyska 15 25-406 Kielce, Poland E-mail: amach@ujk.edu.pl

Zenon Moszner Institute of Mathematics Pedagogical University Podchorążych 2 30-084 Kraków, Poland E-mail: zmoszner@ap.krakow.pl

Received: 25 September 2009; final version: 8 February 2010; available online: 12 March 2010.