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Brian HarbourneGlobal aspe
ts of the geometry of surfa
esAbstra
t. Several open problems related to the behavior of the monoid ofe�e
tive divisors and the nef 
one for smooth proje
tive surfa
es over analgebrai
ally 
losed �eld are dis
ussed, motivating and putting into histori
al
ontext 
on
epts su
h as Mori dream spa
es, Seshadri 
onstants and theresurgen
e of homogeneous ideals in polynomial rings. Some re
ent work onthese topi
s is dis
ussed along with the problem of whi
h ordinary powers ofhomogeneous ideals 
ontain given symboli
 powers of those ideals. Exer
ises,with solutions, are in
luded.1. Le
ture: Bounded Negativity1.1. Introdu
tionA surfa
e here will always mean a smooth irredu
ible 
losed 2 dimensionalsubs
heme of proje
tive spa
e, over an algebrai
ally 
losed �eld k. A prime divisoron X is a redu
ed irredu
ible 
urve.Notation 1.1.1Let X be a surfa
e. The divisor 
lass group Cl(X) is the free abelian group Gon the prime divisors, modulo linear equivalen
e. By interse
tion theory we havea bilinear form on G whi
h des
ends to Cl(X). Two divisors whi
h indu
e thesame interse
tions on 
urves (whi
h in our situation are themselves divisors, sin
e
X is a surfa
e) are said to be numeri
ally equivalent. We will denote numeri
alequivalen
e on divisors by ∼; thus D1 ∼ D2 means that D1 · C = D2 · C for all
urves C. We denote Cl(X) modulo numeri
al equivalen
e by Num(X). Also,
EFF(X) denotes the submonoid of Cl(X) 
onsisting of the 
lasses of e�e
tivedivisors on X , and NEF(X) denotes the submonoid of Cl(X) of all 
lasses F su
hthat F · C ≥ 0 for all C ∈ EFF(X).A basi
 fa
t is that Num(X) is a free abelian group of �nite rank. If X isrational, then Num(X) = Cl(X). If X is obtained by blowing up distin
t points
p1, . . . , pr ∈ P

2, for example, then Cl(X) is the free abelian group on the 
lass LAMS (2000) Subje
t Classi�
ation: Primary 14C20, 14J26, 13C05, Se
ondary 14-02, 13-02.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.



[6℄ Brian Harbourneof the pullba
k of a line and on the 
lasses Ei of the blowings up of the points pi,hen
e Cl(X) has rank r + 1. (Below we also 
onsider the 
ase that some of thepoints are in�nitely near.) The interse
tion form on Cl(X) in this 
ase is de�nedby −L2 = E2
i with L · Ei = Ej · Ei = 0 for all i and all j 6= i, and the 
anoni
al
lass is KX = −3L+ E1 + . . .+ Er.We now re
all the Adjun
tion Theorem and Riemann�Ro
h for surfa
es:Theorem 1.1.2 (Adjun
tion)Let C be a prime divisor on a surfa
e X and let KX be the 
anoni
al 
lass on X.Then there is a non-negative integer pC su
h that C2 = 2pC − 2− C ·KX .Note that if C is an irredu
ible, smooth 
urve and k = C is the 
omplexnumbers, then pC is nothing else but the topologi
al genus of the 
urve C.Theorem 1.1.3 (Riemann�Ro
h)Given any divisor D on a surfa
e X, let χ(OX(D)) denote h0(X,OX(D)) −

h1(X,OX(D)) + h2(X,OX(D)). Then
χ(OX(D)) =

D2 −KX ·D
2

+ χ(OX).Riemann�Ro
h be
omes espe
ially useful when taken together with Serre du-ality, whi
h for a surfa
e X says that hi(X,OX(D)) = h2−i(X,OX(KX − D)).Castelnuovo's 
riterion for rationality is also useful:Theorem 1.1.4 (Castelnuovo)A surfa
e X is rational if and only if h0(X,OX(2KX)) = h1(X,OX) = 0.Next, we re
all the Hodge Index Theorem:Theorem 1.1.5 (HIT)Given a surfa
e X and D ∈ Num(X) with D2 > 0, then the interse
tion form onthe spa
e D⊥ ⊆ Num(X) of 
lasses F with F ·D = 0 is negative de�nite.Finally, we re
all the semi
ontinuity prin
iple. Here it is useful to allow someof the points to be in�nitely near. We say points p1, . . . , pr are essentially distin
tpoints of a surfa
e X , and that Xr+1 is the blow up of X at p1, . . . , pr, if p1 ∈
X = X1, π1:X2 → X1 is the blow up of X1 at p1, and for 1 < i ≤ r we have
pi ∈ Xi, and πi:Xi+1 → Xi is the blow up of Xi at pi. By identifying Xi+1 with
Xi away from pi, we 
an regard pi+1 as being in Xi when πi(pi+1) 6= pi. In thisway distin
t points p1, . . . , pr ∈ X 
an be regarded as being essentially distin
t.Let πj,i:Xj → Xi be the morphism πj−1 ◦ . . . ◦ πi whenever j > i, and let Ei bethe divisor (or divisor 
lass, depending on 
ontext) given by π−1

r,i (pi). (If i < j ≤ rand πj,i(pj) = pi, we say pj is in�nitely near to pi.) When X = P
2, let L bethe pullba
k to Xr+1 of a general line on X . Otherwise we will assume L is thepullba
k to Xr+1 of some ample divisor on X .



Global aspe
ts of the geometry of surfa
es [7℄Theorem 1.1.6 (Semi
ontinuity Prin
iple)Let a, a1, . . . , ar be integers, let p1, . . . , pr be general points of X = P
2 and de-note by Xr+1 the blow up of X at p1, . . . , pr, with L,E1, . . . , Er being the usualasso
iated 
lasses. Also, given essentially distin
t points p′1, . . . , p′r of X, let X ′

r+1denote the blow up of X at p′1, . . . , p′r, and let L′, E′
1, . . . , E

′
r denote the asso
iated
lasses.(a) If aL −∑

i aiEi ∈ EFF(Xr+1), then aL′ −∑
i aiE

′
i ∈ EFF(X ′

r+1) for every
hoi
e of essentially distin
t points p′1, . . . , p
′
r of X.(b) If aL′ −

∑
i aiE

′
i ∈ NEF(X ′

r+1) for some 
hoi
e of essentially distin
t points
p′1, . . . , p

′
r of X and if (aL′−∑

i aiE
′
i)

2 > 0, then aL−∑
i aiEi ∈ NEF(Xr+1).Proof. Following [27℄, parameterize essentially distin
t points of X by s
hemes

Wi where we set b0:W1 → W0 to be X → Spec(k) and re
ursively we de�ne
Wi+1 → Wi ×Wi−1 Wi to be the blow up of the diagonal in Wi ×Wi−1 Wi, setting
bi:Wi+1 → Wi to be the 
omposition of Wi+1 → Wi×Wi−1 Wi with the proje
tion
π1i:Wi ×Wi−1 Wi → Wi to the �rst fa
tor. The morphisms bi are smooth ([10,17.3, 19.4℄). [Here is a proof. Note b0 is smooth (sin
e X is). Assuming bi−1 issmooth, we see the proje
tion Wi ×Wi−1 Wi → Wi is smooth ([23, PropositionIII.10.1(d)℄), and the ex
eptional lo
us Bi+1 ⊂ Wi+1 for bi is smooth ([23, Theo-rem II.8.24(b)℄) and lo
ally isomorphi
 to Wi ×P

1. We now see that bi is smoothby 
he
king surje
tivity of the indu
ed maps on Zariski tangent spa
es ([23, Propo-sition III.10.4(iii)℄) at points x ∈ Wi+1. Away from Bi+1, Wi+1 → Wi ×Wi−1 Wiis an isomorphism and Wi ×Wi−1 Wi → Wi is smooth, hen
e surje
tivity followsfor points x 6∈ Bi+1. At points x ∈ Bi+1, the 
omposition Bi+1 ⊂ Wi+1 → Wiis smooth and thus the map on tangent spa
es indu
ed by Bi+1 → Wi is alreadysurje
tive at x, hen
e so is the one indu
ed by Wi+1 → Wi. Thus bi is smooth.℄Consider the pullba
ks B′
i to Wr+1 of the divisors Bi. For any ample divisor Lon X , let L′′ be the pullba
k to Wr+1 via the blow ups bi and the proje
tions π2ion the se
ond fa
tors. Let F = OWr+1(aL

′′ −∑
i aiB

′
i). Then for any essentiallydistin
t points p′1, . . . , p′r of X we have a uniquely determined point w ∈ Wr, the�ber (Wr+1)w of Wr+1 over w is X ′

r+1, and the restri
tion Fw of F to (Wr+1)wis OX′

r+1
(aL′−

∑
i aiE

′
i). By the semi
ontinuity theorem ([23, Theorem III.12.8℄),

h0((Wr+1)w,Fw) is an upper semi
ontinuous fun
tion of w. This implies (a).Now 
onsider (b). If (aL−∑
i aiEi)

2 = (aL′ −∑
i aiE

′
i)

2 > 0, we have s(aL−∑
i aiEi) ∈ EFF(Xr+1) for some s ≫ 0. Pi
k some e�e
tive divisor C whose
lass is s(aL − ∑

i aiEi). For ea
h prime divisor 
omponent D of C, there is anopen set of points pi for whi
h D remains prime, sin
e being e�e
tive is a 
losed
ondition by (a), and sin
e for only �nitely many 
lasses D′ = a′L−
∑

i a
′
iEi 
ould

D′ and the 
lass of D − D′ (or even s(aL − ∑
i aiEi) − D′ in pla
e of D − D′)both 
on
eivably be 
lasses of e�e
tive divisors. Thus the de
omposition of C asa sum of prime divisors is well-de�ned for general points, and ea
h 
omponentspe
ializes to an e�e
tive divisor on X ′

r+1 whi
h thus meets aL′ − ∑
i aiE

′
i, andhen
e aL−∑

i aiEi, non-negatively, so aL−∑
i aiEi ∈ NEF(Xr+1), proving (b).Here is a version of the same result stated for generi
 points, where X now isany surfa
e and L 
omes via pullba
k from some ample divisor on X :



[8℄ Brian HarbourneTheorem 1.1.7 (Semi
ontinuity Prin
iple 2)Let a, a1, . . . , ar be integers, let p1, . . . , pr be generi
 points of a surfa
e X anddenote by Xr+1 the blow up of X at p1, . . . , pr, with E1, . . . , Er being the usualasso
iated 
lasses and L the pullba
k to Xr+1 from X of some ample divisor on
X. Also, given essentially distin
t points p′1, . . . , p′r of X, let X ′

r+1 denote the blowup of X at p′1, . . . , p′r, and let L′, E′
1, . . . , E

′
r denote the asso
iated 
lasses.(a) If aL −

∑
i aiEi ∈ EFF(Xr+1), then aL′ −

∑
i aiE

′
i ∈ EFF(X ′

r+1) for every
hoi
e of essentially distin
t points p′1, . . . , p
′
r of X.(b) If aL′ −∑

i aiE
′
i ∈ NEF(X ′

r+1) for some 
hoi
e of essentially distin
t points
p′1, . . . , p

′
r of X, then aL−∑

i aiEi ∈ NEF(Xr+1).Proof. The proof of (a) is the same as for Theorem 1.1.6(a). The proof for (b)is even simpler than before sin
e now we are not 
laiming that having a spe
i�
divisor F = aL −∑
i aiEi be nef is an open 
ondition on the points pi. Instead,if F were not nef, then F · C < 0 for some C = c0L −

∑
i ciEi ∈ EFF(Xr+1),hen
e C′ = c0L

′ − ∑
i ciE

′
i ∈ EFF(Xr+1) by (a), so F ′ · C′ = F · C < 0 for

F ′ = aL′ −∑
i aiE

′
i, 
ontradi
ting our assumption that F ′ ∈ NEF(X ′

r+1).Remark 1.1.8It is not hard to show that F ∈ NEF(X) implies F 2 ≥ 0 (this is Exer
ise 1.4.1(a)).It is 
ertainly possible, however, to have H ∈ EFF(X) with H2 < 0. The questionof the extent to whi
h this 
an happen is the main motivation for these notes.If in fa
t there is no H ∈ EFF(X) with H2 < 0, then it is easy to see that
EFF(X) ⊆ NEF(X). It 
an also happen that NEF(X) ⊆ EFF(X), but in generalneither 
ontainment holds. For example, for n > 0, the base 
urve C on theHirzebru
h surfa
e Hn is e�e
tive but has C2 = −n so is not nef. For an exampleof a nef divisor whi
h is not e�e
tive, see Exer
ise 1.4.1(b). However, in Exer
ise1.4.1(b), the 
lass F is in fa
t ample (see Exer
ise 3.2.4), thus some multipleof F is e�e
tive (in fa
t 2F ∈ EFF(X) by Riemann�Ro
h), but divisors 
an benef without being ample and without any multiple being e�e
tive. For example,suppose X is given by blowing up r = s2 generi
 points pi ∈ P

2. Nagata [32℄proved that h0(X,OX(mF )) = 0 for all m > 0 when F = sL− E1 − . . .−Er and
s > 3. But by spe
ializing the points pi to general points of a smooth 
urve ofdegree s, we see that sL−E1 − . . .−Er is nef after spe
ializing, and hen
e nef tobegin with by Theorem 1.1.7. Thus for r = s2 generi
 points pi, sL−E1− . . .−Eris nef but not ample (sin
e F 2 = 0), and, for ea
h m > 0, m(sL − E1 − . . .− Er)is not the 
lass of an e�e
tive divisor.1.2. A Motivational Folklore Conje
tureThere is a long-standing open 
onje
ture involving boundedness of negativityon surfa
es. Let us say that a surfa
e X has bounded negativity if there is aninteger nX su
h that C2 ≥ nX for ea
h prime divisor C ⊂ X .Conje
ture 1.2.1 (Folklore: The Bounded Negativity Conje
ture)Every surfa
e X in 
hara
teristi
 0 has bounded negativity.



Global aspe
ts of the geometry of surfa
es [9℄Remark 1.2.2Conje
ture 1.2.1 is false in positive 
hara
teristi
. I thank Burt Totaro for bringingto my attention the following example pointed out by János Kollár at a talk byRi
hard Harris at MSRI in January, 2009 (http://www.msri.org/
ommuni
ations/vmath/VMathVideos/VideoInfo/4111/show_video). Let X = C × C, where C isa 
urve of genus gC ≥ 2 de�ned over a �nite �eld of 
hara
teristi
 p > 0. Let Γq bethe graph in X of the Frobenius morphism de�ned by taking q-th powers, where
q is a su�
iently large power of p. Then Γq is a 
urve on X with X2 = q(2− 2gC)[23, Exer
ise V.1.10℄. Sin
e q 
an be arbitrarily large, X does not have boundednegativity. However, it is as far as I know still an open problem even in positive
hara
teristi
 to determine whi
h surfa
es fail to have bounded negativity.Some surfa
es are known to have bounded negativity.Corollary 1.2.3A surfa
e X has bounded negativity if −mKX ∈ EFF(X) for some positive inte-ger m.Proof. Sin
e −mKX ∈ EFF(X), there are only �nitely many prime divisors
C su
h that −mKX · C < 0. So, apart from �nitely many prime divisors C, wehave −mKX · C ≥ 0, in whi
h 
ase C2 = 2pC − 2− C ·KX ≥ −2.Example 1.2.4In parti
ular, bounded negativity holds for K3 surfa
es, Enriques surfa
es, abeliansurfa
es, and relatively minimal rational surfa
es. But it is not always 
lear whenit holds if one blows up points on those surfa
es.Let EFF(X)/∼ denote the image of EFF(X) in Num(X). In preparation forgiving a 
riterion for bounded negativity to hold on X , we have the followingproposition (taken from [36℄):Proposition 1.2.5If EFF(X)/∼ is �nitely generated, then there are only �nitely many prime divisors
C with C2 < 0.Proof. Let C1, . . . , Cr be prime divisors whose 
lasses generate EFF(X)/∼.Sin
e ea
h Ci is the 
lass of an e�e
tive divisor, there are only �nitely many primedivisors D su
h that D · Ci < 0 for some i. Now let C be a prime divisor with
C2 < 0; we have C ∼ ∑

i miCi for some mi ≥ 0 and so 0 > C2 =
∑

imiC · Ci,hen
e C · Cj < 0 for some j, and so C = Cj .This then gives a 
riterion for bounded negativity to hold.Corollary 1.2.6If X is a surfa
e su
h that EFF(X)/∼ is �nitely generated, then bounded negativityholds for X.Remark 1.2.7It is di�
ult in general to determine whether EFF(X)/∼ is �nitely generated, evenfor rational surfa
es. Here are some 
ases where it is known. If X is a rational



[10℄ Brian Harbournesurfa
e with K2
X > 0, then EFF(X) is �nitely generated (see Exer
ise 1.4.5 if

−KX is nef and K2
X > 1; see [36℄ for the 
ase that K2

X > 0 and X is obtainedby blowing up at most 8 points of P2; or see [28℄, [42℄ for K2
X > 0 in general).We also have EFF(X) �nitely generated if X is obtained by blowing up points ona line or 
oni
 in P

2 (see Exer
ises 1.4.2 and 1.4.4), or, more generally, if X isrational and −KX is big [42℄.When X be obtained by blowing up r < 9 generi
 points of P2, then K2
X > 0and so EFF(X) is �nitely generated as mentioned above, but in fa
t −KX isample, whi
h with adjun
tion implies C2 ≥ −1 for any prime divisor C. For

r = 9, EFF(X) is not �nitely generated (see Exer
ise 1.4.7, for example), but it isstill true that C2 ≥ −1 for any prime divisor C, although the proof is somewhatte
hni
al. Here now is a 
onje
ture for a 
ase where EFF(X) is de�nitely not�nitely generated (see Exer
ise 1.4.7) but where Conje
ture 1.2.1 is not yet alwaysknown:Conje
ture 1.2.8 ([16℄)Let X be obtained by blowing up a �nite number r of generi
 points of P2. Then
C2 ≥ −1 for every prime divisor C, with equality if and only if C is a smoothrational 
urve with KX · C = −1.This 
onje
ture is known to be true when r ≤ 9, but it is open for every r > 9.1.3. An Asymptoti
 Approa
h to Bounded NegativityWhile no general lower bound for C2 for prime divisors C on a surfa
e X isknown, given a nef divisor F , we 
an instead ask for a lower bound on C2

(F ·C)2 forall prime divisors C with F · C > 0. As motivation for introdu
ing multipointSeshadri 
onstants, we now study this question in the 
ase that X is obtained byblowing up r > 0 points p1, . . . , pr ∈ P
2, taking F to be L. Sin
e C is prime andwe assume L · C > 0, we see that C = dL−

∑
imiEi for some mi ≥ 0.Let

λL(X)

= inf

{
C2

(C · L)2 : C ∈ EFF(X), C · L > 0, C · Ei ≥ 0 for all i, C ·
∑

i

Ei > 0

}

= inf

{
C2

(C · L)2 : C is a prime divisor on X and C · L > 0

}
.(The se
ond equality is Exer
ise 1.4.8.) It is 
lear that the in�mum exists: Let

C = dL−
∑

imiEi. Sin
e L− Ei ∈ NEF(X), we see d ≥ mi for all i. Hen
e
C2

(C · L)2 =
(d2 −∑

im
2
i )

d2
≥ 1− r.Problem 1.3.1Compute λL(X), or at least give good estimates for it.



Global aspe
ts of the geometry of surfa
es [11℄We now re
all a quantity ε introdu
ed by G.V. Chudnovsky [5℄ (for any r pointsin any proje
tive spa
e) and Demailly [6℄ (for a single point, i.e., r = 1, but onany smooth variety) now known as a multipoint Seshadri 
onstant ; see also [29℄.(Chudnovsky's version, denoted Ω̂0(p1, . . . , pr), is a
tually equal to rε.) Let X beobtained by blowing up distin
t points p1, . . . , pr ∈ P
2. Then

ε(P2; p1, . . . , pr) = inf

{
d∑
i mi

: dL−
∑

i

miEi ∈ EFF(X), mi ≥ 0,
∑

i

mi > 0

}
.As alternative de�nitions (see Exer
ise 1.4.9) we have:

ε(P2; p1, . . . , pr) = inf

{
C · L∑
iC ·Ei

: C is prime and ∑

i

C ·Ei > 0

}

= sup
{m

d
: dL−m

∑

i

Ei ∈ NEF(X), m > 0
}
.

(1)Remark 1.3.2In general, ε(P2; p1, . . . , pr) is itself hard to 
ompute. However, by Exer
ise 1.4.10,if F · C = 0 for some F = dL − m
∑

i Ei ∈ NEF(X) and C = aL − ∑
i miEi ∈

EFF(X) with d > 0 and a > 0, then ε(P2; p1, . . . , pr) =
m
d
.For our asymptoti
 appli
ation of Seshadri 
onstants to bounded negativity,we will use the following elementary inequality:Lemma 1.3.3Given integers d > 0 and d ≥ mi ≥ 0 for all i, we have ∑
i
m2

i

d2 ≤
∑

i
mi

d
.Proof. Just note that d ≥ mi ≥ 0 implies d

∑
i mi ≥

∑
im

2
i ; dividing by d2gives the result.Sin
e L − Ei ∈ NEF(X) for ea
h i, if dL −∑

imiEi ∈ EFF(X), then d ≥ mifor all i, hen
e d∑
i
mi

≥ 1
r
. In parti
ular, ε(P2; p1, . . . , pr) ≥ 1

r
> 0 so 1

ε(P2;p1,...,pr)makes sense. Applying the lemma now gives:Corollary 1.3.4Let X be obtained by blowing up distin
t points p1, . . . , pr ∈ P
2. Then

λL(X) ≥ 1− 1

ε(P2; p1, . . . , pr)
.Proof.

λL(X)

= inf

{
C2

(C · L)2 : C ∈ EFF(X), C · L > 0, C ·Ei ≥ 0 for all i, C ·
∑

i

Ei > 0

}

= inf

{
1−

∑
im

2
i

d2
: C = dL−

∑

i

miEi ∈ EFF(X), d > 0, mi ≥ 0,
∑

i

mi > 0

}
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= inf

{
1−

∑
im

2
i

d2
: dL−

∑

i

miEi ∈ EFF(X), mi ≥ 0,
∑

i

mi > 0

}

≥ inf

{
1−

∑
imi

d
: dL −

∑

i

miEi ∈ EFF(X), mi ≥ 0,
∑

i

mi > 0

}

= 1− sup

{∑
imi

d
: dL −

∑

i

miEi ∈ EFF(X), mi ≥ 0,
∑

i

mi > 0

}

= 1− 1

ε(P2; p1, . . . , pr)
.Remark 1.3.5Sometimes equality holds, but usually not. See Exer
ises 1.4.11 and 1.4.12.We 
lose this le
ture with some remarks about Mori dream spa
es. Mori dreamspa
es give interesting examples of surfa
es with bounded negativity. Let X beobtained by blowing up points p1, . . . , pr ∈ P

2. Let L be the total transform of aline and let Ei be the blow up of the point pi. De�ne the Cox ring Cox(X) of Xto be the ring whose additive stru
ture is given by
⊕

(a0,...,ar)∈Zr+1

H0(X,OX(a0L− a1E1 − . . .− arEr)),and where multipli
ation is given by the natural maps
H0(X,OX(F1))⊗H0(X,OX(F2)) → H0(X,OX(F1 + F2)).If Cox(X) is �nitely generated we say that X is a Mori dream spa
e [25℄. If X isa Mori dream spa
e, then EFF(X) must be �nitely generated, and hen
e X hasbounded negativity by Proposition 1.2.5.Remark 1.3.6If X is obtained by blowing up at most 8 points of P2, then X is a Mori dreamspa
e. (Proof: By the Hodge Index Theorem if F is a nontrivial nef divisor,then −KX · F > 0, hen
e the result follows over the 
omplex numbers from [11,Corollary 1℄ by [36, Theorem 2℄ and [15, Theorem III.1℄.) In fa
t, if X is anysmooth, proje
tive, rational surfa
e with K2

X > 0, then X is a Mori dream spa
e.(The same proof applies, but without the assumption of the 
omplex numbers,using [28, Proposition 4.3(a)℄ in pla
e of [36℄; alternatively, see [42℄.) If X isany smooth, proje
tive, rational surfa
e with K2
X = 0 but −KX is not nef, we
an again 
on
lude that X is a Mori dream spa
e. (By [28, Proposition 4.3(
)℄,

EFF(X) is �nitely generated, and by Exer
ise 1.4.6(b) and [15, Theorem III.1℄, nefdivisors on X are semi-ample (i.e., have a positive multiple whi
h is e�e
tive andbase point free). Now apply [11, Corollary 1℄.) In ea
h of these 
ases, −KX is big(see Exer
ise 1.4.13), hen
e these (in addition to the examples of Exer
ises 1.4.3and 1.4.4 of blow ups of points on a line or 
oni
) are all subsumed by the resultof [42℄ that a rational surfa
e with big −KX is a Mori dream spa
e. However, notall rational surfa
es whi
h are Mori dream spa
es have big −KX . For example,



Global aspe
ts of the geometry of surfa
es [13℄let C be an irredu
ible 
ubi
 
urve, and su

essively blow up r > 9 points on
C, ea
h time at su

essive in�nitely near points of the 
ubi
, starting with a �expoint of the 
ubi
. By Exer
ise 1.4.14, EFF(X) is �nitely generated and any nef
lass F has F · (−KX) ≥ 0. By [19, Theorem 3.1 and Corollary 3.4℄, every nef
lass is semi-ample, and by [11℄, X is a Mori dream spa
e sin
e EFF(X) is �nitelygenerated and any nef 
lass is semi-ample, but −KX is not big sin
e it is a primedivisor of negative self-interse
tion.If X is a rational surfa
e with EFF(X) �nitely generated, it is natural to ask:must X be a Mori dream spa
e? The answer is no; see Remark 5.5 of [2℄.1.4. Exer
isesExer
ise 1.4.1Let X be a surfa
e.(a) Show F ∈ NEF(X) implies F 2 ≥ 0.(b) Assume X is obtained by blowing up r = 21 general points pi ∈ P

2. Then
Cl(X) has basis L,E1, . . . , E21, where L is the pullba
k of the 
lass of a lineand Ei is the 
lass of the blow up of pi. Let F = 5L − ∑

iEi; show that
F ∈ NEF(X) \ EFF(X).Solution. (a) Let A be ample, F nef and F 2 < 0. We will show that thereare positive integers s, a and f su
h that aA + fF is ample and saA + sfF ise�e
tive, but su
h that F · (aA+fF ) < 0, whi
h is impossible if F is nef. To show

aA+ fF is ample it is enough by the Nakai�Moisezon 
riterion [23℄ to show that
(aA + fF ) · C > 0 for every 
urve C, and that (aA + fF )2 > 0. But A · C > 0sin
e A is ample and F · C ≥ 0 sin
e F is nef, so (aA + fF ) · C > 0. Sin
e Ais ample, aA ∈ EFF(X) for a ≫ 0, hen
e A · F ≥ 0. Thus, taking t = f

a
, wehave (aA + fF ) · F = a(A + tF ) · F < 0 for t > A·F

−F 2 , but a(A + tF ) · F = 0and (aA + fF )2 = a2(A2 + 2tA · F + t2F 2) = a2(A2 + tA · F ) > 0 for t = A·F
−F 2 ,so by 
hoosing a and f su
h that t is slightly larger than A·F

−F 2 we will still have
(aA+ fF )2 > 0 (and hen
e aA+ fF is ample so saA+ sfF is e�e
tive for s ≫ 0)while also having (saA+ sfF ) ·F < 0, 
ontradi
ting F being nef. Hen
e we musthave F 2 ≥ 0.(b) Consider points p′i whi
h lie on a smooth quinti
. Let Q be the propertransform of that quinti
. Then Q is nef but Q is linearly equivalent to F ′ =
5L′ − E′

1 − . . . − E′
21. Now by the semi
ontinuity prin
iple, Theorem 1.1.6, F =

5L−E1− . . .−E21 ∈ NEF(X) when the points pi are general. But the points aregeneral so impose 21 independent 
onditions on the 21 dimensional spa
e of allquinti
s (sin
e we 
an always 
hoose ea
h su

essive point not to be a base point ofthe linear system of quinti
s through the previous points); i.e., h0(X,OX(F )) = 0hen
e F 6∈ EFF(X).Exer
ise 1.4.2Find an expli
it �nite set of generators for EFF(X) and NEF(X) in 
ase X isobtained by blowing up r ≥ 1 distin
t points on a line in P
2.



[14℄ Brian HarbourneSolution. This solution is based on [16, Proposition I.5.2℄. Let the points be
p1, . . . , pr. Then Cl(X) has basis L,E1, . . . , Er, where L is the pullba
k of the
lass of a line and Ei is the 
lass of the blow up of pi. Let Λ = L−E1 − . . .−Erand let Li = L−Ei. Clearly Λ ∈ EFF(X) and Ei and Li are in EFF(X) for ea
h i.Sin
e L2

i = 0 and Li is the 
lass of a prime divisor, we see Li ∈ NEF(X). To provethat Λ, E1, . . . , Er generate EFF(X), it is enough to prove that every e�e
tive,redu
ed, irredu
ible divisor 
an be written as a non-negative integer 
ombinationof Λ and E1, . . . , Er. So let C = aΛ+
∑

biEi be the 
lass of an e�e
tive, redu
edand irredu
ible divisor. If C is Λ or Lj , then the 
laim is true as Lj = Λ+
∑

i6=j Ei,so we may assume that C is not one of these divisors. But then the interse
tionwith them must be non-negative and hen
e bj = C · Lj ≥ 0. Putting this into
0 ≤ C ·Λ = a−∑

bi implies the non-negativity of a. Moreover, if F is nef then Fmeets ea
h Ei and Λ non-negatively, and the argument we just used on C showsthat any su
h 
lass 
an be written as F = (a−∑
i bi)L+

∑
i biLi for non-negativeintegers a, b1, . . . , br, and hen
e L,L1, . . . , Lr generate NEF(X).Exer
ise 1.4.3Let X be obtained by blowing up points p1, . . . , pr ∈ P

2. If the points pi are
ollinear, show that X is a Mori dream spa
e.Solution. The generators are given by taking for ea
h G among E1, . . . , Er,
Λ and L1, . . . , Lr, a basis for H0(X,OX(G)). This is be
ause if D is an e�e
tivedivisor, then by the solution to Exer
ise 1.4.2, D = N +M , where N is �xed and
onsists of a sum of non-negative multiples of the Ei and Λ, and M ∈ NEF(X)and hen
e M =

∑
i≥0 miLi for some non-negative mi (where we take L0 = L).Thus it is enough to show that ⊗iH

0(X,OX(Li))
⊗mi → H0(X,OX(M)) is sur-je
tive. Do this indu
tively by showing that H0(X,OX(F )) ⊗H0(X,OX(Li)) →

H0(X,OX(F + Li)) is surje
tive for ea
h F ∈ NEF(X) and hen
e in fa
t that
H0(X,OX(F1))⊗H0(X,OX(F2)) → H0(X,OX(F1 + F2)) is surje
tive whenever
F1 and F2 are nef (see [14, Theorem 2.8℄). Alternatively, see [33℄.Exer
ise 1.4.4Let X be obtained by blowing up points p1, . . . , pr on a smooth 
oni
 in P

2 with
r ≥ 3. (If r < 3, the points are 
ollinear and the result is given by Exer
ise 1.4.2.Also, the 
oni
 does not need to be smooth here but smoothness simpli�es theargument a bit.)(a) Show EFF(X) is �nitely generated.(b) Cite the literature to show that X is a Mori dream spa
e.Solution. (a) Let Lij , i 6= j, be the 
lass of the proper transform of the linethrough pi and pj , let L be the 
lass of the total transform of a line, let D be the
lass of the proper transform of the 
oni
 and let Ei be the 
lass of the blow upof pi for ea
h i > 0.Let C be the 
lass of a prime divisor. Note that −KX = D+L. Hen
e if C2 < 0but C 6= D, then adjun
tion for
es L · C ≤ 1, and hen
e C is either Lij or Ei forsome i and j. If C2 ≥ 0, write C = a0L− a1E1 − . . .− arEr. Sin
e C ·Ei ≥ 0, we



Global aspe
ts of the geometry of surfa
es [15℄have ai ≥ 0 for all i. By reindexing we may assume that a1 ≥ a2 ≥ . . . ≥ ar ≥ 0.Let Di = 2L− E1 − . . .− Ei = D + Ei+1 + . . .+ Er. Thus
C = (a0 − a1 − a3)L+ (a1 − a2)(L− E1) + (a2 − a3)L12

+ (a3 − a2)D3 + . . .+ (ar−1 − ar)Dr−1 + arDr,where a0 − a1 − a3 ≥ 0 sin
e C · L12 ≥ 0 implies a0 ≥ a1 + a2 ≥ a1 + a3. Notethat L = L12 + E1 + E2 and that L − E1 = L12 + E2. In parti
ular, the 
lass ofevery prime divisor is a sum of non-negative multiples of 
lasses of the form Lij ,
Ei and D.(b) Sin
e −KX = D + L, if F is nef with −KX · F = 0, then F · L = 0, hen
e
F = 0 by the Hodge Index Theorem. The fa
t that X is a Mori dream spa
e nowfollows by [11, Corollary 1℄ and [15, Theorem III.1℄, or dire
tly by [11, Corollary 3℄,or by [42℄.The basi
 idea of part (a) of the next exer
ise is taken from [36℄.Exer
ise 1.4.5Let X be a rational surfa
e su
h that −KX is nef.(a) If C is a prime divisor on X su
h that pC > 0, show that C+KX ∈ EFF(X).(b) For ea
h integer n, show that there are only �nitely many 
lasses C of primedivisors with C2 ≤ n if K2

X > 0.(
) If E is a 
lass su
h that E2 = E ·KX = −1, show that E ∈ EFF(X).(d) If K2
X > 1, show that −KX − E ∈ EFF(X) for any 
lass E su
h that

E2 = E ·KX = −1.(e) Con
lude that EFF(X) is �nitely generated if K2
X > 1.Solution. First note that K2

X ≥ 0 sin
e −KX is nef. Next note that
h2(X,OX(−KX)) = h0(X,OX(2KX)) is 0 sin
e X is rational. Hen
e
h0(X,OX(−KX)) ≥ K2

X + 1 > 0 by Riemann�Ro
h, so −KX ∈ EFF(X).(a) Take 
ohomology of 0 → OX(KX) → OX(C +KX) → OC(C +KX) → 0.Sin
e X is rational, h1(X,OX(KX)) = h1(X,OX) = 0, and h0(X,OX(KX)) = 0sin
e −KX ∈ EFF(X) is nontrivial. Thus 0 < pC = h0(C,OC(C + KX)) =
h0(X,OX(C +KX)).(b) By adjun
tion and the fa
t that −KX is nef we have C2 = 2pC − 2 −
KX ·C ≥ −2, so for ea
h n it is enough to show that there are only �nitely many
C with C2 = n. So say C2 = n, hen
e 0 ≤ −KX · C ≤ C2 + 2 = n + 2 byadjun
tion and the fa
t that −KX is nef. Now let N = K2

XC − (KX · C)KX ,so C = (−KX ·C)(−KX)+N

K2
X

. Thus to show there are only �nitely many su
h C,it is enough to show that −KX · C is bounded (but we already saw that 0 ≤
−KX · C ≤ n + 2) and that there are only �nitely many possibilities for N . Tosee the latter, note that N · KX = 0, so (K2

X)2C2 = (KX · C)2K2
X + N2, hen
e
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(K2

X)(K2
Xn − (n + 2)2) ≤ (K2

X)2C2 − (KX · C)2K2
X = N2. Thus N2 is boundedbelow, but N ∈ K⊥

X and K⊥
X is negative de�nite by the Hodge Index Theorem,so intuitively there are only �nitely many latti
e elements N in K⊥

X of length atmost √−(K2
X)(K2

Xn− (n+ 2)2). More rigorously, sin
e Cl(X) is free abelian of�nite rank, there are only �nitely many elements of Cl(X) orthogonal to KX withself-interse
tion no less than (K2
X)(K2

Xn − (n + 2)2), and hen
e there are only�nitely many possibilities for N .(
) Sin
e −KX is nef but −KX ·(KX−E) < 0, we seeKX−E 6∈ EFF(X). Thus
h2(X,OX(E)) = 0, hen
e h0(X,OX(E)) ≥ 1 by Riemann�Ro
h, so E ∈ EFF(X).(d) Sin
e −KX · (2KX + E) < 0, we see that 0 = h0(X,OX(2KX + E)) =
h2(X,OX(−KX −E)). Now h0(X,OX(−KX −E)) ≥ K2

X − 1 by Riemann�Ro
h,so −KX − E ∈ EFF(X).(e) Let E be any 
lass su
h that E2 = KX · E = −1. Then E ∈ EFF(X). Let
C be the 
lass of a prime divisor that is a 
omponent of E. Then pC = 0, sin
eotherwise C+KX and hen
e E+KX is in EFF(X) by (a). But −KX ·(E+KX) < 0,so this is impossible. Thus E is a sum of prime divisors C with pC = 0. Likewise,
−KX − E is a sum of 
lasses of prime divisors with pC = 0, sin
e otherwise
−KX − E + KX = −E is in EFF(X). So for some Ci with pCi

= 0 we have
−KX =

∑
iCi and this sum involves at least two summands.By part (b), there are only �nitely many 
lasses D of prime divisors with

D2 ≤ 0 and pD = 0. We will now see that these 
lasses D, together with the Ci,generate EFF(X). Given any prime divisor C, it is enough to show that either
C −D ∈ EFF(X) for some su
h D or that C − Ci ∈ EFF(X) for some i. This is
lear by (a) if pC > 0, so assume pC = 0. It is again 
lear if C2 ≤ 0, so assume
C2 > 0. We may assume C ·C1 ≤ C ·Ci for all i. Note that h2(X,OX(C −C1)) =
h0(X,OX(KX − C + C1)) = h0(X,OX(−

∑
i>1 Ci − C)) = 0. Thus

h0(X,OX(C − C1)) ≥
C2 − 2C · C1 −KX · C + (C2

1 +KX · C1)

2
+ 1

=
C2 − 2C · C1 −KX · C − 2

2
+ 1

=
C2 +

∑
i>1 C · Ci − C · C1

2

≥ C2

2
> 0,so C − C1 ∈ EFF(X).Exer
ise 1.4.6Let X be a rational surfa
e with K2

X = 0.(a) Show that −KX ∈ EFF(X).(b) Assume in addition that −KX is not nef. If F is nef with −KX · F = 0,show that F = 0.



Global aspe
ts of the geometry of surfa
es [17℄Solution. (a) Apply Riemann�Ro
h, using
h2(X,OX(−KX)) = h0(X,OX(2KX)) = 0.(b) This follows by the Hodge Index Theorem. Suppose F 6= 0. Sin
e F is nef,we have F 2 ≥ 0 (by Exer
ise 1.4.1). If F 2 > 0, then F⊥ is negative de�nite, hen
e

−KX ·F = 0 and K2
X = 0 imply that −KX = 0, but this 
ontradi
ts the fa
t that

−KX 6= 0. Thus F 2 = 0. Sin
e F 2 = 0 and KX · F = 0, we see for any elements
v and w in the span of −KX and F in Cl(X) that v · w = 0. But for any ampledivisor A we have i = A ·(−mKX +F ) > 0 for m ≫ 0, sin
e j = −KX ·A > 0. Let
v = j(−mKX + F ) and let w = −iKX. Then v − w ∈ A⊥, but (v − w)2 = 0, so
v = w, hen
e j(−mKX+F ) = −iKX so jF = (mj−i)KX . Thus mj−i < 0 (sin
e
−3(mj − i) = (mj − i)KX · L = jF · L ≥ 0 but F · L = 0 implies F = 0) so −KXis nef (being a positive rational multiple of a nef 
lass), 
ontrary to hypothesis.Exer
ise 1.4.7Let X be obtained by blowing up 9 points p1, . . . , p9 ∈ P

2 on a smooth plane 
ubi

D′. Let D be the proper transform of D′. Let L be the pullba
k of the 
lass of aline and let Ei be the 
lass of the blow up of pi.(a) Show that N ∈ K⊥ implies N2 is even.(b) Let N be any 
lass in K⊥ ∩ E⊥

9 . Show that E = N + E9 +
N2

2 KX satis�es
E2 = KX ·E = −1. Con
lude that E ∈ EFF(X).(
) If the points are su�
iently general and the ground �eld is the 
omplexnumbers, show that ea
h su
h E is the 
lass of a prime divisor. Con
ludethat EFF(X) is not �nitely generated.Solution. (a) By Riemann�Ro
h, N2

2 = N2−KX ·N
2 is an integer.(b) That E = N + E9 + N2

2 KX satis�es E2 = KX · E = −1 is easy. Sin
e
−KX = D is nef, and sin
e −KX · (KX −E) < 0, we see that h2(X,OX(E)) = 0.Now apply Riemann�Ro
h to see that h0(X,OX(E)) ≥ 1, so E ∈ EFF(X).(
) Suppose that some E = N +E9+

N2

2 KX is not the 
lass of a prime divisor.Sin
e −KX ·E = 1 and −KX is nef, if E has two or more 
omponents, then one ofthem must be disjoint from D, hen
e in the kernel of the mapping Cl(X) → Cl(D).But the kernel here is the same as the kernel of K⊥
X → Cl0(D), where Cl0(D) isthe subgroup of divisor 
lasses of degree 0, whi
h is a torus whi
h 
an be identi�edwith D. Sin
e the 
omplex numbers have in�nite dimension over the rationals,it's easy to 
hoose points pi ∈ D, su
h that the map K⊥

X → Cl0(D) is inje
tive,hen
e no prime divisor on X is disjoint from D, so E must be prime. Con
ludeby applying Proposition 1.2.5.Exer
ise 1.4.8Let X be obtained by blowing up r > 0 points p1, . . . , pr ∈ P
2, and let L and Eibe as usual. Show that

inf

{
C2

(C · L)2 : C is a prime divisor on X and C · L > 0

}
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= inf

{
C2

(C · L)2 : C ∈ EFF(X), C · L > 0, C · Ei ≥ 0 for all i, C ·
∑

i

Ei > 0

}
.Solution. Let inf1 be the �rst in�mum in the statement above and let inf2 bethe se
ond. Note that inf1 is equal to

inf3 = inf

{
C2

(C · L)2 : C is a prime divisor on X C · L > 0 and C ·
∑

i

Ei > 0

}
,sin
e any prime C with C · L > 0 but C ·∑i Ei = 0 is a positive multiple of L, inwhi
h 
ase C′ = C − E1 is the 
lass of a prime divisor with C′2

(C′·L)2 < C2

(C·L)2 .Sin
e inf2 is an in�mum over a bigger set than is inf3, we see that inf2 ≤ inf3 =
inf1. Thus, to see inf2 = inf1, it is enough to see for any D that is e�e
tive with
D · L > 0, D · Ei ≥ 0 for all i and D · ∑i Ei > 0 that there is a prime C with
C · L > 0 and C2

(C·L)2 ≤ D2

(D·L)2 .Suppose D satis�es the given 
onditions. Write D as dL − ∑
imiEi. We
an also write D as ∑

j Cj for some prime divisors Cj . Let F be obtained bydeleting every summand Cj (if any) for whi
h Cj = Ei for some i. Writing
F = dL−

∑
i m

′
iEi we see m′

i ≥ mi for all i, hen
e F 2

(F ·L)2 ≤ D2

(D·L)2 . Thus we mayassume that Cj 6= Ei for all i and j and hen
e that Cj ·Ei ≥ 0 for all i and j andthat Cj ·L ≥ 0 for all j. If for some j we have Cj ·
∑

i Ei = 0, then Cj is a positivemultiple of L, so we 
an repla
e Cj by Cj − E1; the latter is still the 
lass of aprime divisor, but this 
hange redu
es F 2

(F ·L)2 . Thus with these 
hanges we mayassume ea
h summand Cj of F satis�es the 
onditions imposed on D.By indu
tion it is 
learly enough to 
he
k that if D1 and D2 satisfy the 
ondi-tions on D, then
min

{
D2

1

(D1 · L)2
,

D2
2

(D2 · L)2
}

≤ (D1 +D2)
2

((D1 +D2) · L)2
.If we write D1 = aL − ∑

i aiEi and D2 = bL − ∑
i biEi, and assume thatthe minimum o

urs for i = 1, this is just a2−

∑
i
a2
i

a2 ≤ (a+b)2−
∑

i
(ai+bi)

2

(a+b)2 , or
1−

∑
i(

ai

a
)2 ≤ 1−

∑
i(

ai+bi
a+b

)2. I.e., it is enough to show that∑i(
ai

a
)2 ≥

∑
i(

ai+bi
a+b

)2if ∑i(
ai

a
)2 ≥ ∑

i(
bi
b
)2. Thus, given ve
tors v and w in Eu
lidean spa
e with non-negative entries and given positive reals a and b, we must show (v

a
)2 ≥ (v+w

a+b
)2 if

(v
a
)2 ≥ (w

b
)2.But b2v2 ≥ a2w2 by hypothesis, so b|v| ≥ a|w|, hen
e bv2 = b|v|2 ≥ a|w||v| ≥

av · w, so 2abv2 ≥ 2a2v · w and thus (a + b)2v2 = a2v2 + b2v2 + 2abv2 ≥ a2v2 +
a2w2 + 2a2v · w = a2(v + w)2, when
e (v

a
)2 ≥ (v+w

a+b
)2.Exer
ise 1.4.9Let X be obtained by blowing up points p1, . . . , pr ∈ P

2.(a) Show that ε(P2; p1, . . . , pr) = inf
{

C·L∑
i
C·Ei

: C is prime and C · L > 0
}.



Global aspe
ts of the geometry of surfa
es [19℄(b) Show that ε′(P2; p1, . . . , pr) = ε(P2; p1, . . . , pr), where
ε′(P2; p1, . . . , pr) = sup

{m

d
: dL−m

∑

i

Ei ∈ NEF(X), d > 0
}
.Solution. (a) This just amounts to the easy fa
t that

d1 + d2
m1 +m2

≥ min

{
d1
m1

,
d2
m2

}
.By de�nition

ε(P2; p1, . . . , pr) = inf

{
d∑
i mi

: dL−
∑

i

miEi ∈ EFF(X), mi ≥ 0,
∑

i

mi > 0

}
.Suppose D = dL − ∑

imiEi ∈ EFF(X) satis�es the 
onditions of the de�nitionof ε(P2; p1, . . . , pr). Write D =
∑

iCi as a sum of 
lasses of prime divisors Ci.Deleting all Ci of the form Ej redu
es d∑
i
mi

, so we may assume Ci 6= Ej for all iand j. If for some i we have Ci ·Ej = 0 for all j, then deleting that Ci from the sumalso redu
es d∑
i
mi

. Hen
e we may assume that D = dL−∑
imiEi =

∑
i Ci, whereea
h Ci is prime and satis�es the 
onditions in the de�nition of ε(P2; p1, . . . , pr).Write Ci = diL − ∑

j mijEj . Let µi =
∑

j mij . Then it su�
es to show that
∑

i
di∑

i
µi

≥ mini{ di

µi
}, whi
h follows by repeated appli
ation of the easy fa
t above.(b) If aL− b
∑

i Ei ∈ NEF(X), then ad ≥ b
∑

imi whenever dL −∑
i miEi ∈

EFF(X). Thus
ε(P2; p1, . . . , pr) ≥ ε′(P2; p1, . . . , pr).Conversely, for any positive integers a and b su
h that b

a
< ε(P2; p1, . . . , pr), wehave (aL−b

∑
iEi)·(dL−

∑
i miEi) ≥ 0 for all dL−∑

imiEi ∈ EFF(X), and hen
e
aL − b

∑
iEi ∈ NEF(X) so b

a
≤ ε′(P2; p1, . . . , pr). Sin
e we 
an 
hoose positiveintegers a and b su
h that b

a
is less than (but arbitrarily 
lose to) ε(P2; p1, . . . , pr),the result follows.Exer
ise 1.4.10Let X be the blow up of P2 at r distin
t points p1, . . . , pr. Suppose F · C = 0for some F = dL −m

∑
i Ei ∈ NEF(X) and C = aL −∑

i miEi ∈ EFF(X) with
d > 0 and a > 0. Show that ε(P2; p1, . . . , pr) =

m
d
.Solution. Sin
e F ∈ NEF(X), 
learly ε(P2; p1, . . . , pr) ≥ m

d
. But

ε(P2; p1, . . . , pr) > m
d

would imply that F ′ = d′L − m′ ∑
i Ei ∈ NEF(X) forsome m′

d′
> m

d
, but in that 
ase F ′ · C < 0, 
ontradi
ting F ′ ∈ NEF(X).Exer
ise 1.4.11Let X be obtained by blowing up 
ollinear points p1, . . . , pr ∈ P

2. Show that
ε(P2; p1, . . . , pr) =

1

rand that equality holds in Corollary 1.3.4.



[20℄ Brian HarbourneSolution. Sin
e C = L − E1 − . . . − Er is the 
lass of a prime divisor and
F = rL − E1 − . . .− Er = (r − 1)L+ C is a sum of prime divisors ea
h of whi
h
F meets non-negatively, we see that F is nef. Clearly λL(X) ≤ C2

(C·L)2 = 1 − r.But F · C = 0, so ε(P2; p1, . . . , pr) =
1
r
by Exer
ise 1.4.10, and we have 1 − r =

1− 1
ε(P2;p1,...,pr)

.Remark 1 (on Exer
ise 1.4.11)Exer
ise 1.4.11 shows that equality holds in Corollary 1.3.4 when the points are
ollinear, but the 
onverse is not true. Here is an example where equality holdsbut the points are not 
ollinear. Suppose we 
onsider 9 points on a smooth 
ubi
,three of whi
h are 
ollinear. Let X be obtained by blowing up the nine points. Theproper transform of the 
ubi
 is 
learly e�e
tive and (being prime of non-negativeself-interse
tion) it also is nef so ε(P2; p1, . . . , pr) =
1
3 by Exer
ise 1.4.10, and theproper transform of the line through the three 
ollinear points has self-interse
tion

−2, so −2 ≥ λL(X), hen
e −2 ≥ λL(X) ≥ 1− 1
ε(P2;p1,...,pr)

= −2.There is another way to look at what Exer
ise 1.4.11 tells us, however. Thesolution to Exer
ise 1.4.11 shows that λL(X) = 1 − r and ε(P2; p1, . . . , pr) =
1
r
ifthe points are 
ollinear. Conversely, if either λL(X) = 1− r or ε(P2; p1, . . . , pr) =

1
r
, then the points p1, . . . , pr ∈ P

2 are 
ollinear. For suppose ε(P2; p1, . . . , pr) =
1
r
.In any 
ase, F = (r−1)L−E1−. . .−Er = (L−E1−E2)+(L−E3)+. . .+(L−Er) ise�e
tive and the 
lasses of the prime 
omponents of L−E1−E2 
onsist of 
lasses

Ej and L − E1 − E2 − Ej1 − . . . − Ejs , where p1, p2, pj1 , . . . , pjs are all of thepoints whi
h lie on the line through p1 and p2. If the points were not all 
ollinear,then there would be at most r − 1 su
h points, so F would meet ea
h of itsprime 
omponents non-negatively. Thus F would be nef and we would have the
ontradi
tion that 1
r
= ε(P2; p1, . . . , pr) ≥ 1

r−1 . Finally, suppose λL(X) = 1 − r.Sin
e F = rL−E1 − . . .−Er = (L−E1) + (L−E2) + (L−E3) + . . .+ (L−Er)is always nef, we see that ε(P2; p1, . . . , pr) ≥ 1
r
always holds. But this means wehave 1−r = λL(X) ≥ 1− 1

ε(P2;p1,...,pr)
≥ 1− 1

1
r

= 1−r, hen
e ε(P2; p1, . . . , pr) =
1
rwhi
h we saw above implies the points are 
ollinear.Exer
ise 1.4.12Find a set of points p1, . . . , pr ∈ P

2 su
h that the inequality in Corollary 1.3.4 isstri
t.Solution. Consider ten points p1, . . . , p10 on a smooth 
oni
. From the solutionto Exer
ise 1.4.4, the only prime divisors C of negative self-interse
tion 
omefrom the points, from the lines through pairs of points and from the 
oni
 itself.The in�mum de�ning λL(X) must 
ome from prime divisors C of negative self-interse
tion. By just 
he
king the possibilities we see λL(X) = − 6
4 
omes from

C = 2L−E1−. . .−E10 ∈ EFF(X) and we also see F = 5L−E1−. . .−E10 = C+3Lis nef. Sin
e F · C = 0, by Exer
ise 1.4.10 we see ε(P2; p1, . . . , pr) =
1
5 and hen
e

λL(X) = − 6
4 ≥ 1− 1

ε(P2;p1,...,pr)
= −4.



Global aspe
ts of the geometry of surfa
es [21℄Exer
ise 1.4.13Let X be a rational surfa
e su
h that K2
X = 0 but −KX 6∈ NEF(X). Show that

−KX is big (i.e., some positive multiple −mKX is e�e
tive and 
an be written as
−mKX = M +N , where M and N are e�e
tive and M2 > 0).Solution. By Exer
ise 1.4.6, −KX ∈ EFF(X). Sin
e −KX is not nef, thereis a prime divisor C su
h that −KX · C < 0. Thus −KX − C is e�e
tive hen
eso is −mKX − C for m ≥ 1, and (−mKX − C)2 = (2m − 1)KX · C + (KX ·
C + C2) = (2m − 1)KX · C + 2pC − 2, so (−mKX − C)2 > 0 for m ≥ 2. Thus
−mKX = (−mKX − C) + C is big for m ≥ 2.Exer
ise 1.4.14Let X = Xr+1 be the rational surfa
e su
h that X1 = P

2, and for ea
h i ≥ 1,
Xi+1 → Xi is the blow up of pi, where p1 ∈ X1 is a �ex of an irredu
ible plane
ubi
 C, and then for ea
h i ≥ 1, pi+1 is the point of the proper transform of C on
Xi+1 in�nitely near to pi. (Thus p1, . . . , pr are essentially distin
t points.) Assume
r ≥ 3. Show that the 
lass of any prime divisor D with D2 < 0 is either Er , or
Ei − Ei+1 for 1 ≤ i < r, or L− E1 − E2 − E3 or D = −KX (if r > 9), and showthat a divisor 
lass F is nef if and only if −KX · F ≥ 0 and F is a non-negativeinteger linear 
ombination of L, L − E1, 2L − E1 − E2, 3L − E1 − E2 − E3, . . .,
3L−E1− . . .−Er = −KX . Con
lude that EFF(X) is generated by Er, Ei−Ei+1for 1 ≤ i < r, L− E1 − E2 − E3 and D = −KX .Solution. It is easy to see that ea
h of the 
lasses listed is the 
lass of a primedivisor D with D2 < 0; for example, L − E1 − E2 − E3 is the 
lass of the propertransform of the line tangent to C at p1 (i.e., the �ex line), while the the 
lass of theproper transform of C to X is 3L−E1− . . .−Er = −KX , whi
h has negative self-interse
tion exa
tly when r > 9. Suppose D = aL− a1E1 − . . .− arEr is the 
lassof a prime divisor with D2 < 0 whi
h is not in the given list. Then D meets ea
hof the listed 
lasses non-negatively; i.e., D ·Er ≥ 0 (so ar ≥ 0), D · (Ei−Ei+1) ≥ 0(so ai ≥ ai+1 for ea
h i = 1, . . . , r − 1, hen
e a1 ≥ a2 ≥ . . . ≥ ar ≥ 0) and
D · (L − E1 − E2 − E3) ≥ 0 (so a ≥ a1 + a2 + a3). It is not hard to see the non-negative integer linear 
ombinations of L, L−E1, 2L−E1−E2, 3L−E1−E2−E3,
. . ., 3L−E1− . . .−Er = −KX are pre
isely the 
lasses whi
h meet Er, Ei−Ei+1for i > 0 and L− E1 − E2 −E3 non-negatively (see [19℄). But ea
h of L, L−E1,
2L−E1 −E2, 3L−E1 −E2 −E3, . . ., 3L−E1 − . . .−Er = −KX is a sum of thelisted 
lasses of negative self-interse
tion (for example,

L = (L− E1 − E2 − E3) + ((E1 − E2) + . . .+ (Er−1 − Er) + Er)

+ ((E2 − E3) + . . .+ (Er−1 − Er) + Er)

+ (E3 − E4) + . . .+ (Er−1 − Er) + Erand 3L − E1 − . . . − Er−1 = −KX + Er; moreover, if r = 9, then −KX =
3(L−E1−E2−E3)+2(E1−E2)+4(E2−E3)+6(E3−E4)+5(E4−E5)+4(E5−
E6)+. . .+(E8−E9), if r = 8, then −KX = 3(L−E1−E2−E3)+2(E1−E2)+4(E2−
E3)+6(E3−E4)+5(E4−E5)+4(E5−E6)+3(E6−E7)+2(E7−E8)+E8, et
.).Thus D · (−KX) ≥ 0 implies D is a sum of 
lasses of negative self-interse
tion,
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h of whi
h it meets non-negatively, so D2 ≥ 0. Thus our list of 
lasses of primedivisors of negative self-interse
tion is 
omplete. Be
ause F meets Er , Ei − Ei+1for i > 0 and L−E1−E2−E3 non-negatively if F is nef, this also shows that anynef 
lass F is a non-negative integer linear 
ombination of L, L−E1, 2L−E1−E2,
3L− E1 − E2 − E3, . . ., 3L− E1 − . . .− Er = −KX .Sin
e ea
h of L, L−E1, 2L−E1−E2, 3L−E1−E2−E3, . . ., 3L−E1−. . .−Er =
−KX is a non-negative integer linear 
ombination of the listed 
lasses of negativeself-interse
tion, we see the latter generate EFF(X), and we also see that a 
lass Fis nef if and only if it is a non-negative integer linear 
ombination F of L, L−E1,
2L−E1−E2, 3L−E1−E2−E3, . . ., 3L−E1− . . .−Er = −KX with −KX ·F ≥ 0.2. Le
ture: Abnormality2.1. Abnormal CurvesOne of the di�
ulties in studying Conje
ture 1.2.1 and Problem 1.3.1 is thepossibility of there being in�nitely many prime divisors C with C2 < 0, possibly(for all anyone knows) even with C2 arbitrarily negative. As an intermediate step,it might be worthwhile to de�ne and study a 
lass of e�e
tive divisors C with
C2 < 0 whi
h are so bad as to form a �nite set. Doing so turns out to have usefulappli
ations to 
omputing ε(P2; p1, . . . , pr).Definition 2.1.1Consider a surfa
e X obtained by blowing up a �nite set of points p1, . . . , pr ∈ P

2.Let C = dL −
∑

imiEi ∈ EFF(X) and assume mi ≥ 0 for all i with mi > 0 forsome i. Working formally (i.e., in Cl(X) ⊗Z Q), let C = dL − m
∑

i Ei, where
m =

∑
i
mi

r
. Following Nagata [31℄, we say C is abnormal if C2

< 0. This isequivalent to d∑
i
mi

< 1√
r
, and also to d

rm
< 1√

r
.We note that not every 
urve C with C2 < 0 is abnormal (see Exer
ise 2.3.1);in fa
t, X has at most �nitely many prime divisors whi
h are abnormal 
urves(see Exer
ise 2.3.2), but X 
an have in�nitely many prime C with C2 < 0 (seeExer
ise 1.4.7).One appli
ation of the 
on
ept of abnormality is to 
omputing ε(P2; p1, . . . , pr):Theorem 2.1.2Let X be a surfa
e obtained by blowing up a �nite set of points p1, . . . , pr ∈ P

2.Then ε(P2; p1, . . . , pr) <
1√
r
if and only if X has an abnormal prime divisor.Solution. If X has an abnormal prime divisor, then ε(P2; p1, . . . , pr) < 1√

rfollows by de�nition of ε. Conversely, assume ε(P2; p1, . . . , pr) <
1√
r
. Then thereis a 
lass C = dL − ∑

i miEi ∈ EFF(X) with d∑
i
mi

< 1√
r
and hen
e C

2
< 0.Write C =

∑
i Ci as a sum of prime divisors Ci. We may assume no summand isof the form Ej , sin
e after removing all su
h summands we still have an abnormal
urve. Thus every summand Cj is of the form djL−∑

i mijEi with mij ≥ 0. Now
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ts of the geometry of surfa
es [23℄
C =

∑
iCi, so C

2
=

∑
ij Ci · Cj < 0 hen
e Ci · Cj < 0 for some i and j. But ifneither Ci nor Cj were abnormal, then it is easy to see that Ci · Cj ≥ 0.Corollary 2.1.3Let X be a surfa
e obtained by blowing up a �nite set of points p1, . . . , pr ∈ P

2. Ifthere are no prime divisors on X whi
h are abnormal, then ε(P2; p1, . . . , pr) =
1√
r
.If there are abnormal prime divisors on X, then ε(P2; p1, . . . , pr) =

d∑
i
mi

< 1√
rfor some abnormal prime divisor C = dL−∑

imiEi.Solution. The �rst statement follows from Theorem 2.1.2. The se
ond followsfrom the fa
t that there are only �nitely many abnormal prime divisors and hen
ethe in�mum in the de�nition of ε(P2; p1, . . . , pr) as given in (1) is a
tually aminimum (see Exer
ises 1.4.9(a) and 2.3.2). The fa
t that d∑
i
mi

< 1√
r
is just thede�nition of abnormality.The values of ε(P2; p1, . . . , pr) are known when X is obtained by blowing up

r generi
 points of P2 if either r ≤ 9 or r is a square. It is an open problem to
ompute ε(P2; p1, . . . , pr) when r > 9 is not a square. There is a long-standing
onje
ture, however, whi
h implies (and in fa
t is equivalent to) ε(P2; p1, . . . , pr) =
1√
r
for r > 9:Conje
ture 2.1.4 (Nagata [32℄)If X is obtained by blowing up r > 9 generi
 points of P2, then X has no abnormal
urves.Nagata proved this when r is a square [32℄. The 
onje
ture is still open, al-though it is known in various spe
ial 
ases. For example, the 
onje
ture is equiv-alent to:Conje
ture 2.1.5If dL − m(E1 + . . . + Er) ∈ EFF(X) when X is obtained by blowing up r > 9generi
 points of P2, then d > m

√
r.By [22, Corollary 4.1℄, this is true when m ≤ t(t−3)

2 , where t = ⌊√r⌋. Inaddition, Dumni
ki shows Conje
ture 2.1.5 is true when m ≤ 42.2.2. A Dual ProblemLetX be obtained by blowing up r points ofP2, and re
all that ε(P2; p1, . . . , pr)is the supremum of 1
t
over all t su
h that tL−∑

iEi ∈ NEF(X). There is a dualnotion whi
h Chudnovsky [5℄ attributes to Walds
hmidt [44℄.Definition 2.2.1
γ(P2; p1, . . . , pr) = inf

{
d

m
: dL−m

∑

i

Ei ∈ EFF(X)

}
.



[24℄ Brian HarbourneClearly (as Chudnovsky [5℄ remarks), we have rε(P2; p1, . . . , pr) ≤
γ(P2; p1, . . . , pr). Also, sin
e d

m
>

√
r implies (dL − m

∑
i Ei)

2 > 0, we seein that 
ase for D = dL − m
∑

iEi that sD ∈ EFF(X) for s ≫ 0, hen
e
γ(P2; p1, . . . , pr) ≤ d

m
for all d

m
>

√
r; i.e., γ(P2; p1, . . . , pr) ≤ √

r. Thus wehave:Corollary 2.2.2
rε(P2; p1, . . . , pr) ≤ γ(P2; p1, . . . , pr) ≤

√
r.As Chudnovsky [5℄ points out, although in general rε(P2; p1, . . . , pr) <

γ(P2; p1, . . . , pr) (see Exer
ise 2.3.3), if the points p1, . . . , pr are generi
 we have
rε(P2; p1, . . . , pr) = γ(P2; p1, . . . , pr) (Exer
ise 2.3.4). Thus Nagata's 
onje
ture(Conje
ture 2.1.4) is equivalent to γ(P2; p1, . . . , pr) =

√
r for r > 9 generi
 pointsof P2. Chudnovsky [5℄ also remarks that γ(P2; p1, . . . , pr) is a
tually a limit:Proposition 2.2.3Let X be obtained by blowing up r distin
t points pi ∈ P
2. Then

γ(P2; p1, . . . , pr) = lim
m→∞

dm
m

,where dm is the least t su
h that tL − m
∑

i Ei ∈ EFF(X). Moreover, for ea
h
n ≥ 1, we have

γ(P2; p1, . . . , pr) ≤
dn
n
.Solution. Clearly, drm ≤ rdm, so drm

rm
≤ dm

m
. Therefore, dm!

m! ≤ dn

n
for every

n|m!. Thus dm!

m! is a non-in
reasing sequen
e, so limm→∞
dm!

m! exists; 
all it l. Givenany δ > 0, we 
he
k for all n ≫ 0 that l ≤ dn

n
≤ l + δ. Pi
k m large enough that

l ≤ dm!

m! ≤ l + δ
2 . Say n ≥ m! and write n = a(m!) + c, where c is an integer with

0 ≤ c < m!. Then dn ≤ d(a+1)(m!) ≤ (a+ 1)dm! so
l ≤ dn!

n!
≤ dn

n
≤ (a+ 1)dm!

a(m!) + c
=

adm!

a(m!) + c
+

dm!

a(m!) + c
≤ dm!

m!
+

dm!

a(m!)

≤ l +
δ

2
+

dm!

a(m!)
,and for n ≫ 0 we will have a large enough su
h that dm!

a(m!) ≤ δ
2 . We also now see

γ(P2; p1, . . . , pr) ≤ dn!

n! ≤ dn

n
.2.3. Exer
isesExer
ise 2.3.1Let X be obtained by blowing up r points pi ∈ P

2.(a) Show that C2 ≤ C
2 for any divisor C on X .



Global aspe
ts of the geometry of surfa
es [25℄(b) If C1 = a0L −∑
i ai and C2 = b0L −∑

i bi, where a1 ≥ a2 ≥ . . . ≥ ar ≥ 0and b1 ≥ b2 ≥ . . . ≥ br ≥ 0, show that C1 · C2 ≤ C1 · C2.(
) If C1 and C2 are abnormal, show that C1 · C2 < 0.(d) Give an example of a 
urve C with C2 < 0 but su
h that C is not abnormal.Solution. (a) Let C = dL − ∑r
i=1 miEi. Thus we need to show that d2 −∑

im
2
i ≤ d2 − rm2; i.e., that ∑

i m
2
i ≥ rm2. Let v = (m1, . . . ,mr) and let

v = (m, . . . ,m). Then we need to show, with respe
t to the Eu
lidean dot produ
t,that 0 ≤ v2 − v2, but v2 = v · v, so 0 ≤ (v − v)2 = v2 + v2 − 2v · v = v2 − v2, asrequired.(b) If a =
∑

i
ai

r
and b =

∑
i
bi
r
, it su�
es to show that ∑

i aibi ≥ rab. But
rab = a

∑
i bi, so we need only show ∑

i aibi ≥ a
∑

i bi. This is equivalent toshowing ∑
i(rai)bi ≥ (ra)

∑
i bi, where ra =

∑
i ai; i.e., we 
an redu
e to the 
asethat a is an integer. If a1, . . . , ar are not all equal, we 
an pi
k some j su
h that

aj > a and some l su
h that a > al. Let a′j = aj−1 and a′l = al+1, and a′i = ai for
i 6= j, l. Then∑

i(ai−a)2 >
∑

i(a
′
i−a)2 and∑

i aibi = (bj−bl)+
∑

i a
′
ibi ≥

∑
i a

′
ibi.By repeating this pro
edure we eventually obtain a sequen
e a′i, 1 ≤ i ≤ r, su
hthat ∑i(a

′
i−a)2 = 0 and hen
e a = a′i for all 1 ≤ i ≤ r and so ∑

i aibi ≥
∑

i a
′
ibi =

rab.(
) Let C1 = aL − b
∑

iEi and let C2 = cL − d
∑

iEi. Then a
rb

< 1√
r
and

c
rd

< 1√
r
, so ac

rbd
< 1 so C1 · C2 < 0.(d) An easy example is given by L−E1−E1−0E3−0E4. For a more interestingexample, 
hoose an irredu
ible quarti
 plane 
urve C′ with a triple point. Blowup the triple point and eight additional points on C′. The proper transform of C′is C = 4L− 3E1 − E2 − . . .− E9. Then C

2
> 0 but C2 = −1. More generally, ifyou blow up 9 or more general enough points of P2, then there are in�nitely manyex
eptional 
urves (i.e., the prime divisors E with E2 = E ·KX = −1) by Exer
ise1.4.7(
), but by Exer
ise 2.3.2 at most �nitely many of them are abnormal.Exer
ise 2.3.2Let X be obtained by blowing up r points pi ∈ P

2. Then there are at most �nitelymany prime divisors C whi
h are abnormal. In fa
t, there are at most r + 1 ofthem [38℄.Solution. Suppose there were an in�nite set S of them. We get a mapping
φ:S → Sr by 
hoosing, for ea
h C ∈ S, a permutation π su
h that if C =
dL−

∑
imiEi, then mπ(1) ≥ mπ(2) ≥ . . . ≥ mπ(r). Thus there must be two primedivisors C1 6= C2 with φ(C1) = φ(C2) if S is in�nite. Hen
e by Exer
ise 2.3.1(b, 
)we have C1 · C2 < 0, but C1 6= C2 implies 0 ≤ C1 · C2, whi
h is impossible.To see that there are at most r + 1, suppose there were more, say Ci, for

1 ≤ i ≤ t for t > r+1. Sin
e Cl(X) has rank r+1, there is a relation∑
imiCi = 0,where the Ci are distin
t. Let P =

∑
i,mi>0 miCi and let N = −

∑
i,mi<0 miCi.Then P − N = 0 hen
e P = N . Now, P is abnormal, hen
e P 2 < 0, but

P 2 = P ·N ≥ 0 whi
h is a 
ontradi
tion.



[26℄ Brian HarbourneExer
ise 2.3.3Give an example su
h that rε(P2; p1, . . . , pr) < γ(P2; p1, . . . , pr).Solution. Consider four points p1, . . . , p4, exa
tly three of whi
h (say p1, p2, p3)are 
ollinear. Let C = L−E1−E2−E3 and let Lij = L−Ei−Ej . Then F = 3L−
E1−E2−E3−E4 = C+L+(L−E4) andH = 3L−E1−E2−E3−2E4 = C+2(L−E4)are nef and C = 5L− 3E1 − 3E2 − 3E3 − 3E4 = 2C +L14 +L24 +L34 ∈ EFF(X).Sin
e H · C = 0, we see γ(P2; p1, . . . , pr) = 5

3 , and sin
e F · C = 0, we see byExer
ise 1.4.10 that ε(P2; p1, . . . , pr) =
1
3 .Exer
ise 2.3.4Let X be obtained by blowing up r generi
 points pi ∈ P

2.(a) Compute ε(P2; p1, . . . , pr) for ea
h r ≤ 9 and ea
h r whi
h is a perfe
t square.(b) Show that rε(P2; p1, . . . , pr) = γ(P2; p1, . . . , pr).Solution. (a) Suppose r = d2 is a perfe
t square. Let X ′ be obtained byblowing up r = d2 points p′i ∈ P
2 on a smooth plane 
urve C of degree d, hen
ethe 
lass C′ = dL′−∑

iE
′
i of the proper transform of C is nef. Let X be obtainedby blowing up r = d2 generi
 points pi ∈ P

2. Sin
e by Theorem 1.1.7 for anydivisor tL′ −∑
i E

′
i ∈ NEF(X ′) we also have tL −∑

i Ei ∈ NEF(X) we see that
ε(P2; p′1, . . . , p

′
r) ≤ ε(P2; p1, . . . , pr). But C′ ∈ NEF(X ′)∩EFF(X ′) together with

(C′)2 = 0 implies that ε(P2; p′1, . . . , p
′
r) =

1
d
by Remark 1.3.2. On the other hand,

ε(P2; p1, . . . , pr) ≤ 1√
r
by Corollary 2.1.3. Thus ε(P2; p1, . . . , pr) =

1√
r
when r isa perfe
t square.For the 
ase of r ≤ 9 generi
 points, if C = tL −

∑
imiEi is the 
lass of anabnormal prime divisor, then so is C′ = tL−∑

im
′
iEi, where the m′

i are obtainedby a permutation of the mi su
h that m′
1 ≥ m′

2 ≥ . . . ≥ m′
r. Given two abnormalprime divisors, C and D, we thus see that the permuted divisors C′ and D′ have

C′ ·D′ < 0, and hen
e C′ = D′. I.e., up to permutations, C and D are the same,so if X has any abnormal 
urve, that 
urve gives the value of ε(P2; p1, . . . , pr).Thus, sin
e C = L−E1−E2 is abnormal for r = 2 or 3, we see ε(P2; p1, p2) =
ε(P2; p1, p2, p3) = 1

2 . For r = 5 or 6, take C = 2L − E1 − . . . − E5 to see
ε(P2; p1, . . . , p5) =

2
5 . For r = 7, take C = 3L − 2E1 − E2 − . . . − E7 to see that

ε(P2; p1, . . . , p7) = 3
8 , and for r = 8, take C = 6L − 3E1 − 2E2 − . . . − 2E8 tosee that ε(P2; p1, . . . , p7) =

6
17 . (For the fa
t that 3L− 2E1 − E2 − . . .− E7 and

6L−3E1−2E2− . . .−2E8 are 
lasses of prime divisors, use Exer
ise 1.4.7 over the
omplex numbers. More generally, one 
an use quadrati
 transforms to see that
3L − 2E1 − E2 − . . . − E7 and 6L − 3E1 − 2E2 − . . . − 2E8 are smooth rational
urves.)(b) Sin
e the points are generi
, if C = tL−

∑
imiEi is the 
lass of an e�e
tivedivisor, then so is C′ = tL−∑

im
′
iEi, where the m′

i are obtained by any permuta-tion of the mi. Thus rC ∈ EFF(X) for any C = aL−a1E1− . . .−arEr ∈ EFF(X).But rC = raL − (a1 + . . . + ar)(E1 + . . . + Er) and ar
r(a1+...+ar)

= a
a1+...+ar

, so
rε(P2; p1, . . . , pr) ≥ γ(P2; p1, . . . , pr). This together with Corollary 2.2.2 gives
rε(P2; p1, . . . , pr) = γ(P2; p1, . . . , pr).



Global aspe
ts of the geometry of surfa
es [27℄3. Le
ture: Computation of Seshadri Constants3.1. Estimating Seshadri ConstantsGiven distin
t points pi ∈ P
2 we now 
onsider the problem of estimating

ε(P2; p1, . . . , pr). Getting an upper bound less than 1√
r
is, by Corollary 2.1.3,equivalent to showing the existen
e of abnormal 
urves, and this is often quitehard. Thus mu
h of the fo
us has been on getting in
reasingly better lower bounds.There have been two main methods used for this. Both methods 
an be adaptedto studying Seshadri 
onstants on surfa
es in general. For purposes of expositionwe will 
ontinue to fo
us on the 
ase of P2.The �rst method is to expli
itly 
onstru
t nef divisors. For example, if oneshows some divisor F = dL−m

∑
iEi is nef, then we know m

d
≤ ε(P2; p1, . . . , pr).This is the method used by [3℄, [18℄ and [17℄. Both authors �rst 
onstru
t a nefdivisor F ′ = d′L−

∑
i miEi, and then use an averaging pro
ess to get a nef divisorof the form F = dL −m

∑
i Ei.The se
ond main method is to rule out the possible o

urren
e of abnormal
urves. This method has been applied by [45℄, [43℄, [40℄, [39℄, [20℄ and [21℄. Fun-damentally it depends on the fa
t that if F = tL−m

∑
iEi has F 2 > 0, then, aswe show below, there are only �nitely many 
lasses C = dL−

∑
i miEi that 
ouldpossibly be the 
lass of a prime divisor with F · C < 0 [20, Lemma 2.1.3℄. If one
an show that none of these �nitely many 
lasses is the 
lass of a prime divisor,then F is nef and m

t
≤ ε(P2; p1, . . . , pr).Proposition 3.1.1Let X be obtained by blowing up distin
t points p1, . . . , pr ∈ P

2, with L and Eias usual. Assume that F = tL − m
∑

i Ei has F 2 > 0 and t > 0. Then there isan expli
itly 
omputable �nite set SF of 
lasses whi
h 
ontains the 
lass of everyprime divisor C with C · F < 0 (if any).Proof. Sin
e F 2 > 0 and F · L > 0, we 
an �nd an expli
it s su
h that
sF ∈ EFF(X) (but the smaller s is the smaller SF will be).Let E =

∑
i Ei, and 
hoose nef divisors Hi that span Cl(X). For example,

H0 = L, and Hi = L − Ei for i > 0, or 
hoose hi > 0 large enough su
h that
H0 = h0L − E and Hi = hiL − E − Ei are in EFF(X) ∩ NEF(X). (It is 
learthat h0 = r and hi = r + 1 will su�
e, but the smaller one 
an 
hoose the hi thesmaller SF will be. Being able to 
hoose smaller values of the hi will depend onhaving some knowledge of how the points pi are arranged, sin
e if the points are
ollinear, then h0 = r and hi = r + 1 are best possible.)If C is the 
lass of a prime divisor with F ·C < 0, then sF −C and C are bothin EFF(X), hen
e both meet every Hi non-negatively so 0 ≤ C ·Hi ≤ sF ·Hi forea
h i.Sin
e the 
lasses Hi generate Cl(X), if for two 
lasses C1 and C2 we have
C1 · Hi = C2 · Hi for all i, then C1 = C2. Thus there are only �nitely manypossible 
lasses C with 0 ≤ C ·Hi ≤ sF ·Hi for all i.When the r points pi are general, one 
an narrow down the set SF evenmore [38℄.



[28℄ Brian HarbourneLemma 3.1.2Let X be obtained by blowing up general points p1, . . . , pr ∈ P
2, with L and Ei asusual. Assume that C = dL −

∑
i miEi is abnormal; then all but at most one ofthe 
oe�
ients mi are equal.Proof. By Exer
ise 2.3.2 there are at most r + 1 prime divisors C = dL −∑

imiEi whi
h are abnormal, but sin
e the points are general any permutation ofthe mi is again an abnormal prime divisor. We may assume that m1 ≥ . . . ≥ mr ≥
0. Suppose that there is an index i su
h that m1 > mi > mr. Then there are i− 2permutations ωj whi
h are transpositions of mr with mj , where 1 < j < i. Thereare r− i− 1 more transpositions αj of m1 with mj , where i < j < r. In addition,there are six permutations in whi
h we permute m1, mi and mr with ea
h otheronly. This gives (i−2)+(r− i−1)+6 = r+3 distin
t permutations, 
ontradi
tingthere being at most r + 1 abnormal prime divisors. Thus at most two values 
ano

ur among the mi. The only other possibility to be ruled out is if the two valuesea
h o

ur at least twi
e. So assume that m1 = . . . = mj > mj+1 = . . . = mr,where r ≥ 4 and 2 ≤ j ≤ r− 2. The number of distin
t arrangements of the mi is(
r
j

). Looking at Pas
al's triangle it is 
lear that (r
j

)
> r + 1. (Sin
e the entries inthe triangle we're interested in are on the row beginning 1 r . . ., but more thantwo spots from either end, we see (

r
j

) is the sum of two entries on the row aboveit, ea
h entry being at least r − 1, so (
r
j

)
≥ 2r − 2, hen
e 2r − 2 > r + 1, sin
e

r ≥ 4.)The restri
tions on possible abnormal prime divisors 
an be made even morestringent; see [20℄ and [21℄.Example 3.1.3Suppose we blow up six general points p1, . . . , p6. We will use the method ofruling out abnormal 
urves to 
he
k that F = 5L− 2
∑

i Ei is nef, and hen
e that
ε(P2; p1, . . . , p6) ≥ 2

5 . Sin
e C = 2L−E1− . . .−E5 ∈ EFF(X) has F ·C = 0, thisshows ε(P2; p1, . . . , p6) =
2
5 by Exer
ise 1.4.10.First, note that H0 = 3L−∑

i Ei = (2L−E1− . . .−E4)+(L−E5−E6) is nef,sin
e ea
h summand is the 
lass of a prime divisor whi
h H0 meets non-negatively.Also, Hi = H0 − Ei ∈ NEF(X). For example, H5 = (2L− E1 − . . .− E5) + (L−
E5 − E6), but H5 meets ea
h summand non-negatively, ea
h of whi
h is the 
lassof a prime divisor.Suppose C is the 
lass of a prime divisor su
h that 0 > C · F . Then C isabnormal and by Lemma 3.1.2 we may (after reindexing, if need be) assume that
C = dL − m

∑
iEi − kE1 for some k. First suppose k = 0. Then we have

0 ≤ C ·H0 = 3d− 6m ≤ F ·H0 = 3, 0 ≤ C ·H1 = 3d− 7m ≤ F ·H1 = 1.Thus 7m ≤ 3d ≤ 6m + 3, so m ≤ 3. For m = 1 we get d = 3 (whi
h fails
5d − 12m = F · C < 0), for m = 2 we get d = 5 (whi
h also fails 5d − 12m < 0),and for m = 3 we get d = 7. But sin
e C is supposed to be a prime divisor itshould satisfy adjun
tion and thus must have −2 ≤ C2 + C · KX , but for d = 7with m = 3 we �nd C2 + C ·KX = −8.So suppose C = dL−m

∑
iEi−kE1 for some k > 0 so 5d−12m−2k = C ·F < 0.We have 0 ≤ C ·H0 = 3d− 6m− k ≤ F ·H0 = 3 and 0 ≤ C ·H1 = 3d− 7m− 2k ≤
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F · H1 = 1. Thus 7m + 2k ≤ 3d ≤ 6m + k + 3, so m + k ≤ 3. Thus (d,m, k)is either (1, 0, 1), (2, 0, 3) or (3, 1, 1), giving C = L − E1 (whi
h fails F · C < 0),
C = 2L−3E1 (whi
h is not in EFF(X)), and C = 3L−2E1−E2− . . .−E6 (whi
halso fails F · C < 0).Finally, assume C = dL−m

∑
i Ei − kE1 for some k < 0, so 5d− 12m− 2k =

C · F < 0. Sin
e C should be the 
lass of a prime divisor with C · L > 0, we have
C ·Ei ≥ 0 for all i, hen
e −k ≤ m. We have 0 ≤ C ·H0 = 3d−6m−k ≤ F ·H0 = 3and 0 ≤ C ·H1 = 3d−7m−2k ≤ F ·H1 = 1. Thus 7m+2k ≤ 3d ≤ 6m+k+3 andhen
e also 5m ≤ 7m+ 2k ≤ 3d. Sin
e F = (2− E1 − . . .− E5) + (2 − E2 − . . .−
E6) + (L − E1 − E6), we see F ∈ EFF(X), hen
e F − C should also be e�e
tive,so d ≤ 5, when
e 5m ≤ 3d ≤ 15 implies 1 ≤ −k ≤ m ≤ 3. The simultaneoussolutions to 7m+ 2k ≤ 3d ≤ 6m+ k+ 3, 1 ≤ −k ≤ m ≤ 3 and 5d− 12m− 2k < 0are (d,m, k) ∈ {(5, 3,−3), (6, 3,−2), (4, 2,−1)}. None of these are e�e
tive. Forexample, E = 2L−E2− . . .−E6 is a prime divisor, but C = 5L−3(E2+ . . .+E6)for (d,m, k) = (5, 3,−3); sin
e E · C < 0, C − E is e�e
tive if C is, and likewiseso are C − 2E and C − 3E, but C − 3E = −L is not e�e
tive, hen
e neither is C.The same argument handles the other two 
ases.Thus F is nef, as 
laimed.We now give an example of the alternative approa
h using the method of [18℄and [17℄, based on the idea of unloading [35℄.Proposition 3.1.4Let d, r, n be positive integers su
h that r < d

√
n and r ≤ n. Then for n generalpoints pi, we have

ε(P2; p1, . . . , pn) ≥
r

nd
.Proof. It is enough to show that ndL−r(E1+. . .+En) ∈ NEF(X), where X isthe blow up ofP2 at general points p1, . . . , pn. By Theorem 1.1.6(b), it is enough to�nd essentially distin
t points p′i of X1 = P

2 su
h that ndL′ − r(E′
1 + . . .+E′

n) ∈
NEF(X ′

n+1). Choose any smooth plane 
urve C1 of degree d. Let p′1 ∈ C1.Re
ursively, let X ′
i+1 be the blow up of X ′

i at p′i, let Ci+1 be the proper transformof Ci, and let p′i+1 be the point of Ci+1 in�nitely near to p′i. This de�nes p′1, . . . , p′r.If n > r, for r < i ≤ n, 
hoose p′i to be in�nitely near to p′i−1 but 
hoose p′r+1 notto be on Cr+1.Thus dL′ −E′
1 − . . .−E′

r is the 
lass of Cr+1, i.e., the proper transform of C1,hen
e the 
lass of a prime divisor, as are E′
i −E′

i+1 for ea
h 1 ≤ i < n and E′
n. Inparti
ular E′

i−E′
j ∈ EFF(X ′

n+1) for every j > i, and hen
e so is E′
1+. . .+E′

r−rE′
ifor every i > r. Sin
e ndL′ − n(E′

1 + . . .+ E′
r) ∈ EFF(X ′

n+1), we see
F = ndL′ − r(E′

1 + . . .+ E′
n)

= (ndL′ − n(E′
1 + . . .+ E′

r)) +
∑

r<i≤n

(E′
1 + . . .+ E′

r − rE′
i)

∈ EFF(X ′
n+1)



[30℄ Brian Harbourne(this is the unloading step). The irredu
ible 
omponents of this sum are Cr+1 and
E′

i − E′
i+1 for various i, but F meets ea
h one non-negatively (this is 
lear for

E′
i−E′

i+1, and F ·Cr+1 ≥ 0 sin
e nd2− r2 > 0). So F ∈ NEF(X ′
n+1), as required.As another variation we have:Proposition 3.1.5Let d, r, n be positive integers su
h that n ≥ r > d

√
n. Then for n general points

pi ∈ P
2, we have

ε(P2; p1, . . . , pn) ≥
d

r
.Proof. See Exer
ise 3.2.3.Example 3.1.6Again suppose we blow up six general points p1, . . . , p6; let X be the surfa
e weobtain. Then 5 > 2

√
6, so by Proposition 3.1.5, we see that ε(P2; p1, . . . , p6) ≥ 2

5and hen
e that F = 5L − 2
∑

i Ei ∈ NEF(X). Sin
e C = 2L − E1 − . . . − E5 ∈
EFF(X) and F ·C = 0, we see by Remark 1.3.2 that in fa
t ε(P2; p1, . . . , p6) =

2
5 .3.2. Exer
isesExer
ise 3.2.1Compute ε(P2; p1, . . . , pr) and γ(P2; p1, . . . , pr) for every 
hoi
e of r < 9 distin
tpoints of P2.Solution. This 
an be done using the various possibilities (worked out in [12℄)for EFF(X) where X is the blow up of P2 at the r points. Some of these 
asesare dis
ussed in [5℄.Exer
ise 3.2.2Let X be the blow up of 12 general points. Study whether F = 7L− 2(E1 + . . .+

E12) is nef, using the method of Example 3.1.3.Solution. It is nef, using Proposition 3.1.5 with r = 7 and d = 2. However,using the method of Example 3.1.3 one is left with showing that in none of thefollowing 
ases is C = dL − (m + k)E1 − m(E2 + . . . + E12) an abnormal primedivisor:
d = 7 m = 2 k = 1,
d = 10 m = 3 k = 0,
d = 3 m = 1 k = −1.This is 
lear for the last 
ase, sin
e 3L − E1 − . . . − E11 is not e�e
tive. Theother two 
ases are harder to eliminate, but it is known that ex
ept for a fewex
eptional 
ases whi
h do not o

ur here that general points of small multipli
ityimpose independent 
onditions on 
urves of degree d, if there are 
urves of degree

d passing through the points with the spe
i�ed multipli
ities. (How big �small� iskeeps in
reasing as more resear
h is done, but 
ertainly multipli
ity at most 3 is
overed by the results; see [7℄.)



Global aspe
ts of the geometry of surfa
es [31℄Exer
ise 3.2.3Let d, r, n be positive integers su
h that n ≥ r > d
√
n. Then for n general points

pi ∈ P
2, we have

ε(P2; p1, . . . , pn) ≥
d

r
.Solution. Mimi
 the proof of Proposition 3.1.4. It is enough by the semi-
ontinuity prin
iple to �nd essentially distin
t points p′i of X1 = P

2 su
h that
rdL′ − d2(E′

1 + . . . + E′
n) ∈ NEF(X ′

n+1). Choose any smooth plane 
urve C1 ofdegree d. Let p′1 ∈ C1. Re
ursively, let X ′
i+1 be the blow up of X ′

i at p′i, let Ci+1be the proper transform of Ci, and let p′i+1 be the point of Ci+1 in�nitely near to
p′i. This de�nes p′1, . . . , p′r. If n > r, for r < i ≤ n, 
hoose p′i to be in�nitely nearto p′i−1 but 
hoose p′r+1 not to be on Cr+1.Thus dL′ −E′

1 − . . .−E′
r is the 
lass of Cr+1, i.e., the proper transform of C1,hen
e the 
lass of a prime divisor, as are E′

i − E′
i+1 for ea
h 1 ≤ i < n and E′

n.In parti
ular E′
i − E′

j ∈ EFF(X) for every j > i. Sin
e rdL′ − r(E′
1 + . . .+ E′

r) ∈
EFF(X ′

n+1) and sin
e r2 > nd2, by adding to rdL′ − r(E′
1 + . . .+ E′

r) the 
lasses
mnE

′
n and mij(E

′
i − E′

j) with i ≤ r and j > r for appropriate 
hoi
es of mij ≥ 0(this is the unloading step), we obtain F = rdL′ − d2(E′
1 + . . .+E′

n) with F 2 > 0.But F · Cr+1 = 0, F · (E′
i − E′

j) = 0 and F · E′
r > 0, so F ∈ NEF(X ′

n+1), asrequired.Exer
ise 3.2.4Show F = 5L−E1 − . . .−E21 is ample, when the Ei are obtained by blowing up21 general points pi of P2.Solution. By Proposition 3.1.4, using r = 9 and d = 2, we see that
ε(P2; p1, . . . , p21) ≥

9

42
.ThusD = 42L−9(E1+. . .+E21) ∈ NEF(X), so 
learly 45L−9(E1+. . .+E21) = 9F(and even 43L − 9(E1 + . . . + E21), for that matter) is ample by the Nakai�Moiseson 
riterion [23℄ sin
e F 2 > 0 and F meets every 
urve positively (anyprime divisor orthogonal to D must meet D + L positively, sin
e the only primedivisors orthogonal to L are the Ei, whi
h meet D positively).4. Le
ture: The Containment Problem (an appli
ation to CommutativeAlgebra)4.1. Ba
kgroundThe notions we've dis
ussed above 
an be applied to questions of 
ommutativealgebra, espe
ially problems involving ideals of fat points. Let p1, . . . , ps ∈ P

n bedistin
t points. Let R = k[Pn] = k[x0, . . . , xn] be the homogeneous 
oordinate ringof Pn. Let I(pi) ⊂ R be the ideal generated by all forms vanishing at pi. Given a0-
y
le Z = m1p1 + . . . +msps (i.e., an element in the free abelian group on thepoints pi) with mi ≥ 0 for all i, let I(Z) be the homogeneous ideal ⋂i I(pi)
mi .



[32℄ Brian HarbourneThis is a saturated ideal whi
h de�nes a 0-dimensional subs
heme of P
n. Wewill abuse notation and use the 0-
y
le Z = m1p1 + . . . + msps to denote thissubs
heme, whi
h we refer to as a fat point subs
heme. We will denote the sheafof ideals 
orresponding to I(Z) by IZ , hen
e I(Z) =

⊕
t≥0 H

0(Pn, IZ(t)), where
IZ(t) = IZ ⊗OPnOPn(t). In fa
t, more is true:Proposition 4.1.1Given distin
t points pi ∈ P

n and integers mi. Let Z be the fat point s
heme∑
mi≥0 mipi, let π:X → P

n be the morphism obtained by blowing up the points
pi, let H be the pullba
k to X of a general hyperplane and let Ei be the blowup of pi. Then there is a natural isomorphism IZ(t) ∼= π∗(OX(tH − ∑

i miEi))su
h that H0(Pn, IZ(t)) ∼= H0(X,OX(tH − ∑
i aiEi)) and so I(Z) 
an be iden-ti�ed with ⊕

t≥0 H
0(X,OX(tH −

∑
imiEi)). Moreover, if mi ≥ 0 for all i, then

Hq(Pn, IZ(t)) ∼= Hq(X,OX(tH −∑
i aiEi)) holds for all q ≥ 0.Proof. First, IZ =

∏
mi≥0 Imi

pi
. If m ≥ 0 and π is the blow up of a singlepoint p ∈ P

n where we set E = π−1(p), then we have a natural morphism Im
p →

π∗(π
−1Im

p ) whi
h indu
es a morphism Im
p → π∗(π

−1Im
p · OX) = π∗OX(−mE)and thus

IZ =
∏

mi≥0

Imi

pi
→

∏

mi≥0

π∗OX(−miE) = π∗OX

( ∑

mi≥0

−miE

)

→֒ π∗OX

(∑

i

−miE
)
.By the proje
tion formula ([23, Exer
ise II.5.1(d)℄), we have a natural isomorphism

π∗

(
OX

(
tH −

∑

i

miEi

))
∼= OPn(t)⊗ π∗

(
OX

(
−
∑

i

miEi

))
,so IZ(t) ∼= π∗(OX(tH −

∑
i miEi)) follows if we show that IZ ∼=

π∗(OX(−∑
imiEi)).This is trivial if n = 1, sin
e then blowing up has no e�e
t. So assume n >

1. For 
onvenien
e we write L for OX(−
∑

i miEi), notationally suppressing itsdependen
e on the mi.We start by noting that π∗OX = OPn . (See the argument of [23, CorollaryIII.11.4℄: sin
e π is proje
tive by [23, Proposition II.7.16(
)℄, π∗OX is 
oherent.Thus π∗OX is lo
ally a sheaf of �nitely generated OPn -modules. Sin
e π is bira-tional, on any a�ne open of Pn, the ring B given by π∗OX and the ring A givenby OPn both have the same fun
tion �eld, with A being integrally 
losed sin
e Pnis smooth, hen
e normal and B being module �nite over A sin
e π is proje
tiveand OX and hen
e π∗OX are 
oherent [23, Corollary II.5.20℄; i.e., B is an integralextension of the integrally 
losed ring A, with the same fun
tion �eld, so A = Band thus π∗OX = OPn .)Now we show that π∗OX(−miEi) is either OPn (if mi ≤ 0) or Imi

pi
(if mi > 0).If mi ≤ 0, then we have a morphism OX → OX(−miEi), hen
e OP2 = π∗OX →
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π∗OX(−miEi). This is 
learly an isomorphism ex
ept possibly at the point pi.Let pi ∈ U be an a�ne open neighborhood. Consider the 
ommutative diagram

OPn(U)
∼=→ OX(π−1(U)) →֒ OX(−miEi)(π

−1(U))

↓ ↓
OPn(U \ {pi}) → OX(−miEi)(π

−1(U) \ Ei)The left verti
al arrow is an equality by [23, Exer
ise I.3.20℄ (see also [23, Propo-sition II.6.3A℄) or by [23, Exer
ise III.3.5℄ and the right verti
al arrow is in-je
tive sin
e X is integral. The bottom arrow is also an isomorphism (sin
e
U \ {pi} ∼= π−1(U)\ {π−1(pi)} = π−1(U)\Ei), hen
e the other arrows are isomor-phisms too, when
e π∗OX(−miEi) ∼= OPn .If mi > 0, 
onsider the 
anoni
al morphism Imi

pi
→ π∗(π

−1Imi

pi
· OX) =

π∗OX(−miEi). Now, π∗(π
−1Imi

pi
) is the sheaf asso
iated to the presheaf U 7→

Imi

pi
(U), hen
e π∗(π

−1Imi

pi
· OX) is the sheaf asso
iated to the presheaf U 7→

Imi

pi
(U) ·OX(π−1(U)) = Imi

pi
(U) ·OP2(U) = Imi

pi
(U). I.e, the 
anoni
al sheaf mor-phism Imi

pi
→ π∗OX(−miEi) 
omes from an isomorphism of presheaves, hen
e isan isomorphism itself.Thus IZ → π∗L is lo
ally an isomorphism hen
e it is an isomorphism, so

H0(Pn, IZ(t)) ∼= H0(Pn, π∗L(t)) = H0
(
X,OX

(
tH −

∑

i

miEi

))
.Now assume that mi ≥ 0 for all i and let L denote OX(tH −

∑
imiEi) for anarbitrary integer t. We 
on
lude by applying [23, Exer
ise III.8.1℄, showing that

H l(X,L) = H l(Pn, π∗L) for all l > 0. For this we need to show that Rlπ∗L = 0for all l > 0, and to do this it is enough to 
he
k that the stalks vanish. Thisis 
lear at points away from ea
h point pi sin
e π is an isomorphism then. Thus
Rlπ∗L has support at most at the points pi, hen
e at pi it is equal to the inverselimit of H l(jEi,OjEi

(mi)) over j by [23, Theorem III.11.1℄ (as in the proof of[23, Corollary V.3.4℄), where OjEi
(mi) denotes OjEi

⊗OX
OX(−miEi). Thus itsu�
es to show that H l(jEi,OjEi

(mi)) = 0. Look at the exa
t sequen
e 0 →
OX(−jEi) → OX → OjEi

→ 0 and tensor through by OX((mi + j)H −miEi) toget 0 → OX((mi + j)(H −Ei)) → OX((mi + j)H −miEi) → OjEi
(mi) → 0. Theresult will follow by showing that hl(X,OX(aH − bEi)) = 0 for all l > 0 if a ≥ b.Let Y be a prime divisor whose 
lass is H − Ei if b > 0 or just H if b = 0.Consider 0 → OX(−Y ) → OX → OY → 0 and tensor through by OX(aH − bHi)to get 0 → OX(a′H − b′Ei) → OX(aH − bEi) → OY (aH

′ − bE′
i) → 0, where

H ′ = H ∩ Y , E′
i = Ei ∩ Y , a′ = a − 1 and b′ is the maximum of b − 1 and 0.Taking 
ohomology of this exa
t sequen
e shows that hl = 0 for the ends for all

l > 0, then hl = 0 for the middle term for all l > 0. Sin
e OY (aH
′ − bE′

i) is ofthe same form as what we wish to prove, but in dimension one less, and sin
e theresult is true in dimension 1 (i.e., when Y = P
1), we may assume the rightmostterm has hl = 0 for all l > 0 by indu
tion. Showing the same for the leftmostterm eventually redu
es to showing hl(X,OX) = 0 for all l > 0. For this mimi
the argument of [23, Proposition V.3.4℄.



[34℄ Brian Harbourne4.2. Symboli
 PowersLet P be a prime ideal in a polynomial ring R = k[x0, . . . , xn] over an alge-brai
ally 
losed �eld k. By the Nullstellensatz, we know that P =
⋂

P⊆MmaximalM .The symboli
 power P (m) of P 
an be de�ned as P (m) =
⋂

Pm⊆MmaximalM
m (see[9, Theorem 3.14℄). This generalizes ni
ely to the 
ase of an ideal I(Z) =
⋂
I(pi)of points p1, . . . , ps ∈ P

n, where we de�ne the m-th symboli
 power I(Z)(m) to be
I(Z)(m) =

⋂

i

(I(pi)
m).I.e., I(Z)(m) = I(mZ), wheremZ is the fat point s
hememp1+ . . .+mps. (This is
onsistent with the de�nition of symboli
 powers used in [24℄, in terms of primaryde
ompositions.)We will for simpli
ity fo
us here on the 
ase of symboli
 powers of ideals ofpoints in proje
tive spa
e. See [34℄ for greater generality.4.3. The Containment ProblemLet Z = p1 + . . .+ ps ⊂ P

n and let I = I(Z). Clearly, Im ⊆ I(m). In fa
t, wehave:Lemma 4.3.1Let Z = p1 + . . .+ ps ⊂ P
n and let I = I(Z) ⊆ R = k[Pn]. Then Ir ⊆ I(m) if andonly if r ≥ m.Proof. See Exer
ise 4.6.1.Understanding the reverse 
ontainment is a mu
h harder largely open problem:Problem 4.3.2Let Z = p1 + . . . + ps ⊂ P
n and let I = I(Z) ⊆ R = k[Pn]. Determine all r and

m su
h that I(m) ⊆ Ir.Sin
e I(m) ⊆ Ir implies Im ⊆ I(m) ⊆ Ir ⊆ I(r), by Lemma 4.3.1 we see m ≥ r.Also, I(1) = I1, and 
learly, m′ ≥ m implies I(m
′) ⊆ I(m), so we 
an restateProblem 4.3.2 as:Problem 4.3.3Let Z = p1+ . . .+ps ⊂ P

n and let I = I(Z) ⊆ R = k[Pn]. Given r ≥ 2, determinethe least m ≥ r su
h that I(m) ⊆ Ir.As an asymptoti
 �rst step, this suggests the following de�nition and problem:Definition 4.3.4 ([4℄)Let Z = p1 + . . . + ps ⊂ P
n and let I = I(Z) ⊆ R = k[Pn]. Then de�ne theresurgen
e of I to be

ρ(I) = sup
{m

r
: I(m) 6⊆ Ir

}
.
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ts of the geometry of surfa
es [35℄Problem 4.3.5 ([4℄)Let Z = p1 + . . .+ ps ⊂ P
n and let I = I(Z) ⊆ R = k[Pn]. Compute or at leastgive bounds on ρ(I).It is not 
lear a priori that ρ(I) is even �nite. Results of Swanson [37℄ showed inmany 
ases that it is and inspired the results of [8℄ and [24℄. We state a simpli�edversion of the result of [24℄:Theorem 4.3.6Let Z = p1 + . . . + ps ⊂ P
n and let I = I(Z) ⊂ R = k[Pn]. Then I(nr) ⊆ Ir forea
h r ≥ 1, hen
e ρ(I) ≤ n.Both for [8℄ and for [24℄, the proof essentially involves �nding an ideal J su
hthat one 
an 
he
k both that I(nr) ⊆ J and that J ⊆ Ir; [8℄ uses asymptoti
multiplier ideals for J (see [41℄ for an exposition of this approa
h), while the proofof [24℄ uses Frobenius powers for J (with a dash of tight 
losure to get the generalresult). Example 4.3.10 exhibits the role of Frobenius powers; it is a
tually aspe
ial 
ase of the Ho
hster�Huneke proof of Theorem 4.3.6. For the example wewill need some results on Frobenius powers:Definition 4.3.7Let I ⊆ R = k[Pn] be an ideal. Assume char(k) = p > 0 and let q be a power of

p. De�ne the q-th Frobenius power I [q] of I to be the ideal generated by Iq.Proposition 4.3.8Let I, J ⊆ R = k[Pn] be ideals, where char(k) = p > 0 and q is a power of p. Then
(I ∩ J)[q] = I [q] ∩ J [q].Proof. See [26, Lemma 13.1.3℄ or [34, Example 8.4.4℄.To apply Lemma 4.3.8, we will also want to note:Lemma 4.3.9Let I ⊆ R = k[Pn] be an ideal generated by s elements, and assume char(k) = p > 0and q is a power of p. Then Isq ⊆ I [q].Proof. See Exer
ise 4.6.2.Example 4.3.10Consider Z = p1+. . .+ps ⊂ P

n and let I = I(Z) ⊆ R = k[Pn]. Assume char(k) =
p > 0 and that q is a power of p. Then I(pi)

qn ⊆ I(pi)
[q] by Lemma 4.3.9 sin
ethe ideal of a point in P

n is generated by n linear forms, so I(qn) =
⋂

i I(pi)
qn ⊆⋂

i I(pi)
[q] ⊆ (

⋂
i I(pi))

[q] ⊆ Iq by Proposition 4.3.8 and the obvious fa
t that
I [q] ⊆ Iq.



[36℄ Brian Harbourne4.4. Estimating the Resurgen
eIn this se
tion we show how to use γ from De�nition 2.2.1 and the regularity ofan ideal to give bounds on ρ(I). First we show how to interpret γ in this 
ontext.Given points p1, . . . , ps ∈ P
n, let I = I(Z) for Z = p1+ . . .+ps. De�ne γ(I) to bethe in�mum of dm

m
, where dm is the least degree t su
h that I(m) 
ontains a nonzeroform of degree t. (By Proposition 4.1.1, this is 
onsistent with De�nition 2.2.1;i.e., γ(I) = γ(P2; p1, . . . , ps).) As in Proposition 2.2.3, this is a
tually a limitwhi
h is de
reasing on multipli
ative subsequen
es; i.e., dms

ms
≤ dm

m
for all s > 0.More generally, given a homogeneous ideal 0 6= J ⊆ k[Pn], we will denote the leastdegree t su
h that J 
ontains a nonzero form of degree t by α(J). Thus α(J) is thedegree in whi
h the ideal starts (hen
e the use of the �rst letter, α, of the Greekalphabet to denote this 
on
ept). One 
an also regard α(J) as the M -order of J ,where M is the ideal generated by the variables (i.e., α(J) is the greatest powerof M 
ontaining J).As noted by the remark after Exer
ise 1.4.11, ε(P2; p1, . . . , ps) ≥ 1

s
, hen
e byCorollary 2.2.2 we have γ(I) ≥ 1. By a similar argument, this remains true for

P
n. In parti
ular, γ(I) > 0, so it makes sense to divide by γ(I).Given a homogeneous ideal J ⊆ R = k[Pn], for any t ≥ 0 let Jt be the k-ve
torspa
e span of the forms of degree t in k (
alled the homogeneous 
omponent of

J of degree t). Note that R/J is also graded; we de�ne (R/J)t to be Rt/Jt. Were
all that the regularity reg(I) of I is the least degree t ≥ 0 su
h that (R/I)t and
(R/I)t−1 have the same ve
tor spa
e dimension. We have the following theorem:Theorem 4.4.1 ([4℄)Let Z = p1 + . . .+ ps ⊂ P

n, let I = I(Z) and let r and m be positive integers.(a) If α(I(m)) < rα(I), then I(m) 6⊆ Ir.(b) If rreg(I) ≤ α(I(m)), then I(m) ⊆ Ir.(
) α(I)
γ(I) ≤ ρ(I) ≤ reg(I)

γ(I) .(d) If α(I) = reg(I), then I(m) ⊆ Ir if and only if α(I(m)) ≥ rα(I).Proof. (a) This is 
lear, sin
e α(Ir) = rα(I) and so in this 
ase I(m) has anonzero element of degree less than any nonzero element of Ir.(b) First we 
he
k that rreg(I) ≤ α(I(m)) implies that r ≤ m. Sin
e Im ⊆
I(m), we see that α(I(m)) ≤ α(Im) = mα(I). But α(I) ≤ reg(I) sin
e for all
0 ≤ t < α(I) we have dimk(R/I)t > dimk(R/I)t−1. Thus rreg(I) ≤ α(I(m)) ≤
mα(I) ≤ mreg(I). But for any nonzero ideal I properly 
ontained in (x0, . . . , xn)we have α(I) > 0, so reg(I) > 0 and we see m ≥ r and hen
e I(m) ⊆ I(r).Now we use the fa
ts that reg(Ir) ≤ r reg(I) and Irt = I

(r)
t for all t ≥ reg(Ir)[13℄; see also [1℄. Thus for t < rreg(I) ≤ α(I(m)) we have 0 = I

(m)
t ⊆ Irt , while for

t ≥ rreg(I) ≥ reg(Ir), we have I
(m)
t ⊆ I

(r)
t = Irt , so I

(m)
t ⊆ Irt holds for all t andwe have I(m) ⊆ Ir.
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ts of the geometry of surfa
es [37℄(
) For any 0 < m
r
< α(I)

γ(I) , sin
e α(I)
γ(I) = lims→∞

msα(I)
α(I(ms))

by Proposition 2.2.3,for s ≫ 0 we have m
r
< msα(I)

α(I(ms))
, and hen
e α(I(ms)) < rsα(I), so I(ms) 6⊆ Irs for

s ≫ 0 by (a), hen
e m
r
= ms

rs
≤ ρ(I); i.e., α(I)

γ(I) ≤ ρ(I). And for any m
r
≥ reg(I)

γ(I) , wehave rreg(I) ≤ mγ(I) ≤ α(I(m)) so I(m) ⊆ Ir by (b) and hen
e ρ(I) ≤ reg(I)
γ(I) .(d) If α(I(m)) < rα(I), then 
ontainment fails by (a), while if α(I(m)) ≥ rα(I),then 
ontainment holds by (b).Example 4.4.2Let I be the ideal of p1, . . . , ps ∈ P

n for s =
(
d+n−1

n

) general points. Then
α(I) = reg(I) = d, hen
e I(m) ⊆ Ir if and only if α(I(m)) ≥ rα(I). Unfortunately,
α(I(m)) is not in general known. See however Exer
ise 4.6.3.4.5. A Question and a Conje
tureThe paper [4℄ gives examples of redu
ed s
hemes Zi ⊂ P

n of �nite sets of pointssu
h that limi ρ(I(Zi)) = n. This shows that the bound given in Theorem 4.3.6is in some sense sharp. However, one 
an hope to do better. In fa
t, Huneke hasraised the following question:Question 4.5.1 (Huneke)Let I ⊂ k[P2] be the ideal I = I(Z), where Z = p1 + . . .+ ps ⊂ P
2 for a �nite setof distin
t points pi. Must it be true that I(3) ⊆ I2?In the 
ase of the ideal I of any s generi
 points of P2, [4℄ showed that theanswer is yes. This and additional examples, both in dimension 2 and in higherdimensions, suggested the following 
onje
ture (this is a simpli�ed version of [34,Conje
ture 8.4.2℄):Conje
ture 4.5.2 (Harbourne)Let I ⊂ k[Pn] be the ideal I = I(Z), where Z = p1 + . . .+ ps ⊂ P
n for a �nite setof distin
t points pi. Then I(m) ⊆ Ir if m ≥ rn− (n− 1).Example 4.5.3Let I be the ideal of distin
t points p1, . . . , ps ∈ P

n. Mimi
king the argument ofExample 4.3.10 shows in fa
t that I(rn−(n−1)) ⊆ Ir holds if char(k) = p > 0 and
r is a power of p. See Exer
ise 4.6.4.We thus obtain an observation of Huneke:Corollary 4.5.4Question 4.5.1 has an a�rmative answer when char(k) = 2.Taking r = 2 in Conje
ture 4.5.2 suggests in light of Theorem 4.4.1(a) thefollowing possibly easier question:



[38℄ Brian HarbourneQuestion 4.5.5Let 0 6= I ⊂ k[Pn] be any homogeneous ideal. Must it be true that α(I(n+1)) ≥
2α(I)?What is known is that α(I(n+1)) ≥ n+1

n
α(I). (For example, if I is the ideal of aset of points, this follows from [5, Theorem 1℄; alternatively, we have I(rn) ⊆ Ir byTheorem 4.3.6, and hen
e α(I(rn)) ≥ rα(I), or α(I(rn))

rn
≥ α(I)

n
. But Proposition2.2.3 and its proof holds also for P

n. Taking the limit as r → ∞ gives γ(I) ≥
α(I)
n

and, sin
e α(I(m))
m

≥ γ(I) for every m ≥ 0 as in Proposition 2.2.3, we have
α(I(n+1)) ≥ n+1

n
α(I).) In fa
t, examples suggest that α(I(rn−n+1)) ≥ rα(I)+n−1may hold for the ideal of any �nite set of points in P

n (and perhaps for anynontrivial homogeneous ideal in k[Pn]).4.6. Exer
isesExer
ise 4.6.1Prove Lemma 4.3.1: Let Z = p1 + . . .+ pr ⊂ P
n and let I = I(Z) ⊆ R = k[Pn].Then Ir ⊆ I(m) if and only if r ≥ m.Solution. If r ≥ m, then Ir ⊆ Im ⊆ I(m). Conversely, assume Ir ⊆ I(m).Lo
alize at p1 and 
ontra
t to Ri, where p1 ∈ Ui = Spec(Ri) ∼= A

n is a standarda�ne open neighborhood (the 
omplement of xi = 0, where Ri = k[x0

xi
, . . . , xn

xi
]for some xi not vanishing at p1) to get J(p1)r ⊆ J(p1)

m, and hen
e r ≥ m, where
J(p1) ⊂ Ri is the ideal of p1 in Ri.Exer
ise 4.6.2Prove Lemma 4.3.9: Let I ⊆ R = k[Pn] be an ideal generated by s elements, andassume char(k) = p > 0 and q is a power of p. Then Isq ⊆ I [q].Solution. Let f1, . . . , fs generate I. Then monomials in the fi of degree sqgenerate Isq, and for ea
h su
h monomial there must be an i su
h that f q

i isa fa
tor. Thus ea
h monomial is in I [q].Exer
ise 4.6.3Let I ⊂ R = k[P2] be the ideal of non-
ollinear points p1, p2, p3 ∈ P
2. Then

I(m) ⊆ Ir if and only if m ≥ 4r−1
3 .Solution. Let X be the blow up of P2 at the three points. Note that B =

3L− 2(E1+E2+E3) = (L−E1−E2)+ (L−E1−E3)+ (L−E2−E3) ∈ EFF(X)and C = 2L−E1 −E2 −E3 ∈ NEF(X) (sin
e C is the 
lass of a prime divisor ofpositive self-interse
tion). Now 
onsider m = 2s+ i for s ≥ 0 and 0 ≤ i ≤ 1. Then
α(I(m)) = 3s+2i, sin
e sB+ iC = (3s+2i)L− (2s+ i)(E1+E2 +E3) ∈ EFF(X)is 
lear but ((3s+2i− 1)L− (2s+ i)(E1+E2 +E3)) · (2L−E1 −E2 −E3) < 0. Inparti
ular, α(I) = 2. Sin
e R2/I2 and R1/I1 both have dimension 3, we also have
reg(I) = 2.Thus I(m) ⊆ Ir holds by Theorem 4.4.1(d) for m = 2s + i exa
tly when
3s+2i ≥ 2r. First 
he
k the 
ase that m is even: 
ontainment holds exa
tly when
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3m
2 ≥ 2r whi
h is equivalent to 3m+1

2 ≥ 2r, or m ≥ 4r−1
3 . Now say m is odd:
ontainment holds exa
tly when 3m+1

2 = 3(m−1)+4
2 ≥ 2r whi
h is again equivalentto m ≥ 4r−1

3 .Exer
ise 4.6.4Justify Example 4.5.3: Let J be the ideal of distin
t points p1, . . . , ps ∈ P
n.Mimi
king the argument of Example 4.3.10 shows in fa
t that J (rn−(n−1)) ⊆ Jrholds if char(k) = p > 0 and r is a power of p.Solution. The same argument as given in Example 4.3.10 works ex
ept thatwe need to re�ne the statement of Lemma 4.3.9 so that Iqs−(s−1) ⊆ I [q]. Let

f1, . . . , fs generate I. Then monomials in the fi of degree sq − (s − 1) generate
Isq−(s−1), but for ea
h su
h monomial there must in fa
t be an i su
h that f q

i isa fa
tor (if not, the monomial has degree at most s(q − 1) in the fi, whi
h is lessthan sq − (s− 1)). Thus ea
h monomial is in I [q].A
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