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Brian HarbourneGlobal aspets of the geometry of surfaesAbstrat. Several open problems related to the behavior of the monoid ofe�etive divisors and the nef one for smooth projetive surfaes over analgebraially losed �eld are disussed, motivating and putting into historialontext onepts suh as Mori dream spaes, Seshadri onstants and theresurgene of homogeneous ideals in polynomial rings. Some reent work onthese topis is disussed along with the problem of whih ordinary powers ofhomogeneous ideals ontain given symboli powers of those ideals. Exerises,with solutions, are inluded.1. Leture: Bounded Negativity1.1. IntrodutionA surfae here will always mean a smooth irreduible losed 2 dimensionalsubsheme of projetive spae, over an algebraially losed �eld k. A prime divisoron X is a redued irreduible urve.Notation 1.1.1Let X be a surfae. The divisor lass group Cl(X) is the free abelian group Gon the prime divisors, modulo linear equivalene. By intersetion theory we havea bilinear form on G whih desends to Cl(X). Two divisors whih indue thesame intersetions on urves (whih in our situation are themselves divisors, sine
X is a surfae) are said to be numerially equivalent. We will denote numerialequivalene on divisors by ∼; thus D1 ∼ D2 means that D1 · C = D2 · C for allurves C. We denote Cl(X) modulo numerial equivalene by Num(X). Also,
EFF(X) denotes the submonoid of Cl(X) onsisting of the lasses of e�etivedivisors on X , and NEF(X) denotes the submonoid of Cl(X) of all lasses F suhthat F · C ≥ 0 for all C ∈ EFF(X).A basi fat is that Num(X) is a free abelian group of �nite rank. If X isrational, then Num(X) = Cl(X). If X is obtained by blowing up distint points
p1, . . . , pr ∈ P

2, for example, then Cl(X) is the free abelian group on the lass LAMS (2000) Subjet Classi�ation: Primary 14C20, 14J26, 13C05, Seondary 14-02, 13-02.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[6℄ Brian Harbourneof the pullbak of a line and on the lasses Ei of the blowings up of the points pi,hene Cl(X) has rank r + 1. (Below we also onsider the ase that some of thepoints are in�nitely near.) The intersetion form on Cl(X) in this ase is de�nedby −L2 = E2
i with L · Ei = Ej · Ei = 0 for all i and all j 6= i, and the anoniallass is KX = −3L+ E1 + . . .+ Er.We now reall the Adjuntion Theorem and Riemann�Roh for surfaes:Theorem 1.1.2 (Adjuntion)Let C be a prime divisor on a surfae X and let KX be the anonial lass on X.Then there is a non-negative integer pC suh that C2 = 2pC − 2− C ·KX .Note that if C is an irreduible, smooth urve and k = C is the omplexnumbers, then pC is nothing else but the topologial genus of the urve C.Theorem 1.1.3 (Riemann�Roh)Given any divisor D on a surfae X, let χ(OX(D)) denote h0(X,OX(D)) −

h1(X,OX(D)) + h2(X,OX(D)). Then
χ(OX(D)) =

D2 −KX ·D
2

+ χ(OX).Riemann�Roh beomes espeially useful when taken together with Serre du-ality, whih for a surfae X says that hi(X,OX(D)) = h2−i(X,OX(KX − D)).Castelnuovo's riterion for rationality is also useful:Theorem 1.1.4 (Castelnuovo)A surfae X is rational if and only if h0(X,OX(2KX)) = h1(X,OX) = 0.Next, we reall the Hodge Index Theorem:Theorem 1.1.5 (HIT)Given a surfae X and D ∈ Num(X) with D2 > 0, then the intersetion form onthe spae D⊥ ⊆ Num(X) of lasses F with F ·D = 0 is negative de�nite.Finally, we reall the semiontinuity priniple. Here it is useful to allow someof the points to be in�nitely near. We say points p1, . . . , pr are essentially distintpoints of a surfae X , and that Xr+1 is the blow up of X at p1, . . . , pr, if p1 ∈
X = X1, π1:X2 → X1 is the blow up of X1 at p1, and for 1 < i ≤ r we have
pi ∈ Xi, and πi:Xi+1 → Xi is the blow up of Xi at pi. By identifying Xi+1 with
Xi away from pi, we an regard pi+1 as being in Xi when πi(pi+1) 6= pi. In thisway distint points p1, . . . , pr ∈ X an be regarded as being essentially distint.Let πj,i:Xj → Xi be the morphism πj−1 ◦ . . . ◦ πi whenever j > i, and let Ei bethe divisor (or divisor lass, depending on ontext) given by π−1

r,i (pi). (If i < j ≤ rand πj,i(pj) = pi, we say pj is in�nitely near to pi.) When X = P
2, let L bethe pullbak to Xr+1 of a general line on X . Otherwise we will assume L is thepullbak to Xr+1 of some ample divisor on X .



Global aspets of the geometry of surfaes [7℄Theorem 1.1.6 (Semiontinuity Priniple)Let a, a1, . . . , ar be integers, let p1, . . . , pr be general points of X = P
2 and de-note by Xr+1 the blow up of X at p1, . . . , pr, with L,E1, . . . , Er being the usualassoiated lasses. Also, given essentially distint points p′1, . . . , p′r of X, let X ′

r+1denote the blow up of X at p′1, . . . , p′r, and let L′, E′
1, . . . , E

′
r denote the assoiatedlasses.(a) If aL −∑

i aiEi ∈ EFF(Xr+1), then aL′ −∑
i aiE

′
i ∈ EFF(X ′

r+1) for everyhoie of essentially distint points p′1, . . . , p
′
r of X.(b) If aL′ −

∑
i aiE

′
i ∈ NEF(X ′

r+1) for some hoie of essentially distint points
p′1, . . . , p

′
r of X and if (aL′−∑

i aiE
′
i)

2 > 0, then aL−∑
i aiEi ∈ NEF(Xr+1).Proof. Following [27℄, parameterize essentially distint points of X by shemes

Wi where we set b0:W1 → W0 to be X → Spec(k) and reursively we de�ne
Wi+1 → Wi ×Wi−1 Wi to be the blow up of the diagonal in Wi ×Wi−1 Wi, setting
bi:Wi+1 → Wi to be the omposition of Wi+1 → Wi×Wi−1 Wi with the projetion
π1i:Wi ×Wi−1 Wi → Wi to the �rst fator. The morphisms bi are smooth ([10,17.3, 19.4℄). [Here is a proof. Note b0 is smooth (sine X is). Assuming bi−1 issmooth, we see the projetion Wi ×Wi−1 Wi → Wi is smooth ([23, PropositionIII.10.1(d)℄), and the exeptional lous Bi+1 ⊂ Wi+1 for bi is smooth ([23, Theo-rem II.8.24(b)℄) and loally isomorphi to Wi ×P

1. We now see that bi is smoothby heking surjetivity of the indued maps on Zariski tangent spaes ([23, Propo-sition III.10.4(iii)℄) at points x ∈ Wi+1. Away from Bi+1, Wi+1 → Wi ×Wi−1 Wiis an isomorphism and Wi ×Wi−1 Wi → Wi is smooth, hene surjetivity followsfor points x 6∈ Bi+1. At points x ∈ Bi+1, the omposition Bi+1 ⊂ Wi+1 → Wiis smooth and thus the map on tangent spaes indued by Bi+1 → Wi is alreadysurjetive at x, hene so is the one indued by Wi+1 → Wi. Thus bi is smooth.℄Consider the pullbaks B′
i to Wr+1 of the divisors Bi. For any ample divisor Lon X , let L′′ be the pullbak to Wr+1 via the blow ups bi and the projetions π2ion the seond fators. Let F = OWr+1(aL

′′ −∑
i aiB

′
i). Then for any essentiallydistint points p′1, . . . , p′r of X we have a uniquely determined point w ∈ Wr, the�ber (Wr+1)w of Wr+1 over w is X ′

r+1, and the restrition Fw of F to (Wr+1)wis OX′

r+1
(aL′−

∑
i aiE

′
i). By the semiontinuity theorem ([23, Theorem III.12.8℄),

h0((Wr+1)w,Fw) is an upper semiontinuous funtion of w. This implies (a).Now onsider (b). If (aL−∑
i aiEi)

2 = (aL′ −∑
i aiE

′
i)

2 > 0, we have s(aL−∑
i aiEi) ∈ EFF(Xr+1) for some s ≫ 0. Pik some e�etive divisor C whoselass is s(aL − ∑

i aiEi). For eah prime divisor omponent D of C, there is anopen set of points pi for whih D remains prime, sine being e�etive is a losedondition by (a), and sine for only �nitely many lasses D′ = a′L−
∑

i a
′
iEi ould

D′ and the lass of D − D′ (or even s(aL − ∑
i aiEi) − D′ in plae of D − D′)both oneivably be lasses of e�etive divisors. Thus the deomposition of C asa sum of prime divisors is well-de�ned for general points, and eah omponentspeializes to an e�etive divisor on X ′

r+1 whih thus meets aL′ − ∑
i aiE

′
i, andhene aL−∑

i aiEi, non-negatively, so aL−∑
i aiEi ∈ NEF(Xr+1), proving (b).Here is a version of the same result stated for generi points, where X now isany surfae and L omes via pullbak from some ample divisor on X :



[8℄ Brian HarbourneTheorem 1.1.7 (Semiontinuity Priniple 2)Let a, a1, . . . , ar be integers, let p1, . . . , pr be generi points of a surfae X anddenote by Xr+1 the blow up of X at p1, . . . , pr, with E1, . . . , Er being the usualassoiated lasses and L the pullbak to Xr+1 from X of some ample divisor on
X. Also, given essentially distint points p′1, . . . , p′r of X, let X ′

r+1 denote the blowup of X at p′1, . . . , p′r, and let L′, E′
1, . . . , E

′
r denote the assoiated lasses.(a) If aL −

∑
i aiEi ∈ EFF(Xr+1), then aL′ −

∑
i aiE

′
i ∈ EFF(X ′

r+1) for everyhoie of essentially distint points p′1, . . . , p
′
r of X.(b) If aL′ −∑

i aiE
′
i ∈ NEF(X ′

r+1) for some hoie of essentially distint points
p′1, . . . , p

′
r of X, then aL−∑

i aiEi ∈ NEF(Xr+1).Proof. The proof of (a) is the same as for Theorem 1.1.6(a). The proof for (b)is even simpler than before sine now we are not laiming that having a spei�divisor F = aL −∑
i aiEi be nef is an open ondition on the points pi. Instead,if F were not nef, then F · C < 0 for some C = c0L −

∑
i ciEi ∈ EFF(Xr+1),hene C′ = c0L

′ − ∑
i ciE

′
i ∈ EFF(Xr+1) by (a), so F ′ · C′ = F · C < 0 for

F ′ = aL′ −∑
i aiE

′
i, ontraditing our assumption that F ′ ∈ NEF(X ′

r+1).Remark 1.1.8It is not hard to show that F ∈ NEF(X) implies F 2 ≥ 0 (this is Exerise 1.4.1(a)).It is ertainly possible, however, to have H ∈ EFF(X) with H2 < 0. The questionof the extent to whih this an happen is the main motivation for these notes.If in fat there is no H ∈ EFF(X) with H2 < 0, then it is easy to see that
EFF(X) ⊆ NEF(X). It an also happen that NEF(X) ⊆ EFF(X), but in generalneither ontainment holds. For example, for n > 0, the base urve C on theHirzebruh surfae Hn is e�etive but has C2 = −n so is not nef. For an exampleof a nef divisor whih is not e�etive, see Exerise 1.4.1(b). However, in Exerise1.4.1(b), the lass F is in fat ample (see Exerise 3.2.4), thus some multipleof F is e�etive (in fat 2F ∈ EFF(X) by Riemann�Roh), but divisors an benef without being ample and without any multiple being e�etive. For example,suppose X is given by blowing up r = s2 generi points pi ∈ P

2. Nagata [32℄proved that h0(X,OX(mF )) = 0 for all m > 0 when F = sL− E1 − . . .−Er and
s > 3. But by speializing the points pi to general points of a smooth urve ofdegree s, we see that sL−E1 − . . .−Er is nef after speializing, and hene nef tobegin with by Theorem 1.1.7. Thus for r = s2 generi points pi, sL−E1− . . .−Eris nef but not ample (sine F 2 = 0), and, for eah m > 0, m(sL − E1 − . . .− Er)is not the lass of an e�etive divisor.1.2. A Motivational Folklore ConjetureThere is a long-standing open onjeture involving boundedness of negativityon surfaes. Let us say that a surfae X has bounded negativity if there is aninteger nX suh that C2 ≥ nX for eah prime divisor C ⊂ X .Conjeture 1.2.1 (Folklore: The Bounded Negativity Conjeture)Every surfae X in harateristi 0 has bounded negativity.



Global aspets of the geometry of surfaes [9℄Remark 1.2.2Conjeture 1.2.1 is false in positive harateristi. I thank Burt Totaro for bringingto my attention the following example pointed out by János Kollár at a talk byRihard Harris at MSRI in January, 2009 (http://www.msri.org/ommuniations/vmath/VMathVideos/VideoInfo/4111/show_video). Let X = C × C, where C isa urve of genus gC ≥ 2 de�ned over a �nite �eld of harateristi p > 0. Let Γq bethe graph in X of the Frobenius morphism de�ned by taking q-th powers, where
q is a su�iently large power of p. Then Γq is a urve on X with X2 = q(2− 2gC)[23, Exerise V.1.10℄. Sine q an be arbitrarily large, X does not have boundednegativity. However, it is as far as I know still an open problem even in positiveharateristi to determine whih surfaes fail to have bounded negativity.Some surfaes are known to have bounded negativity.Corollary 1.2.3A surfae X has bounded negativity if −mKX ∈ EFF(X) for some positive inte-ger m.Proof. Sine −mKX ∈ EFF(X), there are only �nitely many prime divisors
C suh that −mKX · C < 0. So, apart from �nitely many prime divisors C, wehave −mKX · C ≥ 0, in whih ase C2 = 2pC − 2− C ·KX ≥ −2.Example 1.2.4In partiular, bounded negativity holds for K3 surfaes, Enriques surfaes, abeliansurfaes, and relatively minimal rational surfaes. But it is not always lear whenit holds if one blows up points on those surfaes.Let EFF(X)/∼ denote the image of EFF(X) in Num(X). In preparation forgiving a riterion for bounded negativity to hold on X , we have the followingproposition (taken from [36℄):Proposition 1.2.5If EFF(X)/∼ is �nitely generated, then there are only �nitely many prime divisors
C with C2 < 0.Proof. Let C1, . . . , Cr be prime divisors whose lasses generate EFF(X)/∼.Sine eah Ci is the lass of an e�etive divisor, there are only �nitely many primedivisors D suh that D · Ci < 0 for some i. Now let C be a prime divisor with
C2 < 0; we have C ∼ ∑

i miCi for some mi ≥ 0 and so 0 > C2 =
∑

imiC · Ci,hene C · Cj < 0 for some j, and so C = Cj .This then gives a riterion for bounded negativity to hold.Corollary 1.2.6If X is a surfae suh that EFF(X)/∼ is �nitely generated, then bounded negativityholds for X.Remark 1.2.7It is di�ult in general to determine whether EFF(X)/∼ is �nitely generated, evenfor rational surfaes. Here are some ases where it is known. If X is a rational



[10℄ Brian Harbournesurfae with K2
X > 0, then EFF(X) is �nitely generated (see Exerise 1.4.5 if

−KX is nef and K2
X > 1; see [36℄ for the ase that K2

X > 0 and X is obtainedby blowing up at most 8 points of P2; or see [28℄, [42℄ for K2
X > 0 in general).We also have EFF(X) �nitely generated if X is obtained by blowing up points ona line or oni in P

2 (see Exerises 1.4.2 and 1.4.4), or, more generally, if X isrational and −KX is big [42℄.When X be obtained by blowing up r < 9 generi points of P2, then K2
X > 0and so EFF(X) is �nitely generated as mentioned above, but in fat −KX isample, whih with adjuntion implies C2 ≥ −1 for any prime divisor C. For

r = 9, EFF(X) is not �nitely generated (see Exerise 1.4.7, for example), but it isstill true that C2 ≥ −1 for any prime divisor C, although the proof is somewhattehnial. Here now is a onjeture for a ase where EFF(X) is de�nitely not�nitely generated (see Exerise 1.4.7) but where Conjeture 1.2.1 is not yet alwaysknown:Conjeture 1.2.8 ([16℄)Let X be obtained by blowing up a �nite number r of generi points of P2. Then
C2 ≥ −1 for every prime divisor C, with equality if and only if C is a smoothrational urve with KX · C = −1.This onjeture is known to be true when r ≤ 9, but it is open for every r > 9.1.3. An Asymptoti Approah to Bounded NegativityWhile no general lower bound for C2 for prime divisors C on a surfae X isknown, given a nef divisor F , we an instead ask for a lower bound on C2

(F ·C)2 forall prime divisors C with F · C > 0. As motivation for introduing multipointSeshadri onstants, we now study this question in the ase that X is obtained byblowing up r > 0 points p1, . . . , pr ∈ P
2, taking F to be L. Sine C is prime andwe assume L · C > 0, we see that C = dL−

∑
imiEi for some mi ≥ 0.Let

λL(X)

= inf

{
C2

(C · L)2 : C ∈ EFF(X), C · L > 0, C · Ei ≥ 0 for all i, C ·
∑

i

Ei > 0

}

= inf

{
C2

(C · L)2 : C is a prime divisor on X and C · L > 0

}
.(The seond equality is Exerise 1.4.8.) It is lear that the in�mum exists: Let

C = dL−
∑

imiEi. Sine L− Ei ∈ NEF(X), we see d ≥ mi for all i. Hene
C2

(C · L)2 =
(d2 −∑

im
2
i )

d2
≥ 1− r.Problem 1.3.1Compute λL(X), or at least give good estimates for it.



Global aspets of the geometry of surfaes [11℄We now reall a quantity ε introdued by G.V. Chudnovsky [5℄ (for any r pointsin any projetive spae) and Demailly [6℄ (for a single point, i.e., r = 1, but onany smooth variety) now known as a multipoint Seshadri onstant ; see also [29℄.(Chudnovsky's version, denoted Ω̂0(p1, . . . , pr), is atually equal to rε.) Let X beobtained by blowing up distint points p1, . . . , pr ∈ P
2. Then

ε(P2; p1, . . . , pr) = inf

{
d∑
i mi

: dL−
∑

i

miEi ∈ EFF(X), mi ≥ 0,
∑

i

mi > 0

}
.As alternative de�nitions (see Exerise 1.4.9) we have:

ε(P2; p1, . . . , pr) = inf

{
C · L∑
iC ·Ei

: C is prime and ∑

i

C ·Ei > 0

}

= sup
{m

d
: dL−m

∑

i

Ei ∈ NEF(X), m > 0
}
.

(1)Remark 1.3.2In general, ε(P2; p1, . . . , pr) is itself hard to ompute. However, by Exerise 1.4.10,if F · C = 0 for some F = dL − m
∑

i Ei ∈ NEF(X) and C = aL − ∑
i miEi ∈

EFF(X) with d > 0 and a > 0, then ε(P2; p1, . . . , pr) =
m
d
.For our asymptoti appliation of Seshadri onstants to bounded negativity,we will use the following elementary inequality:Lemma 1.3.3Given integers d > 0 and d ≥ mi ≥ 0 for all i, we have ∑
i
m2

i

d2 ≤
∑

i
mi

d
.Proof. Just note that d ≥ mi ≥ 0 implies d

∑
i mi ≥

∑
im

2
i ; dividing by d2gives the result.Sine L − Ei ∈ NEF(X) for eah i, if dL −∑

imiEi ∈ EFF(X), then d ≥ mifor all i, hene d∑
i
mi

≥ 1
r
. In partiular, ε(P2; p1, . . . , pr) ≥ 1

r
> 0 so 1

ε(P2;p1,...,pr)makes sense. Applying the lemma now gives:Corollary 1.3.4Let X be obtained by blowing up distint points p1, . . . , pr ∈ P
2. Then

λL(X) ≥ 1− 1

ε(P2; p1, . . . , pr)
.Proof.

λL(X)

= inf

{
C2

(C · L)2 : C ∈ EFF(X), C · L > 0, C ·Ei ≥ 0 for all i, C ·
∑

i

Ei > 0

}

= inf

{
1−

∑
im

2
i

d2
: C = dL−

∑

i

miEi ∈ EFF(X), d > 0, mi ≥ 0,
∑

i

mi > 0

}



[12℄ Brian Harbourne
= inf

{
1−

∑
im

2
i

d2
: dL−

∑

i

miEi ∈ EFF(X), mi ≥ 0,
∑

i

mi > 0

}

≥ inf

{
1−

∑
imi

d
: dL −

∑

i

miEi ∈ EFF(X), mi ≥ 0,
∑

i

mi > 0

}

= 1− sup

{∑
imi

d
: dL −

∑

i

miEi ∈ EFF(X), mi ≥ 0,
∑

i

mi > 0

}

= 1− 1

ε(P2; p1, . . . , pr)
.Remark 1.3.5Sometimes equality holds, but usually not. See Exerises 1.4.11 and 1.4.12.We lose this leture with some remarks about Mori dream spaes. Mori dreamspaes give interesting examples of surfaes with bounded negativity. Let X beobtained by blowing up points p1, . . . , pr ∈ P

2. Let L be the total transform of aline and let Ei be the blow up of the point pi. De�ne the Cox ring Cox(X) of Xto be the ring whose additive struture is given by
⊕

(a0,...,ar)∈Zr+1

H0(X,OX(a0L− a1E1 − . . .− arEr)),and where multipliation is given by the natural maps
H0(X,OX(F1))⊗H0(X,OX(F2)) → H0(X,OX(F1 + F2)).If Cox(X) is �nitely generated we say that X is a Mori dream spae [25℄. If X isa Mori dream spae, then EFF(X) must be �nitely generated, and hene X hasbounded negativity by Proposition 1.2.5.Remark 1.3.6If X is obtained by blowing up at most 8 points of P2, then X is a Mori dreamspae. (Proof: By the Hodge Index Theorem if F is a nontrivial nef divisor,then −KX · F > 0, hene the result follows over the omplex numbers from [11,Corollary 1℄ by [36, Theorem 2℄ and [15, Theorem III.1℄.) In fat, if X is anysmooth, projetive, rational surfae with K2

X > 0, then X is a Mori dream spae.(The same proof applies, but without the assumption of the omplex numbers,using [28, Proposition 4.3(a)℄ in plae of [36℄; alternatively, see [42℄.) If X isany smooth, projetive, rational surfae with K2
X = 0 but −KX is not nef, wean again onlude that X is a Mori dream spae. (By [28, Proposition 4.3()℄,

EFF(X) is �nitely generated, and by Exerise 1.4.6(b) and [15, Theorem III.1℄, nefdivisors on X are semi-ample (i.e., have a positive multiple whih is e�etive andbase point free). Now apply [11, Corollary 1℄.) In eah of these ases, −KX is big(see Exerise 1.4.13), hene these (in addition to the examples of Exerises 1.4.3and 1.4.4 of blow ups of points on a line or oni) are all subsumed by the resultof [42℄ that a rational surfae with big −KX is a Mori dream spae. However, notall rational surfaes whih are Mori dream spaes have big −KX . For example,



Global aspets of the geometry of surfaes [13℄let C be an irreduible ubi urve, and suessively blow up r > 9 points on
C, eah time at suessive in�nitely near points of the ubi, starting with a �expoint of the ubi. By Exerise 1.4.14, EFF(X) is �nitely generated and any neflass F has F · (−KX) ≥ 0. By [19, Theorem 3.1 and Corollary 3.4℄, every neflass is semi-ample, and by [11℄, X is a Mori dream spae sine EFF(X) is �nitelygenerated and any nef lass is semi-ample, but −KX is not big sine it is a primedivisor of negative self-intersetion.If X is a rational surfae with EFF(X) �nitely generated, it is natural to ask:must X be a Mori dream spae? The answer is no; see Remark 5.5 of [2℄.1.4. ExerisesExerise 1.4.1Let X be a surfae.(a) Show F ∈ NEF(X) implies F 2 ≥ 0.(b) Assume X is obtained by blowing up r = 21 general points pi ∈ P

2. Then
Cl(X) has basis L,E1, . . . , E21, where L is the pullbak of the lass of a lineand Ei is the lass of the blow up of pi. Let F = 5L − ∑

iEi; show that
F ∈ NEF(X) \ EFF(X).Solution. (a) Let A be ample, F nef and F 2 < 0. We will show that thereare positive integers s, a and f suh that aA + fF is ample and saA + sfF ise�etive, but suh that F · (aA+fF ) < 0, whih is impossible if F is nef. To show

aA+ fF is ample it is enough by the Nakai�Moisezon riterion [23℄ to show that
(aA + fF ) · C > 0 for every urve C, and that (aA + fF )2 > 0. But A · C > 0sine A is ample and F · C ≥ 0 sine F is nef, so (aA + fF ) · C > 0. Sine Ais ample, aA ∈ EFF(X) for a ≫ 0, hene A · F ≥ 0. Thus, taking t = f

a
, wehave (aA + fF ) · F = a(A + tF ) · F < 0 for t > A·F

−F 2 , but a(A + tF ) · F = 0and (aA + fF )2 = a2(A2 + 2tA · F + t2F 2) = a2(A2 + tA · F ) > 0 for t = A·F
−F 2 ,so by hoosing a and f suh that t is slightly larger than A·F

−F 2 we will still have
(aA+ fF )2 > 0 (and hene aA+ fF is ample so saA+ sfF is e�etive for s ≫ 0)while also having (saA+ sfF ) ·F < 0, ontraditing F being nef. Hene we musthave F 2 ≥ 0.(b) Consider points p′i whih lie on a smooth quinti. Let Q be the propertransform of that quinti. Then Q is nef but Q is linearly equivalent to F ′ =
5L′ − E′

1 − . . . − E′
21. Now by the semiontinuity priniple, Theorem 1.1.6, F =

5L−E1− . . .−E21 ∈ NEF(X) when the points pi are general. But the points aregeneral so impose 21 independent onditions on the 21 dimensional spae of allquintis (sine we an always hoose eah suessive point not to be a base point ofthe linear system of quintis through the previous points); i.e., h0(X,OX(F )) = 0hene F 6∈ EFF(X).Exerise 1.4.2Find an expliit �nite set of generators for EFF(X) and NEF(X) in ase X isobtained by blowing up r ≥ 1 distint points on a line in P
2.



[14℄ Brian HarbourneSolution. This solution is based on [16, Proposition I.5.2℄. Let the points be
p1, . . . , pr. Then Cl(X) has basis L,E1, . . . , Er, where L is the pullbak of thelass of a line and Ei is the lass of the blow up of pi. Let Λ = L−E1 − . . .−Erand let Li = L−Ei. Clearly Λ ∈ EFF(X) and Ei and Li are in EFF(X) for eah i.Sine L2

i = 0 and Li is the lass of a prime divisor, we see Li ∈ NEF(X). To provethat Λ, E1, . . . , Er generate EFF(X), it is enough to prove that every e�etive,redued, irreduible divisor an be written as a non-negative integer ombinationof Λ and E1, . . . , Er. So let C = aΛ+
∑

biEi be the lass of an e�etive, reduedand irreduible divisor. If C is Λ or Lj , then the laim is true as Lj = Λ+
∑

i6=j Ei,so we may assume that C is not one of these divisors. But then the intersetionwith them must be non-negative and hene bj = C · Lj ≥ 0. Putting this into
0 ≤ C ·Λ = a−∑

bi implies the non-negativity of a. Moreover, if F is nef then Fmeets eah Ei and Λ non-negatively, and the argument we just used on C showsthat any suh lass an be written as F = (a−∑
i bi)L+

∑
i biLi for non-negativeintegers a, b1, . . . , br, and hene L,L1, . . . , Lr generate NEF(X).Exerise 1.4.3Let X be obtained by blowing up points p1, . . . , pr ∈ P

2. If the points pi areollinear, show that X is a Mori dream spae.Solution. The generators are given by taking for eah G among E1, . . . , Er,
Λ and L1, . . . , Lr, a basis for H0(X,OX(G)). This is beause if D is an e�etivedivisor, then by the solution to Exerise 1.4.2, D = N +M , where N is �xed andonsists of a sum of non-negative multiples of the Ei and Λ, and M ∈ NEF(X)and hene M =

∑
i≥0 miLi for some non-negative mi (where we take L0 = L).Thus it is enough to show that ⊗iH

0(X,OX(Li))
⊗mi → H0(X,OX(M)) is sur-jetive. Do this indutively by showing that H0(X,OX(F )) ⊗H0(X,OX(Li)) →

H0(X,OX(F + Li)) is surjetive for eah F ∈ NEF(X) and hene in fat that
H0(X,OX(F1))⊗H0(X,OX(F2)) → H0(X,OX(F1 + F2)) is surjetive whenever
F1 and F2 are nef (see [14, Theorem 2.8℄). Alternatively, see [33℄.Exerise 1.4.4Let X be obtained by blowing up points p1, . . . , pr on a smooth oni in P

2 with
r ≥ 3. (If r < 3, the points are ollinear and the result is given by Exerise 1.4.2.Also, the oni does not need to be smooth here but smoothness simpli�es theargument a bit.)(a) Show EFF(X) is �nitely generated.(b) Cite the literature to show that X is a Mori dream spae.Solution. (a) Let Lij , i 6= j, be the lass of the proper transform of the linethrough pi and pj , let L be the lass of the total transform of a line, let D be thelass of the proper transform of the oni and let Ei be the lass of the blow upof pi for eah i > 0.Let C be the lass of a prime divisor. Note that −KX = D+L. Hene if C2 < 0but C 6= D, then adjuntion fores L · C ≤ 1, and hene C is either Lij or Ei forsome i and j. If C2 ≥ 0, write C = a0L− a1E1 − . . .− arEr. Sine C ·Ei ≥ 0, we



Global aspets of the geometry of surfaes [15℄have ai ≥ 0 for all i. By reindexing we may assume that a1 ≥ a2 ≥ . . . ≥ ar ≥ 0.Let Di = 2L− E1 − . . .− Ei = D + Ei+1 + . . .+ Er. Thus
C = (a0 − a1 − a3)L+ (a1 − a2)(L− E1) + (a2 − a3)L12

+ (a3 − a2)D3 + . . .+ (ar−1 − ar)Dr−1 + arDr,where a0 − a1 − a3 ≥ 0 sine C · L12 ≥ 0 implies a0 ≥ a1 + a2 ≥ a1 + a3. Notethat L = L12 + E1 + E2 and that L − E1 = L12 + E2. In partiular, the lass ofevery prime divisor is a sum of non-negative multiples of lasses of the form Lij ,
Ei and D.(b) Sine −KX = D + L, if F is nef with −KX · F = 0, then F · L = 0, hene
F = 0 by the Hodge Index Theorem. The fat that X is a Mori dream spae nowfollows by [11, Corollary 1℄ and [15, Theorem III.1℄, or diretly by [11, Corollary 3℄,or by [42℄.The basi idea of part (a) of the next exerise is taken from [36℄.Exerise 1.4.5Let X be a rational surfae suh that −KX is nef.(a) If C is a prime divisor on X suh that pC > 0, show that C+KX ∈ EFF(X).(b) For eah integer n, show that there are only �nitely many lasses C of primedivisors with C2 ≤ n if K2

X > 0.() If E is a lass suh that E2 = E ·KX = −1, show that E ∈ EFF(X).(d) If K2
X > 1, show that −KX − E ∈ EFF(X) for any lass E suh that

E2 = E ·KX = −1.(e) Conlude that EFF(X) is �nitely generated if K2
X > 1.Solution. First note that K2

X ≥ 0 sine −KX is nef. Next note that
h2(X,OX(−KX)) = h0(X,OX(2KX)) is 0 sine X is rational. Hene
h0(X,OX(−KX)) ≥ K2

X + 1 > 0 by Riemann�Roh, so −KX ∈ EFF(X).(a) Take ohomology of 0 → OX(KX) → OX(C +KX) → OC(C +KX) → 0.Sine X is rational, h1(X,OX(KX)) = h1(X,OX) = 0, and h0(X,OX(KX)) = 0sine −KX ∈ EFF(X) is nontrivial. Thus 0 < pC = h0(C,OC(C + KX)) =
h0(X,OX(C +KX)).(b) By adjuntion and the fat that −KX is nef we have C2 = 2pC − 2 −
KX ·C ≥ −2, so for eah n it is enough to show that there are only �nitely many
C with C2 = n. So say C2 = n, hene 0 ≤ −KX · C ≤ C2 + 2 = n + 2 byadjuntion and the fat that −KX is nef. Now let N = K2

XC − (KX · C)KX ,so C = (−KX ·C)(−KX)+N

K2
X

. Thus to show there are only �nitely many suh C,it is enough to show that −KX · C is bounded (but we already saw that 0 ≤
−KX · C ≤ n + 2) and that there are only �nitely many possibilities for N . Tosee the latter, note that N · KX = 0, so (K2

X)2C2 = (KX · C)2K2
X + N2, hene
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(K2

X)(K2
Xn − (n + 2)2) ≤ (K2

X)2C2 − (KX · C)2K2
X = N2. Thus N2 is boundedbelow, but N ∈ K⊥

X and K⊥
X is negative de�nite by the Hodge Index Theorem,so intuitively there are only �nitely many lattie elements N in K⊥

X of length atmost √−(K2
X)(K2

Xn− (n+ 2)2). More rigorously, sine Cl(X) is free abelian of�nite rank, there are only �nitely many elements of Cl(X) orthogonal to KX withself-intersetion no less than (K2
X)(K2

Xn − (n + 2)2), and hene there are only�nitely many possibilities for N .() Sine −KX is nef but −KX ·(KX−E) < 0, we seeKX−E 6∈ EFF(X). Thus
h2(X,OX(E)) = 0, hene h0(X,OX(E)) ≥ 1 by Riemann�Roh, so E ∈ EFF(X).(d) Sine −KX · (2KX + E) < 0, we see that 0 = h0(X,OX(2KX + E)) =
h2(X,OX(−KX −E)). Now h0(X,OX(−KX −E)) ≥ K2

X − 1 by Riemann�Roh,so −KX − E ∈ EFF(X).(e) Let E be any lass suh that E2 = KX · E = −1. Then E ∈ EFF(X). Let
C be the lass of a prime divisor that is a omponent of E. Then pC = 0, sineotherwise C+KX and hene E+KX is in EFF(X) by (a). But −KX ·(E+KX) < 0,so this is impossible. Thus E is a sum of prime divisors C with pC = 0. Likewise,
−KX − E is a sum of lasses of prime divisors with pC = 0, sine otherwise
−KX − E + KX = −E is in EFF(X). So for some Ci with pCi

= 0 we have
−KX =

∑
iCi and this sum involves at least two summands.By part (b), there are only �nitely many lasses D of prime divisors with

D2 ≤ 0 and pD = 0. We will now see that these lasses D, together with the Ci,generate EFF(X). Given any prime divisor C, it is enough to show that either
C −D ∈ EFF(X) for some suh D or that C − Ci ∈ EFF(X) for some i. This islear by (a) if pC > 0, so assume pC = 0. It is again lear if C2 ≤ 0, so assume
C2 > 0. We may assume C ·C1 ≤ C ·Ci for all i. Note that h2(X,OX(C −C1)) =
h0(X,OX(KX − C + C1)) = h0(X,OX(−

∑
i>1 Ci − C)) = 0. Thus

h0(X,OX(C − C1)) ≥
C2 − 2C · C1 −KX · C + (C2

1 +KX · C1)

2
+ 1

=
C2 − 2C · C1 −KX · C − 2

2
+ 1

=
C2 +

∑
i>1 C · Ci − C · C1

2

≥ C2

2
> 0,so C − C1 ∈ EFF(X).Exerise 1.4.6Let X be a rational surfae with K2

X = 0.(a) Show that −KX ∈ EFF(X).(b) Assume in addition that −KX is not nef. If F is nef with −KX · F = 0,show that F = 0.



Global aspets of the geometry of surfaes [17℄Solution. (a) Apply Riemann�Roh, using
h2(X,OX(−KX)) = h0(X,OX(2KX)) = 0.(b) This follows by the Hodge Index Theorem. Suppose F 6= 0. Sine F is nef,we have F 2 ≥ 0 (by Exerise 1.4.1). If F 2 > 0, then F⊥ is negative de�nite, hene

−KX ·F = 0 and K2
X = 0 imply that −KX = 0, but this ontradits the fat that

−KX 6= 0. Thus F 2 = 0. Sine F 2 = 0 and KX · F = 0, we see for any elements
v and w in the span of −KX and F in Cl(X) that v · w = 0. But for any ampledivisor A we have i = A ·(−mKX +F ) > 0 for m ≫ 0, sine j = −KX ·A > 0. Let
v = j(−mKX + F ) and let w = −iKX. Then v − w ∈ A⊥, but (v − w)2 = 0, so
v = w, hene j(−mKX+F ) = −iKX so jF = (mj−i)KX . Thus mj−i < 0 (sine
−3(mj − i) = (mj − i)KX · L = jF · L ≥ 0 but F · L = 0 implies F = 0) so −KXis nef (being a positive rational multiple of a nef lass), ontrary to hypothesis.Exerise 1.4.7Let X be obtained by blowing up 9 points p1, . . . , p9 ∈ P

2 on a smooth plane ubi
D′. Let D be the proper transform of D′. Let L be the pullbak of the lass of aline and let Ei be the lass of the blow up of pi.(a) Show that N ∈ K⊥ implies N2 is even.(b) Let N be any lass in K⊥ ∩ E⊥

9 . Show that E = N + E9 +
N2

2 KX satis�es
E2 = KX ·E = −1. Conlude that E ∈ EFF(X).() If the points are su�iently general and the ground �eld is the omplexnumbers, show that eah suh E is the lass of a prime divisor. Conludethat EFF(X) is not �nitely generated.Solution. (a) By Riemann�Roh, N2

2 = N2−KX ·N
2 is an integer.(b) That E = N + E9 + N2

2 KX satis�es E2 = KX · E = −1 is easy. Sine
−KX = D is nef, and sine −KX · (KX −E) < 0, we see that h2(X,OX(E)) = 0.Now apply Riemann�Roh to see that h0(X,OX(E)) ≥ 1, so E ∈ EFF(X).() Suppose that some E = N +E9+

N2

2 KX is not the lass of a prime divisor.Sine −KX ·E = 1 and −KX is nef, if E has two or more omponents, then one ofthem must be disjoint from D, hene in the kernel of the mapping Cl(X) → Cl(D).But the kernel here is the same as the kernel of K⊥
X → Cl0(D), where Cl0(D) isthe subgroup of divisor lasses of degree 0, whih is a torus whih an be identi�edwith D. Sine the omplex numbers have in�nite dimension over the rationals,it's easy to hoose points pi ∈ D, suh that the map K⊥

X → Cl0(D) is injetive,hene no prime divisor on X is disjoint from D, so E must be prime. Conludeby applying Proposition 1.2.5.Exerise 1.4.8Let X be obtained by blowing up r > 0 points p1, . . . , pr ∈ P
2, and let L and Eibe as usual. Show that

inf

{
C2

(C · L)2 : C is a prime divisor on X and C · L > 0

}
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= inf

{
C2

(C · L)2 : C ∈ EFF(X), C · L > 0, C · Ei ≥ 0 for all i, C ·
∑

i

Ei > 0

}
.Solution. Let inf1 be the �rst in�mum in the statement above and let inf2 bethe seond. Note that inf1 is equal to

inf3 = inf

{
C2

(C · L)2 : C is a prime divisor on X C · L > 0 and C ·
∑

i

Ei > 0

}
,sine any prime C with C · L > 0 but C ·∑i Ei = 0 is a positive multiple of L, inwhih ase C′ = C − E1 is the lass of a prime divisor with C′2

(C′·L)2 < C2

(C·L)2 .Sine inf2 is an in�mum over a bigger set than is inf3, we see that inf2 ≤ inf3 =
inf1. Thus, to see inf2 = inf1, it is enough to see for any D that is e�etive with
D · L > 0, D · Ei ≥ 0 for all i and D · ∑i Ei > 0 that there is a prime C with
C · L > 0 and C2

(C·L)2 ≤ D2

(D·L)2 .Suppose D satis�es the given onditions. Write D as dL − ∑
imiEi. Wean also write D as ∑

j Cj for some prime divisors Cj . Let F be obtained bydeleting every summand Cj (if any) for whih Cj = Ei for some i. Writing
F = dL−

∑
i m

′
iEi we see m′

i ≥ mi for all i, hene F 2

(F ·L)2 ≤ D2

(D·L)2 . Thus we mayassume that Cj 6= Ei for all i and j and hene that Cj ·Ei ≥ 0 for all i and j andthat Cj ·L ≥ 0 for all j. If for some j we have Cj ·
∑

i Ei = 0, then Cj is a positivemultiple of L, so we an replae Cj by Cj − E1; the latter is still the lass of aprime divisor, but this hange redues F 2

(F ·L)2 . Thus with these hanges we mayassume eah summand Cj of F satis�es the onditions imposed on D.By indution it is learly enough to hek that if D1 and D2 satisfy the ondi-tions on D, then
min

{
D2

1

(D1 · L)2
,

D2
2

(D2 · L)2
}

≤ (D1 +D2)
2

((D1 +D2) · L)2
.If we write D1 = aL − ∑

i aiEi and D2 = bL − ∑
i biEi, and assume thatthe minimum ours for i = 1, this is just a2−

∑
i
a2
i

a2 ≤ (a+b)2−
∑

i
(ai+bi)

2

(a+b)2 , or
1−

∑
i(

ai

a
)2 ≤ 1−

∑
i(

ai+bi
a+b

)2. I.e., it is enough to show that∑i(
ai

a
)2 ≥

∑
i(

ai+bi
a+b

)2if ∑i(
ai

a
)2 ≥ ∑

i(
bi
b
)2. Thus, given vetors v and w in Eulidean spae with non-negative entries and given positive reals a and b, we must show (v

a
)2 ≥ (v+w

a+b
)2 if

(v
a
)2 ≥ (w

b
)2.But b2v2 ≥ a2w2 by hypothesis, so b|v| ≥ a|w|, hene bv2 = b|v|2 ≥ a|w||v| ≥

av · w, so 2abv2 ≥ 2a2v · w and thus (a + b)2v2 = a2v2 + b2v2 + 2abv2 ≥ a2v2 +
a2w2 + 2a2v · w = a2(v + w)2, whene (v

a
)2 ≥ (v+w

a+b
)2.Exerise 1.4.9Let X be obtained by blowing up points p1, . . . , pr ∈ P

2.(a) Show that ε(P2; p1, . . . , pr) = inf
{

C·L∑
i
C·Ei

: C is prime and C · L > 0
}.



Global aspets of the geometry of surfaes [19℄(b) Show that ε′(P2; p1, . . . , pr) = ε(P2; p1, . . . , pr), where
ε′(P2; p1, . . . , pr) = sup

{m

d
: dL−m

∑

i

Ei ∈ NEF(X), d > 0
}
.Solution. (a) This just amounts to the easy fat that

d1 + d2
m1 +m2

≥ min

{
d1
m1

,
d2
m2

}
.By de�nition

ε(P2; p1, . . . , pr) = inf

{
d∑
i mi

: dL−
∑

i

miEi ∈ EFF(X), mi ≥ 0,
∑

i

mi > 0

}
.Suppose D = dL − ∑

imiEi ∈ EFF(X) satis�es the onditions of the de�nitionof ε(P2; p1, . . . , pr). Write D =
∑

iCi as a sum of lasses of prime divisors Ci.Deleting all Ci of the form Ej redues d∑
i
mi

, so we may assume Ci 6= Ej for all iand j. If for some i we have Ci ·Ej = 0 for all j, then deleting that Ci from the sumalso redues d∑
i
mi

. Hene we may assume that D = dL−∑
imiEi =

∑
i Ci, whereeah Ci is prime and satis�es the onditions in the de�nition of ε(P2; p1, . . . , pr).Write Ci = diL − ∑

j mijEj . Let µi =
∑

j mij . Then it su�es to show that
∑

i
di∑

i
µi

≥ mini{ di

µi
}, whih follows by repeated appliation of the easy fat above.(b) If aL− b
∑

i Ei ∈ NEF(X), then ad ≥ b
∑

imi whenever dL −∑
i miEi ∈

EFF(X). Thus
ε(P2; p1, . . . , pr) ≥ ε′(P2; p1, . . . , pr).Conversely, for any positive integers a and b suh that b

a
< ε(P2; p1, . . . , pr), wehave (aL−b

∑
iEi)·(dL−

∑
i miEi) ≥ 0 for all dL−∑

imiEi ∈ EFF(X), and hene
aL − b

∑
iEi ∈ NEF(X) so b

a
≤ ε′(P2; p1, . . . , pr). Sine we an hoose positiveintegers a and b suh that b

a
is less than (but arbitrarily lose to) ε(P2; p1, . . . , pr),the result follows.Exerise 1.4.10Let X be the blow up of P2 at r distint points p1, . . . , pr. Suppose F · C = 0for some F = dL −m

∑
i Ei ∈ NEF(X) and C = aL −∑

i miEi ∈ EFF(X) with
d > 0 and a > 0. Show that ε(P2; p1, . . . , pr) =

m
d
.Solution. Sine F ∈ NEF(X), learly ε(P2; p1, . . . , pr) ≥ m

d
. But

ε(P2; p1, . . . , pr) > m
d

would imply that F ′ = d′L − m′ ∑
i Ei ∈ NEF(X) forsome m′

d′
> m

d
, but in that ase F ′ · C < 0, ontraditing F ′ ∈ NEF(X).Exerise 1.4.11Let X be obtained by blowing up ollinear points p1, . . . , pr ∈ P

2. Show that
ε(P2; p1, . . . , pr) =

1

rand that equality holds in Corollary 1.3.4.



[20℄ Brian HarbourneSolution. Sine C = L − E1 − . . . − Er is the lass of a prime divisor and
F = rL − E1 − . . .− Er = (r − 1)L+ C is a sum of prime divisors eah of whih
F meets non-negatively, we see that F is nef. Clearly λL(X) ≤ C2

(C·L)2 = 1 − r.But F · C = 0, so ε(P2; p1, . . . , pr) =
1
r
by Exerise 1.4.10, and we have 1 − r =

1− 1
ε(P2;p1,...,pr)

.Remark 1 (on Exerise 1.4.11)Exerise 1.4.11 shows that equality holds in Corollary 1.3.4 when the points areollinear, but the onverse is not true. Here is an example where equality holdsbut the points are not ollinear. Suppose we onsider 9 points on a smooth ubi,three of whih are ollinear. Let X be obtained by blowing up the nine points. Theproper transform of the ubi is learly e�etive and (being prime of non-negativeself-intersetion) it also is nef so ε(P2; p1, . . . , pr) =
1
3 by Exerise 1.4.10, and theproper transform of the line through the three ollinear points has self-intersetion

−2, so −2 ≥ λL(X), hene −2 ≥ λL(X) ≥ 1− 1
ε(P2;p1,...,pr)

= −2.There is another way to look at what Exerise 1.4.11 tells us, however. Thesolution to Exerise 1.4.11 shows that λL(X) = 1 − r and ε(P2; p1, . . . , pr) =
1
r
ifthe points are ollinear. Conversely, if either λL(X) = 1− r or ε(P2; p1, . . . , pr) =

1
r
, then the points p1, . . . , pr ∈ P

2 are ollinear. For suppose ε(P2; p1, . . . , pr) =
1
r
.In any ase, F = (r−1)L−E1−. . .−Er = (L−E1−E2)+(L−E3)+. . .+(L−Er) ise�etive and the lasses of the prime omponents of L−E1−E2 onsist of lasses

Ej and L − E1 − E2 − Ej1 − . . . − Ejs , where p1, p2, pj1 , . . . , pjs are all of thepoints whih lie on the line through p1 and p2. If the points were not all ollinear,then there would be at most r − 1 suh points, so F would meet eah of itsprime omponents non-negatively. Thus F would be nef and we would have theontradition that 1
r
= ε(P2; p1, . . . , pr) ≥ 1

r−1 . Finally, suppose λL(X) = 1 − r.Sine F = rL−E1 − . . .−Er = (L−E1) + (L−E2) + (L−E3) + . . .+ (L−Er)is always nef, we see that ε(P2; p1, . . . , pr) ≥ 1
r
always holds. But this means wehave 1−r = λL(X) ≥ 1− 1

ε(P2;p1,...,pr)
≥ 1− 1

1
r

= 1−r, hene ε(P2; p1, . . . , pr) =
1
rwhih we saw above implies the points are ollinear.Exerise 1.4.12Find a set of points p1, . . . , pr ∈ P

2 suh that the inequality in Corollary 1.3.4 isstrit.Solution. Consider ten points p1, . . . , p10 on a smooth oni. From the solutionto Exerise 1.4.4, the only prime divisors C of negative self-intersetion omefrom the points, from the lines through pairs of points and from the oni itself.The in�mum de�ning λL(X) must ome from prime divisors C of negative self-intersetion. By just heking the possibilities we see λL(X) = − 6
4 omes from

C = 2L−E1−. . .−E10 ∈ EFF(X) and we also see F = 5L−E1−. . .−E10 = C+3Lis nef. Sine F · C = 0, by Exerise 1.4.10 we see ε(P2; p1, . . . , pr) =
1
5 and hene

λL(X) = − 6
4 ≥ 1− 1

ε(P2;p1,...,pr)
= −4.



Global aspets of the geometry of surfaes [21℄Exerise 1.4.13Let X be a rational surfae suh that K2
X = 0 but −KX 6∈ NEF(X). Show that

−KX is big (i.e., some positive multiple −mKX is e�etive and an be written as
−mKX = M +N , where M and N are e�etive and M2 > 0).Solution. By Exerise 1.4.6, −KX ∈ EFF(X). Sine −KX is not nef, thereis a prime divisor C suh that −KX · C < 0. Thus −KX − C is e�etive heneso is −mKX − C for m ≥ 1, and (−mKX − C)2 = (2m − 1)KX · C + (KX ·
C + C2) = (2m − 1)KX · C + 2pC − 2, so (−mKX − C)2 > 0 for m ≥ 2. Thus
−mKX = (−mKX − C) + C is big for m ≥ 2.Exerise 1.4.14Let X = Xr+1 be the rational surfae suh that X1 = P

2, and for eah i ≥ 1,
Xi+1 → Xi is the blow up of pi, where p1 ∈ X1 is a �ex of an irreduible planeubi C, and then for eah i ≥ 1, pi+1 is the point of the proper transform of C on
Xi+1 in�nitely near to pi. (Thus p1, . . . , pr are essentially distint points.) Assume
r ≥ 3. Show that the lass of any prime divisor D with D2 < 0 is either Er , or
Ei − Ei+1 for 1 ≤ i < r, or L− E1 − E2 − E3 or D = −KX (if r > 9), and showthat a divisor lass F is nef if and only if −KX · F ≥ 0 and F is a non-negativeinteger linear ombination of L, L − E1, 2L − E1 − E2, 3L − E1 − E2 − E3, . . .,
3L−E1− . . .−Er = −KX . Conlude that EFF(X) is generated by Er, Ei−Ei+1for 1 ≤ i < r, L− E1 − E2 − E3 and D = −KX .Solution. It is easy to see that eah of the lasses listed is the lass of a primedivisor D with D2 < 0; for example, L − E1 − E2 − E3 is the lass of the propertransform of the line tangent to C at p1 (i.e., the �ex line), while the the lass of theproper transform of C to X is 3L−E1− . . .−Er = −KX , whih has negative self-intersetion exatly when r > 9. Suppose D = aL− a1E1 − . . .− arEr is the lassof a prime divisor with D2 < 0 whih is not in the given list. Then D meets eahof the listed lasses non-negatively; i.e., D ·Er ≥ 0 (so ar ≥ 0), D · (Ei−Ei+1) ≥ 0(so ai ≥ ai+1 for eah i = 1, . . . , r − 1, hene a1 ≥ a2 ≥ . . . ≥ ar ≥ 0) and
D · (L − E1 − E2 − E3) ≥ 0 (so a ≥ a1 + a2 + a3). It is not hard to see the non-negative integer linear ombinations of L, L−E1, 2L−E1−E2, 3L−E1−E2−E3,
. . ., 3L−E1− . . .−Er = −KX are preisely the lasses whih meet Er, Ei−Ei+1for i > 0 and L− E1 − E2 −E3 non-negatively (see [19℄). But eah of L, L−E1,
2L−E1 −E2, 3L−E1 −E2 −E3, . . ., 3L−E1 − . . .−Er = −KX is a sum of thelisted lasses of negative self-intersetion (for example,

L = (L− E1 − E2 − E3) + ((E1 − E2) + . . .+ (Er−1 − Er) + Er)

+ ((E2 − E3) + . . .+ (Er−1 − Er) + Er)

+ (E3 − E4) + . . .+ (Er−1 − Er) + Erand 3L − E1 − . . . − Er−1 = −KX + Er; moreover, if r = 9, then −KX =
3(L−E1−E2−E3)+2(E1−E2)+4(E2−E3)+6(E3−E4)+5(E4−E5)+4(E5−
E6)+. . .+(E8−E9), if r = 8, then −KX = 3(L−E1−E2−E3)+2(E1−E2)+4(E2−
E3)+6(E3−E4)+5(E4−E5)+4(E5−E6)+3(E6−E7)+2(E7−E8)+E8, et.).Thus D · (−KX) ≥ 0 implies D is a sum of lasses of negative self-intersetion,



[22℄ Brian Harbourneeah of whih it meets non-negatively, so D2 ≥ 0. Thus our list of lasses of primedivisors of negative self-intersetion is omplete. Beause F meets Er , Ei − Ei+1for i > 0 and L−E1−E2−E3 non-negatively if F is nef, this also shows that anynef lass F is a non-negative integer linear ombination of L, L−E1, 2L−E1−E2,
3L− E1 − E2 − E3, . . ., 3L− E1 − . . .− Er = −KX .Sine eah of L, L−E1, 2L−E1−E2, 3L−E1−E2−E3, . . ., 3L−E1−. . .−Er =
−KX is a non-negative integer linear ombination of the listed lasses of negativeself-intersetion, we see the latter generate EFF(X), and we also see that a lass Fis nef if and only if it is a non-negative integer linear ombination F of L, L−E1,
2L−E1−E2, 3L−E1−E2−E3, . . ., 3L−E1− . . .−Er = −KX with −KX ·F ≥ 0.2. Leture: Abnormality2.1. Abnormal CurvesOne of the di�ulties in studying Conjeture 1.2.1 and Problem 1.3.1 is thepossibility of there being in�nitely many prime divisors C with C2 < 0, possibly(for all anyone knows) even with C2 arbitrarily negative. As an intermediate step,it might be worthwhile to de�ne and study a lass of e�etive divisors C with
C2 < 0 whih are so bad as to form a �nite set. Doing so turns out to have usefulappliations to omputing ε(P2; p1, . . . , pr).Definition 2.1.1Consider a surfae X obtained by blowing up a �nite set of points p1, . . . , pr ∈ P

2.Let C = dL −
∑

imiEi ∈ EFF(X) and assume mi ≥ 0 for all i with mi > 0 forsome i. Working formally (i.e., in Cl(X) ⊗Z Q), let C = dL − m
∑

i Ei, where
m =

∑
i
mi

r
. Following Nagata [31℄, we say C is abnormal if C2

< 0. This isequivalent to d∑
i
mi

< 1√
r
, and also to d

rm
< 1√

r
.We note that not every urve C with C2 < 0 is abnormal (see Exerise 2.3.1);in fat, X has at most �nitely many prime divisors whih are abnormal urves(see Exerise 2.3.2), but X an have in�nitely many prime C with C2 < 0 (seeExerise 1.4.7).One appliation of the onept of abnormality is to omputing ε(P2; p1, . . . , pr):Theorem 2.1.2Let X be a surfae obtained by blowing up a �nite set of points p1, . . . , pr ∈ P

2.Then ε(P2; p1, . . . , pr) <
1√
r
if and only if X has an abnormal prime divisor.Solution. If X has an abnormal prime divisor, then ε(P2; p1, . . . , pr) < 1√

rfollows by de�nition of ε. Conversely, assume ε(P2; p1, . . . , pr) <
1√
r
. Then thereis a lass C = dL − ∑

i miEi ∈ EFF(X) with d∑
i
mi

< 1√
r
and hene C

2
< 0.Write C =

∑
i Ci as a sum of prime divisors Ci. We may assume no summand isof the form Ej , sine after removing all suh summands we still have an abnormalurve. Thus every summand Cj is of the form djL−∑

i mijEi with mij ≥ 0. Now



Global aspets of the geometry of surfaes [23℄
C =

∑
iCi, so C

2
=

∑
ij Ci · Cj < 0 hene Ci · Cj < 0 for some i and j. But ifneither Ci nor Cj were abnormal, then it is easy to see that Ci · Cj ≥ 0.Corollary 2.1.3Let X be a surfae obtained by blowing up a �nite set of points p1, . . . , pr ∈ P

2. Ifthere are no prime divisors on X whih are abnormal, then ε(P2; p1, . . . , pr) =
1√
r
.If there are abnormal prime divisors on X, then ε(P2; p1, . . . , pr) =

d∑
i
mi

< 1√
rfor some abnormal prime divisor C = dL−∑

imiEi.Solution. The �rst statement follows from Theorem 2.1.2. The seond followsfrom the fat that there are only �nitely many abnormal prime divisors and henethe in�mum in the de�nition of ε(P2; p1, . . . , pr) as given in (1) is atually aminimum (see Exerises 1.4.9(a) and 2.3.2). The fat that d∑
i
mi

< 1√
r
is just thede�nition of abnormality.The values of ε(P2; p1, . . . , pr) are known when X is obtained by blowing up

r generi points of P2 if either r ≤ 9 or r is a square. It is an open problem toompute ε(P2; p1, . . . , pr) when r > 9 is not a square. There is a long-standingonjeture, however, whih implies (and in fat is equivalent to) ε(P2; p1, . . . , pr) =
1√
r
for r > 9:Conjeture 2.1.4 (Nagata [32℄)If X is obtained by blowing up r > 9 generi points of P2, then X has no abnormalurves.Nagata proved this when r is a square [32℄. The onjeture is still open, al-though it is known in various speial ases. For example, the onjeture is equiv-alent to:Conjeture 2.1.5If dL − m(E1 + . . . + Er) ∈ EFF(X) when X is obtained by blowing up r > 9generi points of P2, then d > m

√
r.By [22, Corollary 4.1℄, this is true when m ≤ t(t−3)

2 , where t = ⌊√r⌋. Inaddition, Dumniki shows Conjeture 2.1.5 is true when m ≤ 42.2.2. A Dual ProblemLetX be obtained by blowing up r points ofP2, and reall that ε(P2; p1, . . . , pr)is the supremum of 1
t
over all t suh that tL−∑

iEi ∈ NEF(X). There is a dualnotion whih Chudnovsky [5℄ attributes to Waldshmidt [44℄.Definition 2.2.1
γ(P2; p1, . . . , pr) = inf

{
d

m
: dL−m

∑

i

Ei ∈ EFF(X)

}
.



[24℄ Brian HarbourneClearly (as Chudnovsky [5℄ remarks), we have rε(P2; p1, . . . , pr) ≤
γ(P2; p1, . . . , pr). Also, sine d

m
>

√
r implies (dL − m

∑
i Ei)

2 > 0, we seein that ase for D = dL − m
∑

iEi that sD ∈ EFF(X) for s ≫ 0, hene
γ(P2; p1, . . . , pr) ≤ d

m
for all d

m
>

√
r; i.e., γ(P2; p1, . . . , pr) ≤ √

r. Thus wehave:Corollary 2.2.2
rε(P2; p1, . . . , pr) ≤ γ(P2; p1, . . . , pr) ≤

√
r.As Chudnovsky [5℄ points out, although in general rε(P2; p1, . . . , pr) <

γ(P2; p1, . . . , pr) (see Exerise 2.3.3), if the points p1, . . . , pr are generi we have
rε(P2; p1, . . . , pr) = γ(P2; p1, . . . , pr) (Exerise 2.3.4). Thus Nagata's onjeture(Conjeture 2.1.4) is equivalent to γ(P2; p1, . . . , pr) =

√
r for r > 9 generi pointsof P2. Chudnovsky [5℄ also remarks that γ(P2; p1, . . . , pr) is atually a limit:Proposition 2.2.3Let X be obtained by blowing up r distint points pi ∈ P
2. Then

γ(P2; p1, . . . , pr) = lim
m→∞

dm
m

,where dm is the least t suh that tL − m
∑

i Ei ∈ EFF(X). Moreover, for eah
n ≥ 1, we have

γ(P2; p1, . . . , pr) ≤
dn
n
.Solution. Clearly, drm ≤ rdm, so drm

rm
≤ dm

m
. Therefore, dm!

m! ≤ dn

n
for every

n|m!. Thus dm!

m! is a non-inreasing sequene, so limm→∞
dm!

m! exists; all it l. Givenany δ > 0, we hek for all n ≫ 0 that l ≤ dn

n
≤ l + δ. Pik m large enough that

l ≤ dm!

m! ≤ l + δ
2 . Say n ≥ m! and write n = a(m!) + c, where c is an integer with

0 ≤ c < m!. Then dn ≤ d(a+1)(m!) ≤ (a+ 1)dm! so
l ≤ dn!

n!
≤ dn

n
≤ (a+ 1)dm!

a(m!) + c
=

adm!

a(m!) + c
+

dm!

a(m!) + c
≤ dm!

m!
+

dm!

a(m!)

≤ l +
δ

2
+

dm!

a(m!)
,and for n ≫ 0 we will have a large enough suh that dm!

a(m!) ≤ δ
2 . We also now see

γ(P2; p1, . . . , pr) ≤ dn!

n! ≤ dn

n
.2.3. ExerisesExerise 2.3.1Let X be obtained by blowing up r points pi ∈ P

2.(a) Show that C2 ≤ C
2 for any divisor C on X .



Global aspets of the geometry of surfaes [25℄(b) If C1 = a0L −∑
i ai and C2 = b0L −∑

i bi, where a1 ≥ a2 ≥ . . . ≥ ar ≥ 0and b1 ≥ b2 ≥ . . . ≥ br ≥ 0, show that C1 · C2 ≤ C1 · C2.() If C1 and C2 are abnormal, show that C1 · C2 < 0.(d) Give an example of a urve C with C2 < 0 but suh that C is not abnormal.Solution. (a) Let C = dL − ∑r
i=1 miEi. Thus we need to show that d2 −∑

im
2
i ≤ d2 − rm2; i.e., that ∑

i m
2
i ≥ rm2. Let v = (m1, . . . ,mr) and let

v = (m, . . . ,m). Then we need to show, with respet to the Eulidean dot produt,that 0 ≤ v2 − v2, but v2 = v · v, so 0 ≤ (v − v)2 = v2 + v2 − 2v · v = v2 − v2, asrequired.(b) If a =
∑

i
ai

r
and b =

∑
i
bi
r
, it su�es to show that ∑

i aibi ≥ rab. But
rab = a

∑
i bi, so we need only show ∑

i aibi ≥ a
∑

i bi. This is equivalent toshowing ∑
i(rai)bi ≥ (ra)

∑
i bi, where ra =

∑
i ai; i.e., we an redue to the asethat a is an integer. If a1, . . . , ar are not all equal, we an pik some j suh that

aj > a and some l suh that a > al. Let a′j = aj−1 and a′l = al+1, and a′i = ai for
i 6= j, l. Then∑

i(ai−a)2 >
∑

i(a
′
i−a)2 and∑

i aibi = (bj−bl)+
∑

i a
′
ibi ≥

∑
i a

′
ibi.By repeating this proedure we eventually obtain a sequene a′i, 1 ≤ i ≤ r, suhthat ∑i(a

′
i−a)2 = 0 and hene a = a′i for all 1 ≤ i ≤ r and so ∑

i aibi ≥
∑

i a
′
ibi =

rab.() Let C1 = aL − b
∑

iEi and let C2 = cL − d
∑

iEi. Then a
rb

< 1√
r
and

c
rd

< 1√
r
, so ac

rbd
< 1 so C1 · C2 < 0.(d) An easy example is given by L−E1−E1−0E3−0E4. For a more interestingexample, hoose an irreduible quarti plane urve C′ with a triple point. Blowup the triple point and eight additional points on C′. The proper transform of C′is C = 4L− 3E1 − E2 − . . .− E9. Then C

2
> 0 but C2 = −1. More generally, ifyou blow up 9 or more general enough points of P2, then there are in�nitely manyexeptional urves (i.e., the prime divisors E with E2 = E ·KX = −1) by Exerise1.4.7(), but by Exerise 2.3.2 at most �nitely many of them are abnormal.Exerise 2.3.2Let X be obtained by blowing up r points pi ∈ P

2. Then there are at most �nitelymany prime divisors C whih are abnormal. In fat, there are at most r + 1 ofthem [38℄.Solution. Suppose there were an in�nite set S of them. We get a mapping
φ:S → Sr by hoosing, for eah C ∈ S, a permutation π suh that if C =
dL−

∑
imiEi, then mπ(1) ≥ mπ(2) ≥ . . . ≥ mπ(r). Thus there must be two primedivisors C1 6= C2 with φ(C1) = φ(C2) if S is in�nite. Hene by Exerise 2.3.1(b, )we have C1 · C2 < 0, but C1 6= C2 implies 0 ≤ C1 · C2, whih is impossible.To see that there are at most r + 1, suppose there were more, say Ci, for

1 ≤ i ≤ t for t > r+1. Sine Cl(X) has rank r+1, there is a relation∑
imiCi = 0,where the Ci are distint. Let P =

∑
i,mi>0 miCi and let N = −

∑
i,mi<0 miCi.Then P − N = 0 hene P = N . Now, P is abnormal, hene P 2 < 0, but

P 2 = P ·N ≥ 0 whih is a ontradition.



[26℄ Brian HarbourneExerise 2.3.3Give an example suh that rε(P2; p1, . . . , pr) < γ(P2; p1, . . . , pr).Solution. Consider four points p1, . . . , p4, exatly three of whih (say p1, p2, p3)are ollinear. Let C = L−E1−E2−E3 and let Lij = L−Ei−Ej . Then F = 3L−
E1−E2−E3−E4 = C+L+(L−E4) andH = 3L−E1−E2−E3−2E4 = C+2(L−E4)are nef and C = 5L− 3E1 − 3E2 − 3E3 − 3E4 = 2C +L14 +L24 +L34 ∈ EFF(X).Sine H · C = 0, we see γ(P2; p1, . . . , pr) = 5

3 , and sine F · C = 0, we see byExerise 1.4.10 that ε(P2; p1, . . . , pr) =
1
3 .Exerise 2.3.4Let X be obtained by blowing up r generi points pi ∈ P

2.(a) Compute ε(P2; p1, . . . , pr) for eah r ≤ 9 and eah r whih is a perfet square.(b) Show that rε(P2; p1, . . . , pr) = γ(P2; p1, . . . , pr).Solution. (a) Suppose r = d2 is a perfet square. Let X ′ be obtained byblowing up r = d2 points p′i ∈ P
2 on a smooth plane urve C of degree d, henethe lass C′ = dL′−∑

iE
′
i of the proper transform of C is nef. Let X be obtainedby blowing up r = d2 generi points pi ∈ P

2. Sine by Theorem 1.1.7 for anydivisor tL′ −∑
i E

′
i ∈ NEF(X ′) we also have tL −∑

i Ei ∈ NEF(X) we see that
ε(P2; p′1, . . . , p

′
r) ≤ ε(P2; p1, . . . , pr). But C′ ∈ NEF(X ′)∩EFF(X ′) together with

(C′)2 = 0 implies that ε(P2; p′1, . . . , p
′
r) =

1
d
by Remark 1.3.2. On the other hand,

ε(P2; p1, . . . , pr) ≤ 1√
r
by Corollary 2.1.3. Thus ε(P2; p1, . . . , pr) =

1√
r
when r isa perfet square.For the ase of r ≤ 9 generi points, if C = tL −

∑
imiEi is the lass of anabnormal prime divisor, then so is C′ = tL−∑

im
′
iEi, where the m′

i are obtainedby a permutation of the mi suh that m′
1 ≥ m′

2 ≥ . . . ≥ m′
r. Given two abnormalprime divisors, C and D, we thus see that the permuted divisors C′ and D′ have

C′ ·D′ < 0, and hene C′ = D′. I.e., up to permutations, C and D are the same,so if X has any abnormal urve, that urve gives the value of ε(P2; p1, . . . , pr).Thus, sine C = L−E1−E2 is abnormal for r = 2 or 3, we see ε(P2; p1, p2) =
ε(P2; p1, p2, p3) = 1

2 . For r = 5 or 6, take C = 2L − E1 − . . . − E5 to see
ε(P2; p1, . . . , p5) =

2
5 . For r = 7, take C = 3L − 2E1 − E2 − . . . − E7 to see that

ε(P2; p1, . . . , p7) = 3
8 , and for r = 8, take C = 6L − 3E1 − 2E2 − . . . − 2E8 tosee that ε(P2; p1, . . . , p7) =

6
17 . (For the fat that 3L− 2E1 − E2 − . . .− E7 and

6L−3E1−2E2− . . .−2E8 are lasses of prime divisors, use Exerise 1.4.7 over theomplex numbers. More generally, one an use quadrati transforms to see that
3L − 2E1 − E2 − . . . − E7 and 6L − 3E1 − 2E2 − . . . − 2E8 are smooth rationalurves.)(b) Sine the points are generi, if C = tL−

∑
imiEi is the lass of an e�etivedivisor, then so is C′ = tL−∑

im
′
iEi, where the m′

i are obtained by any permuta-tion of the mi. Thus rC ∈ EFF(X) for any C = aL−a1E1− . . .−arEr ∈ EFF(X).But rC = raL − (a1 + . . . + ar)(E1 + . . . + Er) and ar
r(a1+...+ar)

= a
a1+...+ar

, so
rε(P2; p1, . . . , pr) ≥ γ(P2; p1, . . . , pr). This together with Corollary 2.2.2 gives
rε(P2; p1, . . . , pr) = γ(P2; p1, . . . , pr).



Global aspets of the geometry of surfaes [27℄3. Leture: Computation of Seshadri Constants3.1. Estimating Seshadri ConstantsGiven distint points pi ∈ P
2 we now onsider the problem of estimating

ε(P2; p1, . . . , pr). Getting an upper bound less than 1√
r
is, by Corollary 2.1.3,equivalent to showing the existene of abnormal urves, and this is often quitehard. Thus muh of the fous has been on getting inreasingly better lower bounds.There have been two main methods used for this. Both methods an be adaptedto studying Seshadri onstants on surfaes in general. For purposes of expositionwe will ontinue to fous on the ase of P2.The �rst method is to expliitly onstrut nef divisors. For example, if oneshows some divisor F = dL−m

∑
iEi is nef, then we know m

d
≤ ε(P2; p1, . . . , pr).This is the method used by [3℄, [18℄ and [17℄. Both authors �rst onstrut a nefdivisor F ′ = d′L−

∑
i miEi, and then use an averaging proess to get a nef divisorof the form F = dL −m

∑
i Ei.The seond main method is to rule out the possible ourrene of abnormalurves. This method has been applied by [45℄, [43℄, [40℄, [39℄, [20℄ and [21℄. Fun-damentally it depends on the fat that if F = tL−m

∑
iEi has F 2 > 0, then, aswe show below, there are only �nitely many lasses C = dL−

∑
i miEi that ouldpossibly be the lass of a prime divisor with F · C < 0 [20, Lemma 2.1.3℄. If onean show that none of these �nitely many lasses is the lass of a prime divisor,then F is nef and m

t
≤ ε(P2; p1, . . . , pr).Proposition 3.1.1Let X be obtained by blowing up distint points p1, . . . , pr ∈ P

2, with L and Eias usual. Assume that F = tL − m
∑

i Ei has F 2 > 0 and t > 0. Then there isan expliitly omputable �nite set SF of lasses whih ontains the lass of everyprime divisor C with C · F < 0 (if any).Proof. Sine F 2 > 0 and F · L > 0, we an �nd an expliit s suh that
sF ∈ EFF(X) (but the smaller s is the smaller SF will be).Let E =

∑
i Ei, and hoose nef divisors Hi that span Cl(X). For example,

H0 = L, and Hi = L − Ei for i > 0, or hoose hi > 0 large enough suh that
H0 = h0L − E and Hi = hiL − E − Ei are in EFF(X) ∩ NEF(X). (It is learthat h0 = r and hi = r + 1 will su�e, but the smaller one an hoose the hi thesmaller SF will be. Being able to hoose smaller values of the hi will depend onhaving some knowledge of how the points pi are arranged, sine if the points areollinear, then h0 = r and hi = r + 1 are best possible.)If C is the lass of a prime divisor with F ·C < 0, then sF −C and C are bothin EFF(X), hene both meet every Hi non-negatively so 0 ≤ C ·Hi ≤ sF ·Hi foreah i.Sine the lasses Hi generate Cl(X), if for two lasses C1 and C2 we have
C1 · Hi = C2 · Hi for all i, then C1 = C2. Thus there are only �nitely manypossible lasses C with 0 ≤ C ·Hi ≤ sF ·Hi for all i.When the r points pi are general, one an narrow down the set SF evenmore [38℄.



[28℄ Brian HarbourneLemma 3.1.2Let X be obtained by blowing up general points p1, . . . , pr ∈ P
2, with L and Ei asusual. Assume that C = dL −

∑
i miEi is abnormal; then all but at most one ofthe oe�ients mi are equal.Proof. By Exerise 2.3.2 there are at most r + 1 prime divisors C = dL −∑

imiEi whih are abnormal, but sine the points are general any permutation ofthe mi is again an abnormal prime divisor. We may assume that m1 ≥ . . . ≥ mr ≥
0. Suppose that there is an index i suh that m1 > mi > mr. Then there are i− 2permutations ωj whih are transpositions of mr with mj , where 1 < j < i. Thereare r− i− 1 more transpositions αj of m1 with mj , where i < j < r. In addition,there are six permutations in whih we permute m1, mi and mr with eah otheronly. This gives (i−2)+(r− i−1)+6 = r+3 distint permutations, ontraditingthere being at most r + 1 abnormal prime divisors. Thus at most two values anour among the mi. The only other possibility to be ruled out is if the two valueseah our at least twie. So assume that m1 = . . . = mj > mj+1 = . . . = mr,where r ≥ 4 and 2 ≤ j ≤ r− 2. The number of distint arrangements of the mi is(
r
j

). Looking at Pasal's triangle it is lear that (r
j

)
> r + 1. (Sine the entries inthe triangle we're interested in are on the row beginning 1 r . . ., but more thantwo spots from either end, we see (

r
j

) is the sum of two entries on the row aboveit, eah entry being at least r − 1, so (
r
j

)
≥ 2r − 2, hene 2r − 2 > r + 1, sine

r ≥ 4.)The restritions on possible abnormal prime divisors an be made even morestringent; see [20℄ and [21℄.Example 3.1.3Suppose we blow up six general points p1, . . . , p6. We will use the method ofruling out abnormal urves to hek that F = 5L− 2
∑

i Ei is nef, and hene that
ε(P2; p1, . . . , p6) ≥ 2

5 . Sine C = 2L−E1− . . .−E5 ∈ EFF(X) has F ·C = 0, thisshows ε(P2; p1, . . . , p6) =
2
5 by Exerise 1.4.10.First, note that H0 = 3L−∑

i Ei = (2L−E1− . . .−E4)+(L−E5−E6) is nef,sine eah summand is the lass of a prime divisor whih H0 meets non-negatively.Also, Hi = H0 − Ei ∈ NEF(X). For example, H5 = (2L− E1 − . . .− E5) + (L−
E5 − E6), but H5 meets eah summand non-negatively, eah of whih is the lassof a prime divisor.Suppose C is the lass of a prime divisor suh that 0 > C · F . Then C isabnormal and by Lemma 3.1.2 we may (after reindexing, if need be) assume that
C = dL − m

∑
iEi − kE1 for some k. First suppose k = 0. Then we have

0 ≤ C ·H0 = 3d− 6m ≤ F ·H0 = 3, 0 ≤ C ·H1 = 3d− 7m ≤ F ·H1 = 1.Thus 7m ≤ 3d ≤ 6m + 3, so m ≤ 3. For m = 1 we get d = 3 (whih fails
5d − 12m = F · C < 0), for m = 2 we get d = 5 (whih also fails 5d − 12m < 0),and for m = 3 we get d = 7. But sine C is supposed to be a prime divisor itshould satisfy adjuntion and thus must have −2 ≤ C2 + C · KX , but for d = 7with m = 3 we �nd C2 + C ·KX = −8.So suppose C = dL−m

∑
iEi−kE1 for some k > 0 so 5d−12m−2k = C ·F < 0.We have 0 ≤ C ·H0 = 3d− 6m− k ≤ F ·H0 = 3 and 0 ≤ C ·H1 = 3d− 7m− 2k ≤
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F · H1 = 1. Thus 7m + 2k ≤ 3d ≤ 6m + k + 3, so m + k ≤ 3. Thus (d,m, k)is either (1, 0, 1), (2, 0, 3) or (3, 1, 1), giving C = L − E1 (whih fails F · C < 0),
C = 2L−3E1 (whih is not in EFF(X)), and C = 3L−2E1−E2− . . .−E6 (whihalso fails F · C < 0).Finally, assume C = dL−m

∑
i Ei − kE1 for some k < 0, so 5d− 12m− 2k =

C · F < 0. Sine C should be the lass of a prime divisor with C · L > 0, we have
C ·Ei ≥ 0 for all i, hene −k ≤ m. We have 0 ≤ C ·H0 = 3d−6m−k ≤ F ·H0 = 3and 0 ≤ C ·H1 = 3d−7m−2k ≤ F ·H1 = 1. Thus 7m+2k ≤ 3d ≤ 6m+k+3 andhene also 5m ≤ 7m+ 2k ≤ 3d. Sine F = (2− E1 − . . .− E5) + (2 − E2 − . . .−
E6) + (L − E1 − E6), we see F ∈ EFF(X), hene F − C should also be e�etive,so d ≤ 5, whene 5m ≤ 3d ≤ 15 implies 1 ≤ −k ≤ m ≤ 3. The simultaneoussolutions to 7m+ 2k ≤ 3d ≤ 6m+ k+ 3, 1 ≤ −k ≤ m ≤ 3 and 5d− 12m− 2k < 0are (d,m, k) ∈ {(5, 3,−3), (6, 3,−2), (4, 2,−1)}. None of these are e�etive. Forexample, E = 2L−E2− . . .−E6 is a prime divisor, but C = 5L−3(E2+ . . .+E6)for (d,m, k) = (5, 3,−3); sine E · C < 0, C − E is e�etive if C is, and likewiseso are C − 2E and C − 3E, but C − 3E = −L is not e�etive, hene neither is C.The same argument handles the other two ases.Thus F is nef, as laimed.We now give an example of the alternative approah using the method of [18℄and [17℄, based on the idea of unloading [35℄.Proposition 3.1.4Let d, r, n be positive integers suh that r < d

√
n and r ≤ n. Then for n generalpoints pi, we have

ε(P2; p1, . . . , pn) ≥
r

nd
.Proof. It is enough to show that ndL−r(E1+. . .+En) ∈ NEF(X), where X isthe blow up ofP2 at general points p1, . . . , pn. By Theorem 1.1.6(b), it is enough to�nd essentially distint points p′i of X1 = P

2 suh that ndL′ − r(E′
1 + . . .+E′

n) ∈
NEF(X ′

n+1). Choose any smooth plane urve C1 of degree d. Let p′1 ∈ C1.Reursively, let X ′
i+1 be the blow up of X ′

i at p′i, let Ci+1 be the proper transformof Ci, and let p′i+1 be the point of Ci+1 in�nitely near to p′i. This de�nes p′1, . . . , p′r.If n > r, for r < i ≤ n, hoose p′i to be in�nitely near to p′i−1 but hoose p′r+1 notto be on Cr+1.Thus dL′ −E′
1 − . . .−E′

r is the lass of Cr+1, i.e., the proper transform of C1,hene the lass of a prime divisor, as are E′
i −E′

i+1 for eah 1 ≤ i < n and E′
n. Inpartiular E′

i−E′
j ∈ EFF(X ′

n+1) for every j > i, and hene so is E′
1+. . .+E′

r−rE′
ifor every i > r. Sine ndL′ − n(E′

1 + . . .+ E′
r) ∈ EFF(X ′

n+1), we see
F = ndL′ − r(E′

1 + . . .+ E′
n)

= (ndL′ − n(E′
1 + . . .+ E′

r)) +
∑

r<i≤n

(E′
1 + . . .+ E′

r − rE′
i)

∈ EFF(X ′
n+1)



[30℄ Brian Harbourne(this is the unloading step). The irreduible omponents of this sum are Cr+1 and
E′

i − E′
i+1 for various i, but F meets eah one non-negatively (this is lear for

E′
i−E′

i+1, and F ·Cr+1 ≥ 0 sine nd2− r2 > 0). So F ∈ NEF(X ′
n+1), as required.As another variation we have:Proposition 3.1.5Let d, r, n be positive integers suh that n ≥ r > d

√
n. Then for n general points

pi ∈ P
2, we have

ε(P2; p1, . . . , pn) ≥
d

r
.Proof. See Exerise 3.2.3.Example 3.1.6Again suppose we blow up six general points p1, . . . , p6; let X be the surfae weobtain. Then 5 > 2

√
6, so by Proposition 3.1.5, we see that ε(P2; p1, . . . , p6) ≥ 2

5and hene that F = 5L − 2
∑

i Ei ∈ NEF(X). Sine C = 2L − E1 − . . . − E5 ∈
EFF(X) and F ·C = 0, we see by Remark 1.3.2 that in fat ε(P2; p1, . . . , p6) =

2
5 .3.2. ExerisesExerise 3.2.1Compute ε(P2; p1, . . . , pr) and γ(P2; p1, . . . , pr) for every hoie of r < 9 distintpoints of P2.Solution. This an be done using the various possibilities (worked out in [12℄)for EFF(X) where X is the blow up of P2 at the r points. Some of these asesare disussed in [5℄.Exerise 3.2.2Let X be the blow up of 12 general points. Study whether F = 7L− 2(E1 + . . .+

E12) is nef, using the method of Example 3.1.3.Solution. It is nef, using Proposition 3.1.5 with r = 7 and d = 2. However,using the method of Example 3.1.3 one is left with showing that in none of thefollowing ases is C = dL − (m + k)E1 − m(E2 + . . . + E12) an abnormal primedivisor:
d = 7 m = 2 k = 1,
d = 10 m = 3 k = 0,
d = 3 m = 1 k = −1.This is lear for the last ase, sine 3L − E1 − . . . − E11 is not e�etive. Theother two ases are harder to eliminate, but it is known that exept for a fewexeptional ases whih do not our here that general points of small multipliityimpose independent onditions on urves of degree d, if there are urves of degree

d passing through the points with the spei�ed multipliities. (How big �small� iskeeps inreasing as more researh is done, but ertainly multipliity at most 3 isovered by the results; see [7℄.)



Global aspets of the geometry of surfaes [31℄Exerise 3.2.3Let d, r, n be positive integers suh that n ≥ r > d
√
n. Then for n general points

pi ∈ P
2, we have

ε(P2; p1, . . . , pn) ≥
d

r
.Solution. Mimi the proof of Proposition 3.1.4. It is enough by the semi-ontinuity priniple to �nd essentially distint points p′i of X1 = P

2 suh that
rdL′ − d2(E′

1 + . . . + E′
n) ∈ NEF(X ′

n+1). Choose any smooth plane urve C1 ofdegree d. Let p′1 ∈ C1. Reursively, let X ′
i+1 be the blow up of X ′

i at p′i, let Ci+1be the proper transform of Ci, and let p′i+1 be the point of Ci+1 in�nitely near to
p′i. This de�nes p′1, . . . , p′r. If n > r, for r < i ≤ n, hoose p′i to be in�nitely nearto p′i−1 but hoose p′r+1 not to be on Cr+1.Thus dL′ −E′

1 − . . .−E′
r is the lass of Cr+1, i.e., the proper transform of C1,hene the lass of a prime divisor, as are E′

i − E′
i+1 for eah 1 ≤ i < n and E′

n.In partiular E′
i − E′

j ∈ EFF(X) for every j > i. Sine rdL′ − r(E′
1 + . . .+ E′

r) ∈
EFF(X ′

n+1) and sine r2 > nd2, by adding to rdL′ − r(E′
1 + . . .+ E′

r) the lasses
mnE

′
n and mij(E

′
i − E′

j) with i ≤ r and j > r for appropriate hoies of mij ≥ 0(this is the unloading step), we obtain F = rdL′ − d2(E′
1 + . . .+E′

n) with F 2 > 0.But F · Cr+1 = 0, F · (E′
i − E′

j) = 0 and F · E′
r > 0, so F ∈ NEF(X ′

n+1), asrequired.Exerise 3.2.4Show F = 5L−E1 − . . .−E21 is ample, when the Ei are obtained by blowing up21 general points pi of P2.Solution. By Proposition 3.1.4, using r = 9 and d = 2, we see that
ε(P2; p1, . . . , p21) ≥

9

42
.ThusD = 42L−9(E1+. . .+E21) ∈ NEF(X), so learly 45L−9(E1+. . .+E21) = 9F(and even 43L − 9(E1 + . . . + E21), for that matter) is ample by the Nakai�Moiseson riterion [23℄ sine F 2 > 0 and F meets every urve positively (anyprime divisor orthogonal to D must meet D + L positively, sine the only primedivisors orthogonal to L are the Ei, whih meet D positively).4. Leture: The Containment Problem (an appliation to CommutativeAlgebra)4.1. BakgroundThe notions we've disussed above an be applied to questions of ommutativealgebra, espeially problems involving ideals of fat points. Let p1, . . . , ps ∈ P

n bedistint points. Let R = k[Pn] = k[x0, . . . , xn] be the homogeneous oordinate ringof Pn. Let I(pi) ⊂ R be the ideal generated by all forms vanishing at pi. Given a0-yle Z = m1p1 + . . . +msps (i.e., an element in the free abelian group on thepoints pi) with mi ≥ 0 for all i, let I(Z) be the homogeneous ideal ⋂i I(pi)
mi .



[32℄ Brian HarbourneThis is a saturated ideal whih de�nes a 0-dimensional subsheme of P
n. Wewill abuse notation and use the 0-yle Z = m1p1 + . . . + msps to denote thissubsheme, whih we refer to as a fat point subsheme. We will denote the sheafof ideals orresponding to I(Z) by IZ , hene I(Z) =

⊕
t≥0 H

0(Pn, IZ(t)), where
IZ(t) = IZ ⊗OPnOPn(t). In fat, more is true:Proposition 4.1.1Given distint points pi ∈ P

n and integers mi. Let Z be the fat point sheme∑
mi≥0 mipi, let π:X → P

n be the morphism obtained by blowing up the points
pi, let H be the pullbak to X of a general hyperplane and let Ei be the blowup of pi. Then there is a natural isomorphism IZ(t) ∼= π∗(OX(tH − ∑

i miEi))suh that H0(Pn, IZ(t)) ∼= H0(X,OX(tH − ∑
i aiEi)) and so I(Z) an be iden-ti�ed with ⊕

t≥0 H
0(X,OX(tH −

∑
imiEi)). Moreover, if mi ≥ 0 for all i, then

Hq(Pn, IZ(t)) ∼= Hq(X,OX(tH −∑
i aiEi)) holds for all q ≥ 0.Proof. First, IZ =

∏
mi≥0 Imi

pi
. If m ≥ 0 and π is the blow up of a singlepoint p ∈ P

n where we set E = π−1(p), then we have a natural morphism Im
p →

π∗(π
−1Im

p ) whih indues a morphism Im
p → π∗(π

−1Im
p · OX) = π∗OX(−mE)and thus

IZ =
∏

mi≥0

Imi

pi
→

∏

mi≥0

π∗OX(−miE) = π∗OX

( ∑

mi≥0

−miE

)

→֒ π∗OX

(∑

i

−miE
)
.By the projetion formula ([23, Exerise II.5.1(d)℄), we have a natural isomorphism

π∗

(
OX

(
tH −

∑

i

miEi

))
∼= OPn(t)⊗ π∗

(
OX

(
−
∑

i

miEi

))
,so IZ(t) ∼= π∗(OX(tH −

∑
i miEi)) follows if we show that IZ ∼=

π∗(OX(−∑
imiEi)).This is trivial if n = 1, sine then blowing up has no e�et. So assume n >

1. For onveniene we write L for OX(−
∑

i miEi), notationally suppressing itsdependene on the mi.We start by noting that π∗OX = OPn . (See the argument of [23, CorollaryIII.11.4℄: sine π is projetive by [23, Proposition II.7.16()℄, π∗OX is oherent.Thus π∗OX is loally a sheaf of �nitely generated OPn -modules. Sine π is bira-tional, on any a�ne open of Pn, the ring B given by π∗OX and the ring A givenby OPn both have the same funtion �eld, with A being integrally losed sine Pnis smooth, hene normal and B being module �nite over A sine π is projetiveand OX and hene π∗OX are oherent [23, Corollary II.5.20℄; i.e., B is an integralextension of the integrally losed ring A, with the same funtion �eld, so A = Band thus π∗OX = OPn .)Now we show that π∗OX(−miEi) is either OPn (if mi ≤ 0) or Imi

pi
(if mi > 0).If mi ≤ 0, then we have a morphism OX → OX(−miEi), hene OP2 = π∗OX →
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π∗OX(−miEi). This is learly an isomorphism exept possibly at the point pi.Let pi ∈ U be an a�ne open neighborhood. Consider the ommutative diagram

OPn(U)
∼=→ OX(π−1(U)) →֒ OX(−miEi)(π

−1(U))

↓ ↓
OPn(U \ {pi}) → OX(−miEi)(π

−1(U) \ Ei)The left vertial arrow is an equality by [23, Exerise I.3.20℄ (see also [23, Propo-sition II.6.3A℄) or by [23, Exerise III.3.5℄ and the right vertial arrow is in-jetive sine X is integral. The bottom arrow is also an isomorphism (sine
U \ {pi} ∼= π−1(U)\ {π−1(pi)} = π−1(U)\Ei), hene the other arrows are isomor-phisms too, whene π∗OX(−miEi) ∼= OPn .If mi > 0, onsider the anonial morphism Imi

pi
→ π∗(π

−1Imi

pi
· OX) =

π∗OX(−miEi). Now, π∗(π
−1Imi

pi
) is the sheaf assoiated to the presheaf U 7→

Imi

pi
(U), hene π∗(π

−1Imi

pi
· OX) is the sheaf assoiated to the presheaf U 7→

Imi

pi
(U) ·OX(π−1(U)) = Imi

pi
(U) ·OP2(U) = Imi

pi
(U). I.e, the anonial sheaf mor-phism Imi

pi
→ π∗OX(−miEi) omes from an isomorphism of presheaves, hene isan isomorphism itself.Thus IZ → π∗L is loally an isomorphism hene it is an isomorphism, so

H0(Pn, IZ(t)) ∼= H0(Pn, π∗L(t)) = H0
(
X,OX

(
tH −

∑

i

miEi

))
.Now assume that mi ≥ 0 for all i and let L denote OX(tH −

∑
imiEi) for anarbitrary integer t. We onlude by applying [23, Exerise III.8.1℄, showing that

H l(X,L) = H l(Pn, π∗L) for all l > 0. For this we need to show that Rlπ∗L = 0for all l > 0, and to do this it is enough to hek that the stalks vanish. Thisis lear at points away from eah point pi sine π is an isomorphism then. Thus
Rlπ∗L has support at most at the points pi, hene at pi it is equal to the inverselimit of H l(jEi,OjEi

(mi)) over j by [23, Theorem III.11.1℄ (as in the proof of[23, Corollary V.3.4℄), where OjEi
(mi) denotes OjEi

⊗OX
OX(−miEi). Thus itsu�es to show that H l(jEi,OjEi

(mi)) = 0. Look at the exat sequene 0 →
OX(−jEi) → OX → OjEi

→ 0 and tensor through by OX((mi + j)H −miEi) toget 0 → OX((mi + j)(H −Ei)) → OX((mi + j)H −miEi) → OjEi
(mi) → 0. Theresult will follow by showing that hl(X,OX(aH − bEi)) = 0 for all l > 0 if a ≥ b.Let Y be a prime divisor whose lass is H − Ei if b > 0 or just H if b = 0.Consider 0 → OX(−Y ) → OX → OY → 0 and tensor through by OX(aH − bHi)to get 0 → OX(a′H − b′Ei) → OX(aH − bEi) → OY (aH

′ − bE′
i) → 0, where

H ′ = H ∩ Y , E′
i = Ei ∩ Y , a′ = a − 1 and b′ is the maximum of b − 1 and 0.Taking ohomology of this exat sequene shows that hl = 0 for the ends for all

l > 0, then hl = 0 for the middle term for all l > 0. Sine OY (aH
′ − bE′

i) is ofthe same form as what we wish to prove, but in dimension one less, and sine theresult is true in dimension 1 (i.e., when Y = P
1), we may assume the rightmostterm has hl = 0 for all l > 0 by indution. Showing the same for the leftmostterm eventually redues to showing hl(X,OX) = 0 for all l > 0. For this mimithe argument of [23, Proposition V.3.4℄.



[34℄ Brian Harbourne4.2. Symboli PowersLet P be a prime ideal in a polynomial ring R = k[x0, . . . , xn] over an alge-braially losed �eld k. By the Nullstellensatz, we know that P =
⋂

P⊆MmaximalM .The symboli power P (m) of P an be de�ned as P (m) =
⋂

Pm⊆MmaximalM
m (see[9, Theorem 3.14℄). This generalizes niely to the ase of an ideal I(Z) =
⋂
I(pi)of points p1, . . . , ps ∈ P

n, where we de�ne the m-th symboli power I(Z)(m) to be
I(Z)(m) =

⋂

i

(I(pi)
m).I.e., I(Z)(m) = I(mZ), wheremZ is the fat point shememp1+ . . .+mps. (This isonsistent with the de�nition of symboli powers used in [24℄, in terms of primarydeompositions.)We will for simpliity fous here on the ase of symboli powers of ideals ofpoints in projetive spae. See [34℄ for greater generality.4.3. The Containment ProblemLet Z = p1 + . . .+ ps ⊂ P

n and let I = I(Z). Clearly, Im ⊆ I(m). In fat, wehave:Lemma 4.3.1Let Z = p1 + . . .+ ps ⊂ P
n and let I = I(Z) ⊆ R = k[Pn]. Then Ir ⊆ I(m) if andonly if r ≥ m.Proof. See Exerise 4.6.1.Understanding the reverse ontainment is a muh harder largely open problem:Problem 4.3.2Let Z = p1 + . . . + ps ⊂ P
n and let I = I(Z) ⊆ R = k[Pn]. Determine all r and

m suh that I(m) ⊆ Ir.Sine I(m) ⊆ Ir implies Im ⊆ I(m) ⊆ Ir ⊆ I(r), by Lemma 4.3.1 we see m ≥ r.Also, I(1) = I1, and learly, m′ ≥ m implies I(m
′) ⊆ I(m), so we an restateProblem 4.3.2 as:Problem 4.3.3Let Z = p1+ . . .+ps ⊂ P

n and let I = I(Z) ⊆ R = k[Pn]. Given r ≥ 2, determinethe least m ≥ r suh that I(m) ⊆ Ir.As an asymptoti �rst step, this suggests the following de�nition and problem:Definition 4.3.4 ([4℄)Let Z = p1 + . . . + ps ⊂ P
n and let I = I(Z) ⊆ R = k[Pn]. Then de�ne theresurgene of I to be

ρ(I) = sup
{m

r
: I(m) 6⊆ Ir

}
.



Global aspets of the geometry of surfaes [35℄Problem 4.3.5 ([4℄)Let Z = p1 + . . .+ ps ⊂ P
n and let I = I(Z) ⊆ R = k[Pn]. Compute or at leastgive bounds on ρ(I).It is not lear a priori that ρ(I) is even �nite. Results of Swanson [37℄ showed inmany ases that it is and inspired the results of [8℄ and [24℄. We state a simpli�edversion of the result of [24℄:Theorem 4.3.6Let Z = p1 + . . . + ps ⊂ P
n and let I = I(Z) ⊂ R = k[Pn]. Then I(nr) ⊆ Ir foreah r ≥ 1, hene ρ(I) ≤ n.Both for [8℄ and for [24℄, the proof essentially involves �nding an ideal J suhthat one an hek both that I(nr) ⊆ J and that J ⊆ Ir; [8℄ uses asymptotimultiplier ideals for J (see [41℄ for an exposition of this approah), while the proofof [24℄ uses Frobenius powers for J (with a dash of tight losure to get the generalresult). Example 4.3.10 exhibits the role of Frobenius powers; it is atually aspeial ase of the Hohster�Huneke proof of Theorem 4.3.6. For the example wewill need some results on Frobenius powers:Definition 4.3.7Let I ⊆ R = k[Pn] be an ideal. Assume char(k) = p > 0 and let q be a power of

p. De�ne the q-th Frobenius power I [q] of I to be the ideal generated by Iq.Proposition 4.3.8Let I, J ⊆ R = k[Pn] be ideals, where char(k) = p > 0 and q is a power of p. Then
(I ∩ J)[q] = I [q] ∩ J [q].Proof. See [26, Lemma 13.1.3℄ or [34, Example 8.4.4℄.To apply Lemma 4.3.8, we will also want to note:Lemma 4.3.9Let I ⊆ R = k[Pn] be an ideal generated by s elements, and assume char(k) = p > 0and q is a power of p. Then Isq ⊆ I [q].Proof. See Exerise 4.6.2.Example 4.3.10Consider Z = p1+. . .+ps ⊂ P

n and let I = I(Z) ⊆ R = k[Pn]. Assume char(k) =
p > 0 and that q is a power of p. Then I(pi)

qn ⊆ I(pi)
[q] by Lemma 4.3.9 sinethe ideal of a point in P

n is generated by n linear forms, so I(qn) =
⋂

i I(pi)
qn ⊆⋂

i I(pi)
[q] ⊆ (

⋂
i I(pi))

[q] ⊆ Iq by Proposition 4.3.8 and the obvious fat that
I [q] ⊆ Iq.



[36℄ Brian Harbourne4.4. Estimating the ResurgeneIn this setion we show how to use γ from De�nition 2.2.1 and the regularity ofan ideal to give bounds on ρ(I). First we show how to interpret γ in this ontext.Given points p1, . . . , ps ∈ P
n, let I = I(Z) for Z = p1+ . . .+ps. De�ne γ(I) to bethe in�mum of dm

m
, where dm is the least degree t suh that I(m) ontains a nonzeroform of degree t. (By Proposition 4.1.1, this is onsistent with De�nition 2.2.1;i.e., γ(I) = γ(P2; p1, . . . , ps).) As in Proposition 2.2.3, this is atually a limitwhih is dereasing on multipliative subsequenes; i.e., dms

ms
≤ dm

m
for all s > 0.More generally, given a homogeneous ideal 0 6= J ⊆ k[Pn], we will denote the leastdegree t suh that J ontains a nonzero form of degree t by α(J). Thus α(J) is thedegree in whih the ideal starts (hene the use of the �rst letter, α, of the Greekalphabet to denote this onept). One an also regard α(J) as the M -order of J ,where M is the ideal generated by the variables (i.e., α(J) is the greatest powerof M ontaining J).As noted by the remark after Exerise 1.4.11, ε(P2; p1, . . . , ps) ≥ 1

s
, hene byCorollary 2.2.2 we have γ(I) ≥ 1. By a similar argument, this remains true for

P
n. In partiular, γ(I) > 0, so it makes sense to divide by γ(I).Given a homogeneous ideal J ⊆ R = k[Pn], for any t ≥ 0 let Jt be the k-vetorspae span of the forms of degree t in k (alled the homogeneous omponent of

J of degree t). Note that R/J is also graded; we de�ne (R/J)t to be Rt/Jt. Wereall that the regularity reg(I) of I is the least degree t ≥ 0 suh that (R/I)t and
(R/I)t−1 have the same vetor spae dimension. We have the following theorem:Theorem 4.4.1 ([4℄)Let Z = p1 + . . .+ ps ⊂ P

n, let I = I(Z) and let r and m be positive integers.(a) If α(I(m)) < rα(I), then I(m) 6⊆ Ir.(b) If rreg(I) ≤ α(I(m)), then I(m) ⊆ Ir.() α(I)
γ(I) ≤ ρ(I) ≤ reg(I)

γ(I) .(d) If α(I) = reg(I), then I(m) ⊆ Ir if and only if α(I(m)) ≥ rα(I).Proof. (a) This is lear, sine α(Ir) = rα(I) and so in this ase I(m) has anonzero element of degree less than any nonzero element of Ir.(b) First we hek that rreg(I) ≤ α(I(m)) implies that r ≤ m. Sine Im ⊆
I(m), we see that α(I(m)) ≤ α(Im) = mα(I). But α(I) ≤ reg(I) sine for all
0 ≤ t < α(I) we have dimk(R/I)t > dimk(R/I)t−1. Thus rreg(I) ≤ α(I(m)) ≤
mα(I) ≤ mreg(I). But for any nonzero ideal I properly ontained in (x0, . . . , xn)we have α(I) > 0, so reg(I) > 0 and we see m ≥ r and hene I(m) ⊆ I(r).Now we use the fats that reg(Ir) ≤ r reg(I) and Irt = I

(r)
t for all t ≥ reg(Ir)[13℄; see also [1℄. Thus for t < rreg(I) ≤ α(I(m)) we have 0 = I

(m)
t ⊆ Irt , while for

t ≥ rreg(I) ≥ reg(Ir), we have I
(m)
t ⊆ I

(r)
t = Irt , so I

(m)
t ⊆ Irt holds for all t andwe have I(m) ⊆ Ir.



Global aspets of the geometry of surfaes [37℄() For any 0 < m
r
< α(I)

γ(I) , sine α(I)
γ(I) = lims→∞

msα(I)
α(I(ms))

by Proposition 2.2.3,for s ≫ 0 we have m
r
< msα(I)

α(I(ms))
, and hene α(I(ms)) < rsα(I), so I(ms) 6⊆ Irs for

s ≫ 0 by (a), hene m
r
= ms

rs
≤ ρ(I); i.e., α(I)

γ(I) ≤ ρ(I). And for any m
r
≥ reg(I)

γ(I) , wehave rreg(I) ≤ mγ(I) ≤ α(I(m)) so I(m) ⊆ Ir by (b) and hene ρ(I) ≤ reg(I)
γ(I) .(d) If α(I(m)) < rα(I), then ontainment fails by (a), while if α(I(m)) ≥ rα(I),then ontainment holds by (b).Example 4.4.2Let I be the ideal of p1, . . . , ps ∈ P

n for s =
(
d+n−1

n

) general points. Then
α(I) = reg(I) = d, hene I(m) ⊆ Ir if and only if α(I(m)) ≥ rα(I). Unfortunately,
α(I(m)) is not in general known. See however Exerise 4.6.3.4.5. A Question and a ConjetureThe paper [4℄ gives examples of redued shemes Zi ⊂ P

n of �nite sets of pointssuh that limi ρ(I(Zi)) = n. This shows that the bound given in Theorem 4.3.6is in some sense sharp. However, one an hope to do better. In fat, Huneke hasraised the following question:Question 4.5.1 (Huneke)Let I ⊂ k[P2] be the ideal I = I(Z), where Z = p1 + . . .+ ps ⊂ P
2 for a �nite setof distint points pi. Must it be true that I(3) ⊆ I2?In the ase of the ideal I of any s generi points of P2, [4℄ showed that theanswer is yes. This and additional examples, both in dimension 2 and in higherdimensions, suggested the following onjeture (this is a simpli�ed version of [34,Conjeture 8.4.2℄):Conjeture 4.5.2 (Harbourne)Let I ⊂ k[Pn] be the ideal I = I(Z), where Z = p1 + . . .+ ps ⊂ P
n for a �nite setof distint points pi. Then I(m) ⊆ Ir if m ≥ rn− (n− 1).Example 4.5.3Let I be the ideal of distint points p1, . . . , ps ∈ P

n. Mimiking the argument ofExample 4.3.10 shows in fat that I(rn−(n−1)) ⊆ Ir holds if char(k) = p > 0 and
r is a power of p. See Exerise 4.6.4.We thus obtain an observation of Huneke:Corollary 4.5.4Question 4.5.1 has an a�rmative answer when char(k) = 2.Taking r = 2 in Conjeture 4.5.2 suggests in light of Theorem 4.4.1(a) thefollowing possibly easier question:



[38℄ Brian HarbourneQuestion 4.5.5Let 0 6= I ⊂ k[Pn] be any homogeneous ideal. Must it be true that α(I(n+1)) ≥
2α(I)?What is known is that α(I(n+1)) ≥ n+1

n
α(I). (For example, if I is the ideal of aset of points, this follows from [5, Theorem 1℄; alternatively, we have I(rn) ⊆ Ir byTheorem 4.3.6, and hene α(I(rn)) ≥ rα(I), or α(I(rn))

rn
≥ α(I)

n
. But Proposition2.2.3 and its proof holds also for P

n. Taking the limit as r → ∞ gives γ(I) ≥
α(I)
n

and, sine α(I(m))
m

≥ γ(I) for every m ≥ 0 as in Proposition 2.2.3, we have
α(I(n+1)) ≥ n+1

n
α(I).) In fat, examples suggest that α(I(rn−n+1)) ≥ rα(I)+n−1may hold for the ideal of any �nite set of points in P

n (and perhaps for anynontrivial homogeneous ideal in k[Pn]).4.6. ExerisesExerise 4.6.1Prove Lemma 4.3.1: Let Z = p1 + . . .+ pr ⊂ P
n and let I = I(Z) ⊆ R = k[Pn].Then Ir ⊆ I(m) if and only if r ≥ m.Solution. If r ≥ m, then Ir ⊆ Im ⊆ I(m). Conversely, assume Ir ⊆ I(m).Loalize at p1 and ontrat to Ri, where p1 ∈ Ui = Spec(Ri) ∼= A

n is a standarda�ne open neighborhood (the omplement of xi = 0, where Ri = k[x0

xi
, . . . , xn

xi
]for some xi not vanishing at p1) to get J(p1)r ⊆ J(p1)

m, and hene r ≥ m, where
J(p1) ⊂ Ri is the ideal of p1 in Ri.Exerise 4.6.2Prove Lemma 4.3.9: Let I ⊆ R = k[Pn] be an ideal generated by s elements, andassume char(k) = p > 0 and q is a power of p. Then Isq ⊆ I [q].Solution. Let f1, . . . , fs generate I. Then monomials in the fi of degree sqgenerate Isq, and for eah suh monomial there must be an i suh that f q

i isa fator. Thus eah monomial is in I [q].Exerise 4.6.3Let I ⊂ R = k[P2] be the ideal of non-ollinear points p1, p2, p3 ∈ P
2. Then

I(m) ⊆ Ir if and only if m ≥ 4r−1
3 .Solution. Let X be the blow up of P2 at the three points. Note that B =

3L− 2(E1+E2+E3) = (L−E1−E2)+ (L−E1−E3)+ (L−E2−E3) ∈ EFF(X)and C = 2L−E1 −E2 −E3 ∈ NEF(X) (sine C is the lass of a prime divisor ofpositive self-intersetion). Now onsider m = 2s+ i for s ≥ 0 and 0 ≤ i ≤ 1. Then
α(I(m)) = 3s+2i, sine sB+ iC = (3s+2i)L− (2s+ i)(E1+E2 +E3) ∈ EFF(X)is lear but ((3s+2i− 1)L− (2s+ i)(E1+E2 +E3)) · (2L−E1 −E2 −E3) < 0. Inpartiular, α(I) = 2. Sine R2/I2 and R1/I1 both have dimension 3, we also have
reg(I) = 2.Thus I(m) ⊆ Ir holds by Theorem 4.4.1(d) for m = 2s + i exatly when
3s+2i ≥ 2r. First hek the ase that m is even: ontainment holds exatly when
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3m
2 ≥ 2r whih is equivalent to 3m+1

2 ≥ 2r, or m ≥ 4r−1
3 . Now say m is odd:ontainment holds exatly when 3m+1

2 = 3(m−1)+4
2 ≥ 2r whih is again equivalentto m ≥ 4r−1

3 .Exerise 4.6.4Justify Example 4.5.3: Let J be the ideal of distint points p1, . . . , ps ∈ P
n.Mimiking the argument of Example 4.3.10 shows in fat that J (rn−(n−1)) ⊆ Jrholds if char(k) = p > 0 and r is a power of p.Solution. The same argument as given in Example 4.3.10 works exept thatwe need to re�ne the statement of Lemma 4.3.9 so that Iqs−(s−1) ⊆ I [q]. Let

f1, . . . , fs generate I. Then monomials in the fi of degree sq − (s − 1) generate
Isq−(s−1), but for eah suh monomial there must in fat be an i suh that f q

i isa fator (if not, the monomial has degree at most s(q − 1) in the fi, whih is lessthan sq − (s− 1)). Thus eah monomial is in I [q].AknowledgementsThese notes were prepared for letures given at the summer shool of theSFB/TR 45 Bonn�Essen�Mainz, �naned by the Deutshe Forshungsgemein-shaft, that took plae Marh 23-27, 2009 at the Pedagogial University of Craow,with the goal of improving the training of PhD students and postdos in the area,in partiular of the members of the SFB/TR 45. I thank the organizers of theshool, Stefan Müller-Stah and Tomasz Szemberg, for their invitation to givethese letures (and Tomasz for his areful reading of these notes), and I thankJoaquim Roé, fellow speaker at the Summer Shool in Krakow and my host inBarelona the week before the Shool when some of the work on these notes wasarried out. I also thank Zah Teitler for sharing his notes [41℄ on multiplierideals with the partiipants, Burt Totaro and János Kollár for their ommentsregarding the Bounded Negativity Conjeture, Antonio Lafae for bringing to myattention the preprint [2℄, and �nally I thank the referee for his areful reading ofthe manusript.Referenes[1℄ A. Arsie, J.E. Vatne, A Note on Symboli and Ordinary Powers ofHomogeneous Ideals, Ann. Univ. Ferrara Sez. VII 49 (2003), 19�30,(http://www.uib.no/People/nmajv/03.pdf).[2℄ M. Artebani, A. Lafae, Cox rings of surfaes and the antianonial Iitaka dimen-sion, preprint, arXiv: 0909.1835v2.[3℄ P. Biran, Construting new ample divisors out of old ones, Duke Math. J. 98(1999), no. 1, 113�135.[4℄ C. Boi, B. Harbourne, Comparing Powers and Symboli Powers of Ideals, toappear in Journal of Algebrai Geometry, arXiv: 0706.3707v2.
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