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Abstract. We investigate the behaviour of weak solutions to the boundary
value problems for the second order elliptic linear equation in a neighborhood
of infinity. The exponent of the decreasing rate of solutions at infinity has
been exactly calculated.

1. Introduction

Let B1(O) be the unit ball in R™, n > 2 with center at the origin O and
G C R™\ B1(0O) be an unbounded cone — like domain with the smooth boundary
0G. We consider the following elliptic boundary value problem

Llu] = %(aij (2)us, ) + b (2)ug, + c(z)u = f(z), AN EN
Blu] = a(:t)% + %7 (%) u=g(z), x € 0G, (L)

(summation over repeated indices from 1 to n is understood); here:

(z) = 0, ifxeD,
W=\, itzgD

and D C O0G is the part of the boundary G, where the Dirichlet boundary condi-
tion is posed; £ = a¥ () cos(7, xi)%, where 7 denotes the unit outward with
respect to G normal to OG. Thus, if D = 0G then we have the Dirichlet problem,
if D = 0 then a(z) = 1 and we have the Robin problem and if D C dG then we
have the mixed problem.

A few mathematicians have considered boundary value problems for linear
elliptic equations in unbounded domains (see for example [12], [13], [14]). Such
problems have applications to mechanics of inhomogeneous media [7].
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The main advantage of this article is the best estimation of solutions for min-
imal smooth coefficients in n—dimensional domains. The theoretical results are
confirmed by examples.

We introduce the following notations:

e S™1: unit sphere in R™;
e (r,w), w= (w1,wa,...,wy_1): spherical coordinates of z € R":

T1 = rcoswy,

Tg = 7 COSwWs Sinwy,

Tp—1 = 7 COSWp_1SINW,_3...sinwy,
Tp = TrSiNWy,_1SiNwW,_9...sinwi.
e C: rotational cone {x; > 7cos % };
e OC: lateral surface of C : {x1 = rcos % };

e (: a domain on the unit sphere S"~! with a smooth boundary 9 obtained
by the intersection of the cone C with the sphere S™~1;

« 90 =0CN St

e G ={(r,w)| a<r<bweN}NG: layer in R™,

o I'Y = {(r,w)] a <r<bwe N} NIG: lateral surface of layer G;
¢ Gy=GF;Ty=T% d>1;

e Qy=Gn{|z|=d};d>1.

We use the standard function spaces: C*(G) with the norm |ulx, ¢, the Lebesgue
space L,(G), p > 1 with the norm ||ul, g, the Sobolev space WP (@) with the
norm [|ul|, k;c. We define the weighted Sobolev spaces V¥, (G) for an integer k > 0

and a real « as the closure of C§°(G) with respect to the norm

k 1
HUHVP’CQ(G) = (/ Z T‘a+p(ﬁ|k)|DﬁU|pd$> P

G 181=0

k—1
and V.o " (0G) as the space of traces of functions ¢, given on G, with the norm

el w- = f[|®llyvx (q),
Ve ) '

1
P

where the infimum is taken over all functions ® such that ®|se = ¢ in the sense of
traces. Wlif(G) is a local space which consists of functions belonging to W*?(G")
for all G’ € G. We denote

WHG) = WhA(@),  WE(GQ) = WEA(G),
Wh(G) = VE(G),  WE2(06) =V,
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DEFINITION 1.1
Function u(z) is called a weak solution of the problem (L) provided that u(z) €

CY'(G)n I?V(%(G) and satisfies the integral identity

[ @ a1 = V@ () = clayun(e)) do + [ Fla)nta) do
& G

(1)
+ [a@{ @) - o) pnte) ds =0

9G
for all functions n(z) € C°(G) N I?V}J(G) such that lim,|_, n(z) = 0.

REMARK 1.2
In the Dirichlet boundary condition case we assume, without loss of generality,
that

=0 = u 0.

g‘BGﬂD 8GND —

Let Mo = max, ¢ [u(x)| be known. It is also assumed that there exists d > 1
such that 'y is a conic surface, i.e.,

n

Iy = {(r,w)| r? = cot? %fo; r € (d,00), lwi]| = “o

0,2 .
s 2,6006(,7'()}

LEmMMA 1.3 o
Let u(x) be a weak solution of (L). For any function n(z) € C°(G) N W(G) with
lim|;| oo n(x) = 0 equality

J (@ @0, + (7(0) = ¥ (), = clo)n(o)) do
Gr

_ _/aij(x)uzjn(x) COS(T, 331) dQdr (II)loc
Qr
+ /a(:c) (g(w) - %W(W)u(w))n(fﬂ) ds
'r

holds for a.e. R € (d,00), d> 1.

Proof. Let xr(z) be the characteristic function of the set Gr. We consider
the integral identity (I7), replacing n(z) by n(z)xr(z). As a result we obtain

/{aij(l')uwj Na; + (f(i[:) - bl(x)uwz - C(iv)u)n(x)} dx
GRr

— - [ @@ e, do+ [ a@)(o@) - r@l) )t ds

Gr 'r



[90] Damian Wisniewski

Let 6(r — R) be the Dirac distribution lumped on the sphere r = R. Using formula
(7°) of subsection 3 §1 chapt. 3 [10]

o
2, = —8(r — R),
Xa; = —-0(r = R)

we get (see Example 4 of subsection §1 chapt. 3 [10])

- / a7 (2)ug, 0(T) X, d = — / a'l (x)umjn(x)%(S(r —R)da

GR GR

=— / a” (z)ug,n(x) cos(r, ;) dQg.
Qr

The lemma is proved.
Let following conditions be fulfilled:
(a) condition of the uniform ellipticity:
v€? < a(x)€€; < pg? Vr € G, V€ € R™,

v, = const >0 and lim a¥(z) =&/,

|z|—o00

where (5{ s the Kronecker symbol;

(b) inequalities

> ) ol < 4. IwI(ZW |2)%+'$'2'()'<“4(| )

3,7=1

hold for a¥ (z) € C°(G), bi(x) € Ly(Q), c(x), f(z) € Ly (G)NL2(G); p > n,
x € Gq, where A(t), t > 0 is a monotonically increasing, nonnegative func-
tion, continuous at zero and lim, _, A(—) =0;

(c) c(z) <0 in G; v(w) is a positive bounded piecewise smooth function on O
such that v(w) > v9 > 0;

(d) there exist numbers f1 >0, g1 >0, s > 0 such that
|f(z)| < fil=| 7572, lg(x)] < galz| "

Our main result is the following theorem. Let

2—n—+/(n—2)2 449

A = 5 :

(1.1)

where 9 is the smallest positive eigenvalue of the problem (EV P) (see section 2.2).
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THEOREM 1.4
Let u be a weak solution of the problem (L). If assumptions (a)—(d) are sat-

isfied with A(t) Dini—continuous at zero, then there are d > 1 and a constant
C > 0 depending only on n, s, \_, My, fi, g1, v, v, i, t, p, O1 @dt,

>, |bi(x)|2|\L%(G) such that for all x € G4

1 |I|>\77 lfS > _)\*;
lu(z)| < Co <||U||2,G + i+ ﬁgl) -9zt Iz, ifs =—A; (1.2)
| *, iFO<s<—A.

Suppose, in addition, that

0l (z) € C1(G), 1(w) € CHOG), f(x) € Vo n(G), glx) € V32 (0G); p>n

p,2p—n

and there is a number

Ts:= sup R’[lg] . 1 . (1.3)
R<oo Vp,2ppfn(rg:/2)
Then for all x € Gq
[Vu(z)]
. o=, if s> =X ”
SC1<||U||2,G+f1+\/—7_g1+TS) Sz |z, ifs=—X\_; (1.4)
0 ||t ifo<s< —A_.
Furthermore, if u € V2o, (G), then
|‘UHVPQ,2P771(GR)
R, if s > —A_;
) A v (1.5)
<O |\u|\2,c+f1+\/—_g1 +7s|-¢ R~ InR, if s=—=X_;
0 R™%, if0<s<—A_.

2. Preliminaries

2.1. Auxiliary formulae

Let us recall some well known formulae related to the spherical coordinates
(rywiy ..y wWp—1):

o dx = r"drdQ,
[ dQR = Rn—ldQ,

e dQ) = J(w)dw denotes the (n — 1)—dimensional area element of the unit
sphere,

J(w) = sin" 2wy sin™ P wsy ... sinw, o,
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o dw=dwi...dw,_1;

e ds denotes the (n — 1)—-dimensional area element on 9G;
e do denotes the (n — 2)-dimensional area element on 0€2;
o ds =" 2drdo;

o |Vul? = (%%)? + %|V,ul?, where |V, ul is the projection of the vector Vu
onto the tangent plane to the unit sphere at the point w,

o [Voul2=3"" qll (g:j )2, where q; = 1, ¢; = (sinw; ...sinw;_1)%, i > 2,

_ 8% n—1 du
.Au—w‘F p 8T+ Awu

o Ayu= J(w) >y Bwl( ((1 )gj) the Beltrami-Laplace operator.

i

C =C(...), c=c(...) denote the constants depending only on the quantities
appearing in parentheses. In what follows, the same letters C, ¢ will (generally) be
used to denote different constants depending on the same set of arguments.

By means of the direct calculation we obtain

LEMMA 2.1

x; cos(, x;)|r, =0, d>1. (2.1)

2.2. Auxiliary inequalities

We need some statements and inequalities.

The eigenvalue problem: Let Q C S"~! with a smooth boundary 952 be the
intersection of the cone C with the unit sphere S"~!. Let 7 be the exterior normal
to JC at points of 9. Let vy(w), w € 9 be a positive bounded piecewise smooth
function. We consider the eigenvalue problem for the Laplace—Beltrami operator
A, on the unit sphere

AN+ ) =0, w € Q;
) (EVP)
a(w)a—i + v(w)(w) =0, w € o090,

which consists of the determination of all values ¥ (eigenvalues) for which (EV P)
has a non-zero weak solutions (eigenfunctions).

DEFINITION 2.2
Function 1 is called a weak solution of the problem (EV P) provided that ¢ €
CO(Q) N W1(Q) and satisfies the integral identity

1 0y 0
/{&a:i 6;71- _191/”7} dQ+/a(W)V(W)¢nda:0
Q

[219)

for all n(x) € C°(Q) N W(Q).
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REMARK 2.3
We observe that ¢ = 0 is not an eigenvalue of (EV P). In fact, setting n = ¢ and
¥ = 0 we have

[Ivavkaas [a@n@luP =0 — v=o,
Q o9
since y(w) > 0, if a(w) = 1, and ¥|gq = 0, if a(w) = 0.

Now, let us introduce the following functionals on C°(Q) N W(Q):

Fly] = / Vo d + / a(@hy(@)]? do,

[519)

Q
Gly] = [ ¢*dQ,
/

H) = / (Wt — 997) S + / a(@)y(w) ¥ do
Q

o0

and the corresponding bilinear forms

q; &ul- &ul-
Q o

Flih,n) = / L0V 00 e s / a(@nWhndo,  G,n) = / d d2.
Q

We introduce also the set K = {¢) € W(Q)| G[¢)] = 1}. Since K C W(Q), F[¢]
is bounded from below for ¢ € K. We denote the greatest lower bound of F[¢]
for this family by ¢: infyex F[Y] = 0.

THEOREM 2.4 (THEOREM OF SUBSECTION 4, SECTION 2.5, P.123 [11])

Let Q € 8™~ be a bounded domain with a smooth boundary 0. Let y(w), w € 9N
be a positive bounded piecewise smooth function. There exist 9 > 0 and a function
Y € K such that

F(,n) —9G(h,n) =0 for arbitrary n € Wl(Q)

In particular F[Y] = 9. In addition, on 2, ¥ has continuous derivatives of arbi-
trary order, satisfies the equation A, + 919 = 0, w € Q as well as the boundary
conditions of (EV P) in the weak sense (for details see the Remark on pp. 121-122

[11]).

Next from the variational principle we obtain the Friedrichs—Wirtinger type
inequality:

THEOREM 2.5
Let ¥ be the smallest positive eigenvalue of the problem (EV P) (it exists according
to Theorem 2.4). Let Q C S"~ 1 and ¢ € W(Q) satisfy the boundary condition
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of (EV P) in the weak sense. Let v(w) € C°(9Q) be a positive bounded piecewise
smooth function. Then

0 [veans [Vos@Pies [awnei@d @2
Q Q

o0

with sharp constant 9.

Proof. By approximation arguments, it is clearly sufficient to consider the
above described functionals F[y], G[v], H[] on C°(Q) N W1(Q). We will find
the minimum of the functional F[¢] on the set K. For this we investigate the
minimization of the functional H[¢)] on all functions ¢ (w), for which the integrals
exist and which satisfy the boundary condition from (EV P) in the weak sense.
We use formally the Lagrange multipliers and get the Euler equation from the
condition dH[¢)] = 0. By the calculation of the first variation d H, we have

SH[p) = 5(/ { Ni qi(gz’f - 191/12} dQ + /a(w)y(w)u}? da)
Q o0

=1

o J(w) oy
=9 o dw — 20 [ -8 dQ

Ow; qi Ow;

0
+2/8—$ . 6¢da+2/a(w)7(w)¢ -0 do
o9 o9

=2 [(uv+on)-dvdn+2 [ {Z5 +a@ne} svdo

3]
Q o0
Hence, because of §H[)] = 0 for all 690 € C°(Q) N W(Q), it follows the
eigenvalue problem (EV P). Conversly, let ¥, ¢(w) be a weak solution of the

eigenvalue problem (EV P). From the definition of the weak eigenfunction with
7 =¥ (w) we have

0= F[y] - 9G[Y) "E Fly] -0 = 9 = Flu].

Hence, the required minimum is the least eigenvalue of the eigenvalue problem
(EV P). The existence of a function ¢ € K such that F[¢] < F[v] for all v € K
follows from Theorem 2.4.

By definition (1.1) the Friedrichs—Wirtinger inequality may be written now in
the following form

A +n-— 2)/¢2(w) dQ < /|Vw¢|2d9+ /a(w)w(w)wz(w) do,  (2.3)
Q Q o0

for all 1 (w) € W(Q) satisfying the boundary condition of (EV P), v(w) € C%(99),
Y(w) = 0.
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THEOREM 2.6 (Hardy inequality (THEOREM 330 [4]))
Letp>1,a>p—1. Then

_ pP ou|p
a-p Pdr < ———— “N—1 d 2.4
[ < —E—g [ S ar (24)
d d

for any function u(r) absolutely continuous in [d,c0) and vanishing at infinity.
The constant is the best possible.

COROLLARY 2.7
Ifue W, _4(Gr), a >4 —n andlim o u(z) = 0, then
4
/’I”a74’u,2($) dx S m /ra"2|Vu(:1:)|2 dx. (25)
Gd Gd

Proof. Replace a by a+n—3 and put p = 2 in (2.4). Integration of the result
over  yields inequality (2.5).

THEOREM 2.8 (Hardy-Friedrichs—Wirtinger type inequality)

Let u € CO(G)NWL _,(G) and u(-,w) satisfy the boundary condition from (EV P)
in the weak sense. Let A_ be as above in (1.1) and y(w), w € 9 be a non-negative
bounded piecewise smooth function. Then

[retar < nocma{ oo rvude s [ e},
Ga Ga Ty (2.6)

HM\_,n,a)= [(%)2—%)\_()\_—#71—2)}71, a>4-—n

provided that integrals on the right hand side are finite.
Proof. Multiplying the inequality (2.3) by ">+
(d, 00) we obtain for any «,

/ra_4u2 dx

Gd Pd

and integrating over r €

Inequality (2.6) follows from (2.7) with @« = 4 —n. Now, let « > 4 —n. We
denote lim|; o u(r) = A and show that A = 0. In fact, the representation
A =u(z) — (u(z) — A), by the Cauchy inequality, yields 2Au(z) < A? + 1u? for
all ¢ > 0 and therefore u?(z)+|u(x)— A|? = 2u?(z) —2Au(z)+ A% > (1—e) A%+ (2—
L)u?(x) = $ A%, if we choose £ = 3. Thus we obtain $A% < |u(z)|® + |u(z) — A]*.
Multiplying this inequality by r®~* and integrating it over G4 we obtain

%A2/TO‘74 dx < /ro‘74u2(x) dx+/ro‘74v2(:1c) dx, (2.8)

Gga Ga Gqg
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where v(z) = u(x) — A, hence lim,|,ov(z) = 0. By (2.7) and from our as-
sumption, the first integral on the right hand side of (2.8) is finite and the second
integral from on the right hand side is finite in virtue of Corollary 2.7. Therefore
the right hand side of (2.8) is finite, at the same time the integral in the left hand
side

oo

/ro‘*4 dr = meabsQ/ro‘Jrnf5 dr = oo,
Gy d
because of a@ > 4 — n. The assumption A # 0 contradicts to (2.8). Thus A = 0.

Therefore we can use the Corollary 2.7. Adding inequalities (2.7), (2.5) we get the
desired relation (2.6).

LEMMA 2.9
Let Gy be the conical domain and Vu(R,-) € L2(Q) for a.e. R € (d,0). Let

U(R) = /r2*”|Vu|2dx + /rlfnfy(w)zf(:z:)a(x) ds < 0. (2.9)
GR FR
Then
ou n—2, R _,
- >_ )
/ (RuaT + 5 U ) . aQ > 2)\_U (R), (2.10)
Q

where A_ is defined by (1.1).
Proof. Writing U(R) in spherical coordinates

U(R) = /Oor/ (u2+ %'V““P) dQdr + /OO% (/oz(a:)’y(w)|u|2 da) dr
R Q R

[219]

and differentiating with respect to R we obtain

U'(R)
(o2 )

Moreover, by the Cauchy inequality, we have RuZ% > —£u? — L R?(9%)? for all

¢ > 0. Then
dQZLH/ﬁ
Q

ou n—2 ,
Q

Now we take into account that A < 0 and (A_ +n —2) < 0. Then choosing
e = —\_ we obtain, by the Friedrichs-Wirtinger inequality (2.3),

2.11)

1 9 (
. Q) — Ra/ a(R,w)y(w)u”(R,w) do.
Q

r=

n-Z ] m

r=R

r=R r=R
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n—2 ou
> 2 T ou
Z o /|ku| o (m) 0

Q
n—2—ce¢ )
* 2A_(A- +n—2) /O‘(x)W(W)u (0,w)do
o0

R

= —2)\—_U (R).

We need also the well known inequality:
1
/v2 ds < / ((5|VU|2 + gcovz) dx, Yo(x) € WH(@G), V6 > 0; (2.12)
oG G

and the Sobolev inequality (see (2.19), §2, chapt. II [6])

lullf ,, (@) <ellVuli,g + e Glulli,e, p>n ve>0. (213)
p—2

2.3. Cauchy problem for differential inequality

THEOREM 2.10
Let U(R) be a monotonically decreasing, nonnegative differentiable function defined
on [d,00), d>> 1 and satisfy the problem

{U’(R) +P(R)U(R) — Q(R) <0, R >d,

U(d) < U, (©P)

where P(R), Q(R) are nonnegative continuous functions defined on [d, o) and Uy
is a constant. Then

U(R) < Upexp ( - /R’P(s) ds) —i—/RQ(t) exp ( - /R’P(s) ds) dt. (2.14)
d d t

Proof. Multiplying the differential inequality (C'P) by the integrating factor
exp(f(;5 P(s)ds) and integrating the result over ¢ from d to R we get

t

/RU’(t) exp (/tp(s) ds) dt + /RP(t)U(t) exp (/P(s) ds) it

d
R

_ d/Q(t) exp (d/P(s) ds> dt < 0.

Integration by parts in the first term yields

oo [ i) - oo [ res)roa
d a d
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+d/R exp<d/p )dt—f@(t}exp<d/tP(s)ds>dtSO.

Hence, by the assumption U(d) < Up, we finally obtain the desired estimate (2.14).

3. Global integral estimates

First we shall obtain a global estimate for the Dirichlet integral.

THEOREM 3.1
Let u(x) be a weak solution of problem (L). Let assumptions (a)—(c) be fulfilled.
Suppose, in addition, that faG rg?ds < co. Then the inequality

afdet [ 1ol (@) ds
!WFd+4 oy () d
gC{G/uz(:ﬁ)d:v—i-c[fz(:v)dx—i-%aérg2(x)a(:v)ds}

holds, where the constant C > 0 depends only on p, n, meas(G \ Gq), v, d,

| E?:l |bi($)|2HL12g(G)-

(3.1)

Proof. Putting in (IT) n(xz) = u(z), by assumptions (a), (c), we get

y/|vu|2dx+/%°")a(x)u2(x) ds

G oG

< [V, do+ [lulgta)lat@) s+ [ fullf(@)]da.

G oG G

(3.2)

Now, by the representation G = G4 U (G \ G4), and by application of the Holder,
the Cauchy and the Sobolev (see (2.13)) inequalities, we obtain:

/ b (x)utty, dr

G\Ga
< /|Vu|2dx+— / S b (@) 2 do (3.3)
G\Gd oG, =1
p—2
1 LI »
2 i 2
<3 [ vu dw+25—y{ / (Z|b(m)|) } (/|u|r'2dx)
G\Gyq aa, =1 G\Ga
< /|Vu|2dx+—HZ| -/(5|Vu|2+05u2)dx
G \Gyq L%(G) G\Gq

Vé,e > 0; p>n.
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Further, by assumption (b),
A3) Alg)

/bi(x)uumi dx < 3 / [ul|[Vu| de < 5 /(|u|2 + |Vul?) dx (3.4)
G4 Gq Ga

and by the Cauchy inequality

Jlulls@lar <5 [ufdos 5 [ 152 (35)
G G G

As a result from (3.2)—(3.5) we obtain

V/|Vu|2 da:+/”y(w)r71a(:zr)u2 ds
G oG
1/ 0 A%
§—<—2 +ﬁ+a>u/|vu|2da:
2\ev Ly (@) vd J
. AL
Swr|  + ) [

i=1 Lg(G) &

1 cs
(14 =2
+ 2< * eV
1 2
+ [ lullg@)la(z)ds + 5 | f~da.
9G G

S b

n

. l/2
Choosinge =1, § = T, P E) from (3.6) we have

VG - >/|Vu|2dx+/”y(w)rla(a:)u2 ds

G oG
<o

S @R d) [ as
Lzzz(G)

i=1

G
T / ullg(a)lo(z)ds + | / P de.
oG G

A(q)
2ud

—~

3.7)

By assumption (b), we can choose d big enough such that Agﬁ) < 5. Then

/|Vu|2 dac—l—/w(w)r*lqus (3.8)

G oG
,u,d){/|u|2dx+/|u||g<x>|ds+/f2dx}.
(G) G oG G

n

Do)

i=1

o

Lp
2
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Now, by the Cauchy inequality, in virtue of assumption (c), we obtain

/|u||g i = ( ) ([ lata >ds

1 1
< 5/@u2d8+2—%/rgz(;v)ds.
te

oG

Finally, from (3.8) and (3.9) we get the desired inequality (3.1).

THEOREM 3.2
Let u(z) be a weak solution of problem (L) and A_ be as above in (1.1). Let
assumptions (a)—(c) be satisfied. Suppose, in addition, that faG r*lg2ds < oo,

f(x) € I?Vg(G), where
4d—n<a<4-—n-—-2X_. (3.10)

Then u(x) € I?V}X_Q(G) and

Jor a4ty o [ wptag)ds
bel oG

§C{/u2d1+/ro‘f2dx+i/a(x)r°‘ng(x)ds},
G G e

where the constant C depends only on p, n, meas(G \ Gq), p, d, a, v, co, A\,

| Z?:l |bi($)|2||L12g(G)-

Proof. Setting in (II), n = r* 2u(z), with regard to
Ne, = 172Uy, + (a0 — 2)7 zu(z),

we obtain

/aijuwj [ 2uy, + (o — 2)r* Yau(x)] da
G

(z)u(z) — f(z)]r* 2u(z) dx (3.12)

/(g——’y ) wr®2a(z) ds.

By assumption (a), we have

|
o

=

5

/T“‘ 20" ug Uy, da —/ 2| Vyl? da:—l—/( I(z )—55)7"0‘7211,11.’(,&95]. dx;
G G

ra_4xiaijuum]. dr = /

G

i

Ug, 7 ajudr + /(aij () — 5f)um]. r taude.

A—_ Q

G
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Then integrating by parts, we obtain

/ra_4xiuuzi dx

G
1 2
G
_ —4 1
:%/ o 2dw+2/u27°°‘ Y2 - cos (T, x;) ds.

a oG
Using (3.12) we can rewrite the latter relation in the form

/7""‘_2|Vu|2 dx + /*y(w)uQT"‘_?’a(a:) ds

G oG

:—/(a (@) — 87)r° 2ug,ug, do

/ -6 Yy, da (3.13)
G
+2 ; 2(n +a-— 4)/ =y da + /[biumi + c(x)u(z) — f(2)]r* 2u(z) do
G G

2_
+/7"a72guoe(3:) ds + 204 /TOY YuPa; cos(M, @) da

oG oG

Now we use the representation G = G4 U (G \ G4). It follows from assumptions
and the Cauchy inequality that

1)
J @@ = e, da < AG) [Vl e
Ga Ga
/ (0" (x) = 61)r* g, up, do < (14 p) max(1,d*?) / |Vul* da;
ey G\Gq
2)

ij j 1 1
/(a” (€) = &) Jug, 7 tuz; do < §A(3) /(7"°“*2|Vu|2 + r*~*u?) da,
¥ &

; a—3
[ @@ = 6y urde < CHEAT)

2
G\Gq

‘UHIQ/VL?(G);
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/biumira‘72u(x) dzx < %A(%) / (7"0‘72|Vu|2 + T°‘74u2) dzx,
Ga

Gq

/ b, ?u(r) de < max(1,d*"?) / Z [6% () 12| w||Vul
i=1

G\Gq G\Gq

l a—2 2 - 02
< 5 max(l,d ){ / |Vul dw—i—H;|b|

G\Gq

-/(|Vu|2+clu2)d:v}, p>n,

G\Gq

Lg(G)

/f(a:)r“iQU(a:) dr < g/ra‘74u2 dz + % /7“0‘f2 dz,

G

Q
Q

5
[ tulslate) ds
oG

€
<

1
=3 /Ta_sv(w)u%(iﬂ) ds + 5— [ r°7 g} (z)a(z)ds, Ve >0

28")/0
oG oG

(see (3.9)).
Further, (2.1) and (2.12) yields

22—«

2

/ro‘74u2xi cos(T, x;)ds < c(a,d) /(|Vu|2 +u?) dz.
oG G

In fact, by representation 0G = T'y U (0G \ T'y), we have

22—«

2

/r‘k‘luzxi cos(T, x;) ds
oG
2-a a—4,2 2-a a—4,2
= r*~*u?z; cos(T, ;) ds + — | e cos(T, x;) ds
Ta

2
OG\T'y

< ¢(a) / r*3u? ds < ca, d) / u? ds.

AG\I'g 0G\I'q
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Hence, (3.13) means that

U= /7“"72|Vu|2 dx + /7(w)u2r°‘73a(:v) ds

G oa
2—a a—t 2 A a—4,,2
< 5 (4—n a)/r udw—i—[.A(d)—i—z}/r u” dx

Gqg

+Cl(u,d,a, z:|bi(:c)2 ) /|Vu|2+u (3.14)
i=1 LB(G) &

1 a—2 2 2 ro= 3
+2A(d)/ IV dw+2/ (W)u?r*3a(z) ds
Ga oG

1 1
+oz /raf2 dx + %7 /7‘0‘_192(90)04(55) ds Ve >0.
G oG

Now we consider two cases: 1)2 < a<4—n—2\_and 2)4—n < a < 2.
I)case2 <a<4—n—2A_.
In this case Z=—n—a)

equality (2.6), we have

> 0. Therefore, applying the Hardy—Wirtinger in-

2;a(4—n—a)/ro‘_4u2dx§ 2;a(4—n—a)H()\_,n,a)U. (3.15)

Gqg

It is easily to verify that 25%(4 — n — a)H(A—,n, @) < 1 for o which satisfies the
inequality (3.10). Hence, applying once more the inequality (2.6) we get
Z |bi|2

,n) /(|Vu|2 +u?) dx
i=1 (@) &

1 1
+ %/ rof2de + — 2o /T“ilgz(x)oz(x) ds, Ve > 0;
G oG

K(A_,n,a)U

< (34(3) + ) v+ & (e

Lp
2

and

2—a)(4—n—a)
2

The property of the function A implies that if ¢ = ;= K(A_,n,a) and d > 1, then

A(%) < 77K (A=, n, ) holds. Thus, if we use the inequality (3.1) from Theorem
3.1, we obtain

/TO‘_2|VU|2 dx + /’y(w)uzro‘_?’a(:zr) ds

G oG

< C{/u2d:v+/raf2dx+7i/ro‘_lgz(:v)a(ac)ds},
0
oG

G G

KA_,n,a)=1- H(\_,n,a) > 0.
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where C' = const(p,n, v, d, o, || 20 [b'?[| 1, (¢),n). Now by the Hardy—Fried-
2
richs—Wirtinger inequality (2.6), from (3.16) we get the desired estimate (3.11).
2) cased —n < a <2
In this case we have W < 0. Therefore we can neglected the first

integral on the right hand side in (3.14). Repeating arguments from case 1), we
get again the estimate (3.11).

4. Local integral estimates

4.1. Local estimate near infinity

The weak solution of the problem (L) is locally bounded at infinity. More
precisely, we have

THEOREM 4.1
Let u(x) be a weak solution of the problem (L). Let assumptions (a)—(c) be satisfied.
Suppose, in addition, that g(x) € Loo(0G). Then the inequality

sup |u(z)|
zeG
C

__ - Jp= 2(1-12)
< P {R *ull, gar + R2O7D| £l qan + R||g||001F%R}

(4.1)

>n forn >3

>2 forn=2"

constant C > 0 depends only on n, v, p, p and || >0, [b(x)*||1, )
2

holds for any t > 0, p > ﬁ{ »x € (1,2) and R > d, where the

Proof. We apply the Moser iteration method. First we assume that ¢ > 2.
We consider the integral identity (II) and make the coordinate transformation
x = Ra’. Let G’ be the image of G and dG’ be the image of dG. We have
dx = R"dz’, ds = R"'ds’. In addition, introduce

v(z") = u(Ra'), F(z') = R?f(R2'), G(2") = Rg(Rx"). (4.2)

Then (/1) means that

/{aij(R:E')vm; Mgt — RY (R Yvzrn(a') — RPc(Ra)o(x')n(a')} da’

&
+ / |x—1/|7(w)v(:t’)a(R:E’)77(x’)ds’ (1)
oG’
= /g(x/)a(Rxl)n(x/) ds/—/}'(x’)n(x/)dajl
oG’ G’

for all n(2’) € CO(G") N W(G"). Define the quantity k as follows

k=k(R) = v (| Fllz,c5 + 1Glloorse) (4.3)
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and set
v(x') = |v(x')| + k. (4.4)

Along similar lines

o= L7l k0 = LIFI@ = [ol) -7 = £ 1F] 0 = 217 fofo < 1177 .
Gl < £19] -7
The test function in the integral identity (II’) is choosen as
n(z') = (|2 )ov* ("),
where ((|2']) € C§°([1,2]) is a non-negative function to be further specified. By
the chain and the product rules 7 is a proper test function in (I1’) and also

ey = 0 20y C(|2]) + (8 = 2002 olug C(|2']) + 2¢¢pv ().

Hence, by substitution in (I1”) using ¢(Rz') < 0in G', v < |v] < T and t > 2, we
obtain

. 1
/a”(Rx’)vz;vmgﬁtﬁ@ﬂxﬂ)daz’—|—/—

||
a2 r2

()02 @ o Ra )2 ([’ ds
<R / (a0 )P ) 42 / (R )Gy [0 (0
/g 7L @) (o)) d /|f )7 @) ') da

By the ellipticity condition, the assumption (c) and with regard to (4.5), we have

/V|V/’U|2 'Et_2<2(|$/|)dIl
&
</ <2M|V/U| V¢ -7

Gi

. (4.6)
e B S W) 197 ) + M ) ) o

1
4 £lGloc [)6 (o' ds'

ri

We estimate every term by the Cauchy inequality for any € > 0:
2490l 976] 7736 < 279l -t 20) - (Lov 9

< EV|V”U|2 .5t72<2 4 /L_Et|v/<|2;
gV
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(Zlbz ) |VIU| —t 1C2

(G

gV|V’v|2-5t72C2 R2Z|bz )2 -T2

IN
S]]

(VIIV'] -

IN

In order to estimate integrals over the boundary we apply the inequality (2.12).
Then (4.6) yields

/V|V/’U|2 —t— 2C2(|x'|)da@'

¢
< gE/V|V/U|2 T2 (|2 ]) da (4.7)

&

s [ {19+ (S @I + LFE) v @

ev 2ev 4 k

G? i=1
1 ¢

4 5lGlers [ (SIV@P + jem ) ds ved 0.

&

The relations

t t t t2
V(@) <2ACIV'@)P + TV, V@) = L7V (48)

imply inequality
2

< L2 w2 4 29t V¢ P2, (4.9)

V()P <

Using (4.8), (4.9) and choosing £ = £, we find that

5 [V o)
&
62 |G llso,r2
< 07 1Ylloors 112 =22 (Y o _
<o eh /V|W| 522 (|0’ |) da (4.10)
G
2 F(@"] + co6 |G| oo 2
(5 > el e 191 ) o)
&

29
{5 %mw,ﬁ} o VG, b e (0.1]
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We choose now § = 2t2, by the definition of the number k we can rewrite the last
inequality (4.10) in the following form

[oivo -2 (e ao
Gi
2
SSCoutz/C2(|:17/|)5t(3:’)d3:’+ (125 —|—%) ~/|V/C|2Ut(x’)dx’
2 G%

vaf (3R2 iw # E) )

G2

But, by (4.8), the last means

/u|v< D¢ (o) du

Gi
4 [ 2 2t2 25t
< 2cqut C (') (2") da’ + |V ¢|*v

2 o
" t2/ (? > @ + 2 ”) () da

i=1
Gt

Since t > 2, the above inequality can be rewritten in the form

[ovetiEee a
&
< Clt4/u(|V’C|2 + (2! |)v da! (4.11)
&
—|—02t2/ <R2Z|b1 ( /)|> —t<2(| /|)
&

where the constants C7, Cy depend only on ¢y, v, 1 and are independent on t.
Substitution of

w(z') = v 73 () (4.12)
into (4.11) yields
[1vrupe e ar
&
<t [V + () o (4.13)

Gt
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2 2ni 2 | [F(@) 20 N2 /
+ Cot /(R Z}'b (@) + === ) - w? (@) ('] da
G2 =

Oun iteration process can now be deduced on (4.13). By the Sobolev imbedding
theorem (see Theorem 13, subsection 4.7, chapter 4 [1]), we have

IICwIIi%,Gg <cr /((IV’CI2 + (@) + G| )| V'w]?) da’,  (4.14)
&2

where n > n for n > 3 and n > 2 for n = 2 and C* depends only on 7. Using the
Holder inequality for integrals

/|F(:z:’)| w?(2")¢*(a") da’ < || Fllg.q- IIwCII%G%, p>2, (4.15)
G

we get from (4.13)-(4.15) that

2
Cwlis, 6o

< Oyt / (V' + (2 )P (o) da (4.16)
G?
o Fa) _
2 2 7 2 2
+Cut?||R ;w (@) + == EG%-HwCH%)G?, p> .

By the interpolation inequality for L,—norms (see (7.10), §7.1 [3])
||Cw||%,cf < ellCwl 2a @2 + E%HCwnz,Gga p>n>2 Ve>0. (4.17)
It follows from (4.17)—(4.17) that

ICwl 2. 2

R2i|bi($)|2+ |]:(CC/)| 2

i—1 k ’%G?
+ 2V Cs - €+ [VCDwlag2,  p>7, Ve >0.

<ty Cy

(elleocll s, 2 + ™7 Culls 67)

_1
2

. n i F(x' .
Choosing ¢ = ﬁ”Rz S )P+ %Hg,cf we obtain
[l ez < CFTNCH VD wllogs,  22p>7>2  (418)

where C' depends only on co, n, 7, v, i, p, | 252, [0'(2)[?]| 3 o2 and is independent
of t. Recalling the definition (4.12) of w, we finally establish from (4.18) the
inequality:

IC-TH ) n 2 < CEP5F |G+ IVCD) - Th oz, 2 Zp>ii>2  (419)
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This inequality can now be iterated to yield the desired estimate.
For any » € (1,2) we define sets

G G% (3x—1)2—3> j:051725
It is easy to verify that
G2 =Gl C... CGljyy C Gl T C Gy =GF.

Now we consider the sequence of cut-off functions ¢;(z’) € COO(GE j)) such that

0 < ¢(2) < Lin Gy and  (j(2") =1in Gljpqy;
¢(=')=0 for 1 < |2/| < 26— 279 (5 —1);
j+1 ‘ ‘
IV'¢;) < 2 for 22— 277 (x—1) < |2| < =277 (e = 1).
—

We define the number sequence

Ao\
£ _t( ) i=0,1,2,
J n—2 J

Now we rewrite the inequality (4.19) replacing ((|2’|) by ¢;(2’) and ¢ by t;; then
taking the ¢;-th root we obtain

2p

St

2
t

_ C \* 2
7ll00.0,0, < (227) ™ 47

After iteration, we find that

Ctin n ] T2 i
ey < { St (525) " ) AEEOT e (4.20)

g
t

L1
P
Il c,,-

It is worth notlng that the series > > _ convergens by the d’Alembert ratio test;

=0 t
the series ZJ 0 t = % is calculated as a geometric series. Therefore from (4.20)
we obtain that
_ ¢
||’U||tj+1,GEj+l) < m”””t,ci-
Therefore, letting j — oo, we have
_ ¢
sup [0(z)] < ———=Vll¢,z-
@' €G2, (—1)%

Basing on the definition (4.4) of the function v(z’) and on the number & defined
by (4.3), we obtain

C
sup [v(2')] £ ———=([vlls.c2 + [ Fllz.62 + 1G]lco,r2)-
2’ €G2, (se—1)%
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Returning to variables z,u, introduced by (4.2), we obtain the required estimate
(4.1) for t > 2.
Let now 0 < ¢t < 2. We consider (4.1) with ¢t =2 :

c
sup [u(x)] < s Il + K (R) (4.21)
reGiR (- 1)%R%
where
__¢ 201-2)
KR =13 {R DIl o0 + Rliglc.ra }-

2

The Young inequality with ¢ = % and ¢’ = 5=, can be written as

C  Jul
(- 1FRE 2OE
1
2
_%(/ut,uudﬁ
(—1)2R>2 )
1G (4.22)
< — 2
< (swhe) e
C
< —sup |u +— R.
2G2R|()| T

Let us define the function ¢(s) = sup,cgen [u(x)]. Then it follows from (4.21)-
(4.22), that ‘

P(R) + 07||u||t e K(R), » € (1,2). (4.23)

1
7/1(R%)§§ ( _1) ot

Further we apply the following statement:

PROPOSITION 4.2 (SEE LEMMA 4.1 IN CHAPTER 2 [2])
Let 1(s) be a bounded non-negative function defined on the interval [Ty, T1], where
Ty > Ty > 1. Suppose that for any Ty < s < o < T the function ¥(s) satisfies

A
(0 —s)*
where § € (0,1), A, B and « are non-negative constants. Then

A

where C' depends only on «, 6.

(o) < d(s) + + B, (4.24)

Substitution of d = Ry, p = R, 6§ = 3, a = 2, A = Chllulls,gzr -
B = K(R) and use of (4.23) yields the requlred estimate (4.1) in the case 0 < ¢ < 2.
The proof of theorem 4.1 is complete.
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4.2. Local integral weighted estimates

THEOREM 4.3
Let u(x) be a weak solution of problem (L) and A— be as above in (1.1). Let as-

sumptions (a)—(d) with A(t) Dini—continuous at zero be satisfied. Then Ij)Véfn(G)
and there exist d > 1 and a constant C' > 0 depending only on n, s, A_, w, and

on fol @ dr such that for all R > d

[ vl ) do e [l @ae) s

GRr T'r
R for s > —\_; (4.26)
§C<|u|§ﬁg—|—f12+igf) -{ R*- In*R, for s = —X\_;
0 R™2, for0<s< —A_.

Proof. 1t follows from Theorem 3.2 that u(z) belongs to ﬁ/é_n(G), so it is
enough to prove the estimate (4.26). Substitution of n(z) = r?="u(z) in (I1)ee,
and the definition (2.9) yield

U(R) = —R/u(w)%

49— [ 2" ula) (@ @) — 6, cosr ) A
r=R
Qr

+/r2_"u(:1c)g(:v)a(:v) ds

T'r

s [{-rr@@ - e, o
Gr

+ (n = 2)r "u(z)a" (z)zius, + r* " u(2)b’ (2)us,

+ 27 e(z)u?(x) — r27”u(:17)f(3:)} dzx.
Now we transform the integrals on the right part of (4.27)

(0-2) [ "u@)a? (@)iu, do
Gr
B 2 g -
_ : /7”_":171- Ou dr + (n —2) /T_nu(x)(a” () = 0] )ziug, dx.

GR GR

Application of the Gauss—Ostogradskiy divergence theorem and use of condition
lim| | o0 u(x) = 0 yield

2 2
/7*”:171- gzl dr = Rli_r)noo r~"x; ZZZ dx

GR Gg

= — /u2(gc) 8(33- (x;r~™)dx — R™" /u2(x):1ci cos(r, x;) dQdp

Gr Qr
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+R" / u?(z)z; cos(r, z;) dUs + /T—nu2(gc);vi cos(n, x;) ds.

Qﬁ, 'r

We have
lim R_"/uz(x)xl cos(r,x;) dQg < lim u?(R,w) dS)

R—o0 R—o0

R

< measQ lim -supu?(R,w)

R—oo
=0.
Hence, by Lemma 2.1
x;cos(r, xi)|a, = R, x; cos(n, ;) |r, =0, R>1,
we have
n—2 . ou? n—2 9
5 /7" xiaxida@—— 5 /u () dQ.
Gr Q
It follows from Lemma 2.9 and c¢(z) < 0 that
R - 4
U(R) < KU'(R) - /Tzfnu(x)(a” (z) = 6] Jua, cos(r, x;) dQp
- o
+ /T27"u(aj)g($)a($) ds
I'r
+ / { — 2" (0¥ (x) — 5g)uziuzj + (n—2)r"u(x)
GRr

x (a" (x) — 6Z)xiu1j + 2 M u(x)b (@) Uy, — r27”u(:b)f(x)} dx.
Application of the assumption (b) to (4.27) yields

R 1
U(R) < S\ -U'(R) + RA(3) /|u||Vu|dQ
Q

+ [P lu@lg@lato) s (429
Ir
ramA(g) [Tl Vade+ [ )| de
Gr Gr

We shall obtain an upper bound for each integral on the right hand side. First,
applying the Cauchy inequality and (2.3), (2.6), we have
1
R/ [ul[Vul d2 < 5 /(R2|Vu|2 + ul*) dQ < —ca(A_,n)RU’(R);
Q Q
/Tl_"|u||Vu| do < /(rz_"|Vu|2 Fr ) da < esOv, ) U(R).

Gr Gr
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Further, for all § > 0:

/ P ullgla(z) ds

I'r

= [t (5 Vi) (r=* ) o (4.29
1

/Tk"”y(w)|u|2a(:zr) ds + m 37 glPa(x) ds;

I'r I'r

R
0
< —
-2

[rr@lr@lar< g [P ot o [

Gr GRr Gr

(4.30)
< dea(A—,n)U(R) + 1 /7"4*”|f|2 dx

20
Gr

in virtue of the Hardy-Friedrichs—Wirtinger inequality (2.6). Thus from (4.28)-
(4.30) we get

[1—csn ) (5 + A(%))} U(R)

R 1\,
< 2T_(1 +CG(A,,n)A(§))U (R) (4.31)
ol [ = [roigpash, weso
20 Yo
GR I‘R

Using the condition (d), we obtain

1 1 1
[rrisars = [rorigias < e (ff 4 —g‘f‘) R
’VOF 2s Yo
R

GRr

where ¢y depends only on meas (2, meas 9. Thus, (4.31) implies the differential
inequality (C'P) with

2= 1= es(n, A)(0+ A(R)))

__= = '
P(R) = 1+ CG(A—)A(%) 7 0o
eGR4 5y9h) o R

1+06()\_)A(%) ,
= u? + 2 () da i g% (2)a(x) ds b
Uo—c{G/< ¥ f<>>d+%6é o#()ala) ds |

Q(R) = — Yo > 0;

Here, (3.11) is used with « =4 —n.
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1) s > —=A_
Choosing 6 = R™¢, for all € > 0, we obtain the problem (C'P) with
2\ C7A(l) + 85:|
Pls)=——— |1 — ———|, Vo > 0;
() S |: 1+ CGA(%)
gmf_%ﬂﬂWﬁ+%ﬁ%R%”“
N 1+06()\_).A(%)
Since
2N 2) - .
—P(s) < —~ T(C7A( ) ), v > 0;

Q(R) < —/\?_co( )(fl _91) Rt

hence we have

R 0 1
—/P(s)ds§2)\_1n (g) —2/\_/%&9
d

S

d
R )
R\ 2A- $7¢+ C7.A(l)
= exp —/P(s)ds < (E) exp —2)\_/fsds
d d
R\ 2\
=Ko(3)
where
d—¢ OOA 1
Kozexp(—Q)\_ )-exp{—Q)\_w/ﬁds}.
€ s
d
We observe that f < A( ds is finite, because setting ¢ = = ylelds
o0 a
AL t
/Jgﬁ_/ﬂgﬁ
s t
d 0
Thus we get: Ugexp ( fd s)ds) < KoUogR* -

We have also

R R
d/Q(t) exp ( - /P(s) ds> dt

N r
_?CO( )(fl 0 )R2>\K0 /t—2s—2>\7+8—1 dt
R

)\—CO 2 1 2 1 A —
- ~ g2 CKoRM~*
s (fl +7091 s+ 0 ’

IN

IN
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since s > —A_ and we can choose ¢ = s+ A_.
Now we apply Theorem 2.10: then from (2.14) by virtue of deduced inequalities
and with regard to (2.6) for a« = 4—n, we obtain the statement of 4.3 for s > —A_.

2) s=—A_
Considering ¢ as a positive function 6(R) > 0 of R we obtain
2\_(1—4(R)) A(%) 2\
P(R) = — C—
(R) R(1+ ceA(%)) “Tr ccA(%) R
22 (1-9) N 2A_cs A(%)
R(1+ csA(%)) R
We have
24 (1-6) _ 22 (1-9) [1 G ]
R(1+CGA(%)) R 1+ ceA(%)
L 216 (- 8)ceA(L)
- R R

2\ (1—96) N 2X_ceA(%)
R R

2A_(1-0) 2A_crA(%)
R a R '

= —P(R) <

If we choose 6(R) = —53——5, then we obtain

2/\__+1 2A_crA(2)

s slns s

~P(s)

R

R
— 2/\_67 /
d
d

) < (5"

A(

W =

)

= —/P(s) ds < 2\_ lnE + In(ln s)

7 ds.

We get

R\»- IR T

o - /7’ o) < () e (s
d

where K7 = exp(cs ffll Al) 4y ). Further, because of s = —A_, we have

Q(R) =c (f i 2)M<C <f2+i 2) R R
0 1 ’Yg 1+CGA(%) = 09 1 ’YOgl

R
= d/Q(t) exp (— t/P(s)ds) dt

R
1
< ¢g <f12 + %gf) KR~ lnR/tQL*lt*”* dt

A

1
< Kico <f12 W—QI)R2A In* R, since d > 1.
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Now we apply Theorem 2.10 and from (2.14) by virtue of deduced inequalities we
obtain

1
U(R) < Kicg (Uo + R+ 7—91)3” In” R.
Thus we have proved the statement of 4.3 for s = —A_.

3)0<s<—A_
For any positive d, we have

P(R) = _&{(1 —5) - (c5 + c6 — cﬁg)A(%)}

R 1+ ceA(x)
- _2)\,(1 —9) 2/\_, (c5 + 6 — Cﬁé)A(%)
B R R 1+ ceA(x)

R R
R 1
— [ P(s)ds =2A_(1—-9)In— —2 — — d
= / (s)ds A ( 5)nd A (c5 + ¢ /s 1+06Al) s
d d

o0

§2/\,(1—5)1n§—2/\ (c5 + c6) /—A —

s
7 R\ 2)-(1-5)

= exp(—/?’(s)ds) SKQ(E) ) ,
d

where Ky = exp(—2\_(c5 + c6) fol AE‘U) do) and

R

22 (1-0)
exp < - /P(s) ds) < Kg(%) , Vo > 0.

t

d

For § € (0, 5+’\ ~—), we obtain

/R Q(t) exp (— /R Pls) ds) it

< _A- ¢ (f2 + kS 2>K §IR2A-(1-9) /T w dt (4.32)

S lh %91 2 J 1+ ceA(d) '
A 1 R_2)"(1_5)_25 _ d_2>"(1_6)_2s

<_ K 2 -2 6—1R2>\,(1—6) .

=TT R (fl * 7091) —2A_(1—-0)—2s

C()KQ/\_ 2 1 2 _92
< — - R
T 208(s+ A —0A) (fl * 7091
Now we apply Theorem 2.10 and we use of (2.14),

RN 23 (1-0) coKaA_ 2, 1 5\ oo
< UpKs(= o ’
U(R) < Uy 2(d) +253(5+A_—5/\_)<f1+7091 f
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1
S C()‘—vdu S)K2 (UO + f12 + 'Y_gf) R7257
0

since R2 (179 < R=2% for § € (0, 2=,

Thus Theorem is proved for 0 < s < —A_.

5. The power modulus of continuity near infinity for weak solutions

Proof of Theorem 1.4.
We define the function

R, if s> —\_;
Y(R) =< R InR, if s=—X\_;
R™*, if0<s<—A_.

Theorem 4.1 devoted to the local bound of the weak solution modulus, we have

sup [u(e)| < C{RF ullg.can + B2 9| flly oap + Bllglocrzn ), (5:1)

where C = C(n,v,p,p, || iy (@) * L, () and 2n > p > n > 2. Now by
2

Theorem 4.3 we have

R ful g <28 ([ rr(eas)
G2E (5.2)

< C(|U| 2+ 1+ \/%91>¢(R)-

1
2

Further, by the assumption (d), we obtain

R £l gar + Rlgloorsn < c(fl n >¢<R>. (5.3)

1
ﬁﬁ
It follows from (5.1)—(5.3) that

sup Ju()] < C{||U||2,G - %g1}¢<R>.

Ggf‘zR

Putting now |z| = ZR we finally obtain the desired estimate (1.2).
Now we consider two sets Gf%% and Gg/Q C Gf%%. Changing the variables

x = Ra’ and u(Rx') = ¢ (R)v(z’). We see that the function v(z') satisfies the
problem

2

U(R)
ov 1

’ no_ R
a(Rz )w + MW(W)U(ZE )= mg(m@)a z €Ty,

0 (a" (Ra")vy1) + Rb'(Rx")vg; + R*c(Ra')v =

- f(Ra'), @€ Gy

/
4

(L")
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By the Sobolev Imbedding Theorem we have

sup V0@ < clolwanas ye P> 1 (5.4
zEG}/Q

By the local LP—a priori estimate [8, 9|, for the solution of equation (L") inside
the domain G%/4 and near smooth portions of the boundary I‘f/4 we have

[[ullwzn( (G1)2)
<l B g B il >
~C ¢(R) LP(G?/‘L) ¢(R) g 177 p(F2 ) v LP(G /4)

1/4
Return to the variable z. It follows from (5.4) and (5.5), that

sup |Vul

Gli/2

< e (B il + R F Mg, + B 5ol )
R/4

P(F
and
R* ”||U||V2O(GR/2)
< o BF Julloias,) + B F | llpczm, + B llgl o }
(FR/4)
or
sup [Vul < eR™H{Julo can, + 1 Fllve, czm ) + gl .- }
Gg/z ,2p— N( R/4 ;2: n(r\?{1;4)
and
lullvz, 5, < e{lubocan, + 1flve, vy +llal s}
e P Vo2p-n R/4)

Hence, because of (1.2), (1.3) and the assumption (d), (1.4) and (1.5) holds.

6. Examples

We present examples that show that the conditions of Theorem 1.4 (in par-
ticular the Dini condition for the function A(1)) are essential for their validity.
Suppose that n = 2, the domain G lies inside the corner

Gq= {(r,w)| r > d; —% <w< %; wo € (O,W)},
We denote

rt = {(r,w)| r>d, w:i%}

and we put

'y(w)|w Lo TS const >0 and a(az)‘ri =ay € {0,1}.
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I. We consider the following problem
Au =0, x € Gy,

ou 1
(ai — + ;'Yiu)

n =0.

+
Fd

We verify that the function u(r, w) = r*~(w), A_ < 0 is a solution of our problem
if A2 is the least positive eigenvalue of the problem

w//_i_)\Q_w:O’ WE(—%,%);
(Faxd) +y11)) w0

wet £0
2

and 1)(w) is a regular eigenfunction associated with A2 .

The solution of our equation has the form ¢ (w) = Acos(wA_) + Bsin(wA_). In
order to find A, B from the boundary conditions we obtain the system:

{ (74 cos w°2’\’ — Ay sin ‘”02’\’ )A + (74 sin w"2’\’ + A_ay cos ‘”02’\* )B =0,

wWoA—

(7= cos ®5= — A_a_sin “"’2)" )JA — (7= sin woA= 4 A cos £o2= )B=0.

2 2

Since A%+ B? # 0, the system determinant must be equal to zero; this means that
A_ < 0 is defined via the transcendence equation

(AZa—ay —y37-) -sin(wod-) — A (- +a—74) - cos(wor-) = 0

6.1
= tan(woA_) = —/\E(Zil:ti;t) (6.1
Then we find the eigenfunction
_ _YN s _ Y
P(w) = A_ay cos [/\, (w 5 )} Y+ sin [/\, (w 5 )} (6.2)

Now we investigate some particular cases of the boundary conditions. Such equa-
tions were systematically studied in [7].

Dirichlet problem: ayx =0, y1 = 1.

Equation (6.1) becomes tan(woA-) = 0. Hence, A- = —Z- and the corre-

sponding eigenfunction 1(w) = cos(Z?).
Neumann problem: v+ =0, ag = 1.
Equation (6.1) becomes tan(woA—) = 0. Hence, A_ = —7- and the corre-

sponding eigenfunction ¢ (w) = sin(%2).

Mized problem: ay =1 a_ =0; v+ =0, y- =1.

Equation (6.1) becomes cos(woA-) = 0. Hence, A\ = —57- and the corre-
sponding eigenfunction i (w) = COS(% — %)
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Robin problem: ar =1, vy #0, v~ # 0.
In this case we obtain the largest eigenvalue as the largest negative root of

the transcendence equation tan(woA_) = ’\/\}("Y_;sz) and the corresponding

eigenfunction
wo

ot = s o (5~ 2)] o (0 2)]

In particular, if v4 = v_, we get 1(w) = cos(wA* ), where A\* is the largest

negative root of the transcendence equation tan(woz’\ =) = 5. We denote

—A— =X > 0. Then we have tan(¥32) =  and 0 < —\* < o= -5 <
A* <0 (see Figure 1).

|
|
i
o I
3|
~< 1
a0 |1
=
I
= |
|
|
|
|
|
I
|
|
|
i
! 0
| )
|
|
| | |
' T T
A 2m A
IWo ;0
Figure 1

II. The function

with A < —1 and ¥ (w) defined by (6.1)—(6.2) is a solution of the problem

0 (a” (z)ug,) + b'(z)ug, =0, x € Gg;

83:i
ou 1
— 4= =0 0
(CY((E) on + ’I”/Yiu) Fdi ’ Y+ >
in the domain G4, where
2 x3

al(z) =1—

1+ A .r21n%’
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2 2
22 -1 .1
(@) 14+ A r21n%’
2 1T
12 _ 21 _ 2
a“(r)=a (l’)—m'm,
lim a”(x) =6,  (i,5=1,2);

|z| =00
and
1 1 1 1
bt = ——A(—) cosw, b = ——A(—) sinw.
roo\r roo\r
2
-
. 1 .
ellipticity constant =1, v =1+ m. Further, A(1) = )\72“ In (%), ie.,
the function A(r) does not satisfy the Dini condition at zero. Moreover, a*’ () are
continuous at the infinity. This example shows that the condition of Theorem 1.4
about Dini-continuity of the leading coefficients of the (L) are essential. It also
illustrates the precision of the assumption of Theorem 1.4.

In the domain G$° for d > exp( ), equation is uniformly elliptic with the

ITI. The function
u(r,w) = r*=(w)Inr

with A_ < 0 and ¢(w) defined by (6.1)—(6.2) is a solution of the problem

Au =221 "2)(w), z € Gg;
ou 1
—+ - =0 0
(04(56) o T ﬂiu) p =0 >
in the domain G4. All assumptions of Theorem 1.4 are fulfiled with s = —A_.

This example shows the precision of the assumption for the right hand side of (L)
in Theorem 1.4.
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