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Report of Meeting13th International Conferene on Funtional Equationsand Inequalities,Maªe Cihe, September 13-19, 2009ContentsAbstrats of Talks 118Problems and Remarks 144List of Partiipants 150The Thirteenth International Conferene on Funtional Equations and Inequal-ities was held from September 13 to 19, 2009 at the Hotel Tatry in Maªe Cihe,Poland.The series of ICFEI meetings has been organized by the Institute of Mathemat-is of the Pedagogial University of Craow sine 1984. This year the OrganizingCommittee onsisted of Janusz Brzd�k as Chairman, Paweª Solarz, Janina Wier-ioh, Wªadysªaw Wilk, and Krzysztof Ciepli«ski, who also ated as Sienti�Seretary. The help of Jaek Chmieli«ski, Marek Czerni, Zbigniew Le±niak andJolanta Olko is aknowledged with thanks.The Sienti� Committee onsisted of Professors Dobiesªaw Brydak as Hon-orary Chairman, Janusz Brzd�k as Chairman, Niole Brillouët-Belluot, JaekChmieli«ski, Bogdan Chozewski, Roman Ger, Hans-Heinrih Kairies, LászlóLosonzi, Zsolt Páles and Marek Cezary Zdun.As usual, the onferene was devoted mainly to various aspets of funtionalequations and inequalities. A speial emphasis was given to the stability of fun-tional equations. A Speial Session in honor of the 100th anniversary of thebirthday of Stanisªaw M. Ulam, devoted to this topi and haired by ProfessorThemistoles M. Rassias, was held on Tuesday, September 15.The 76 partiipants ame from 10 ountries: Austria, Frane, Germany, Greee,Hungary, Israel, Italy, Romania, Russia and Poland.The onferene was opened on Monday, September 14 by Professor JanuszBrzd�k � Chairman of the Sienti� and Organizing Committees, who welomedthe partiipants in the name of the Organizing Committee and read a letter to



[118℄ Report of Meetingthem from Professor Wªadysªaw Bªasiak, the Dean of the Faulty of Mathematis,Physis and Tehnial Siene of the Pedagogial University. Opening address wasgiven by Professor Jaek Chmieli«ski, the Diretor of the Institute of Mathematis.Professor Bogdan Chozewski onveyed best regards for the partiipants from theHonorary Chairman of the ICFEI, Professor Dobiesªaw Brydak. The openingeremony was followed by the �rst sienti� session haired by Professor RomanGer and the �rst leture was given by Professor Gian Luigi Forti. Altogether,during 26 sienti� sessions 3 letures and 67 talks were delivered. They fousedon funtional equations in a single variable and in several variables, funtionalinequalities, stability theory, onvexity, multifuntions, iteration theory, means,dynamial systems and other topis. Several ontributions have been made duringspeial Problems and Remarks sessions.On Tuesday, September 15, a pini was organized. On the next day afternoonpartiipants visited Zakopane, the �Winter Capital� of Poland. The exursioninluded a walking tour to Str¡»yska Valley, Sarnia Skaªa and Biaªego Valley inthe Tatra Mountains. In the evening the piano reital was performed by MarekCzerni and Hans-Heinrih Kairies. On Thursday, September 17, a banquet washeld. On the following day a Flameno Evening was hosted by Maªgorzata Drzaª(dane & voal), Grzegorz Guzik (guitar) and Jagoda Romanowska (dane).The onferene was losed on Friday, September 18 by Professor Bogdan Cho-zewski. The 14th ICFEI will be organized in 2011.The following part of the report ontains abstrats of the talks (in alphabetialorder of the authors' names), problems and remarks (in hronologial order ofpresentation) and a list of partiipants (with addresses).Abstrats of TalksRoman Badora Stability of some funtional equationsLet X be a group and let Λ be a �nite subgroup of the automorphism groupof X (N = cardΛ and the ation of λ ∈ Λ on x ∈ X is denoted by λx). We studythe stability of the following funtional equations
1

N

∑

λ∈Λ

f(x+ λy) = f(x)g(y) + h(y), x, y ∈ X,

1

N

∑

λ∈Λ

f(x+ λy) = f(y)g(x) + h(x), x, y ∈ X(f, g, h:X → K ∈ {R,C}), whih over Jensen's funtional equation, Cauhy'sfuntional equation, the exponential funtional equation, the funtional equationof the square of the norm and d'Alembert's funtional equation.Anna Bahyryz On systems of equations with unknown multifuntionsLet (G,+) be a grupoid, T be a nonempty set. Inspired by problem posed byZ. Moszner in [1℄ we investigate for whih additional assumptions putting on the



13th International Conferene on Funtional Equations and Inequalities [119℄multifuntions Z(t):T → 2G whih satisfy ondition
⋃

t∈T

Z(t) = Gand system of onditions
(∃t∈T i(t)j(t) 6= 0) =⇒

(

⋂

t∈T

Z(t)i(t) +
⋂

t∈T

Z(t)j(t) ⊂
⋂

t∈T

Z(t)i(t)j(t)

)

, (1)where Z(t)1 := Z(t), Z(t)0 := G \ Z(t) and i(t), j(t):T → {0, 1} are the arbitraryfuntions not identially equal to zero, the inlusion in the above onditions (1)may be replaed by equality, obtaining the system of equations with unknownmultifuntions.[1℄ Z. Moszner, Sur la fontion de hoix et la fontion d'indie, Ann. Aad. Pedagog.Cra. Stud. Math. 4 (2004), 143�169.Szabols Baják Invariane equations for Gini and Stolarsky means(joint work with Zs. Páles)Given three strit meansM,N,K: R2
+ → R+, we say that the triple (M,N,K)satis�es the invariane equation if

K
(

M(x, y), N(x, y)
)

= K(x, y), x, y ∈ R+holds. It is well known that K is uniquely determined by M and N , and it isalled the Gauss omposition K = M ⊗N of M and N .Our aim is to solve the invariane equation when eah of the means M,N,Kis either a Gini or a Solarsky mean with di�erent parameters, thus we have toonsider four di�erent equations. With the help of the omputer algebra systemMaple V Release 9, we give the general solutions of these equations.Karol Baron On Baire measurable solutions of some funtional equationsWe establish onditions under whih Baire measurable solutions f of
Γ(x, y, |f(x) − f(y)|) = Φ(x, y, f(x+ ϕ1(y)), . . . , f(x+ ϕN (y)))de�ned on a metrizable topologial group are ontinuous at zero.Svetlana S. Belmesova On the unbounded invariant urves of some polynomialmaps(joint work with L.S. Efremova)The unbounded trajetories of the quadrati mapping F2(x, y) = (xy, (x−2)2)in the plane R2 has been studied in [1℄.In this work we deal with the one-parameter family of the quadrati mappings

Fµ(x, y) = (xy, (x− µ)2), (1)where (x, y) ∈ R2, µ ∈ (0, 1]. It is proved the existene of the unbounded invarianturves for the mappings (1) for every µ ∈ (0, 1].[1℄ S.S. Belmesova, L.S. Efremova, On unbounded trajetories of a ertain quadrati map-ping of the plane, J. Math. Si. (N. Y.) 157 (2009), 433�441.



[120℄ Report of MeetingMihály Bessenyei On a lass of single variable funtional equationsIn the last few years, funtional equations have had a growing importanein ompetitions for seondary shool students in Hungary (browse the issues ofMathematial and Physial Journal for Seondary Shools). A typial exerise isof the form
α1f ◦ g1 + . . .+ αnf ◦ gn = h,where gk, αk, h, f are given funtions (with appropriate domain and range) underthe assumption that g1, . . . , gn generate a group under the operation of omposi-tion. The main results of the present talk guarantee that, under some reasonableassumptions, the funtional equation above (and also its nonlinear orrespondene)has a unique solution. The proofs are based on Cramer's rule and the inverse-funtion theorem.[1℄ Mathematial and Physial Journal for Seondary Shools (KöMal)(http://www.komal.hu).[2℄ V.S. Brodskii, A.K. Slipenko, Funtional equations, Visa Skola, Kiev, 1986 (in Rus-sian).[3℄ K. Lajkó, Funtional equations in exerises, University Press of Debreen, 2005 (inHungarian).Zoltán Boros Inequalities for pairs of additive funtionsRepresentation theorems are presented for pairs of additive funtions, underthe assumption that a related expression is loally bounded. Let us assume that

f and g are real additive funtions. If
1

x
f(x) + xg

(1

x

)is bounded on a non-void open interval or
xf(x) +

√

1 − x2g
(

√

1 − x2
)is bounded on every ompat subinterval of the open interval (0, 1), then thereexists a real derivation d suh that

f(x) = d(x) + f(1)x and g(x) = d(x) + g(1)xfor every real number x. However, if, for instane,
√

1 − x2f(x) − xg
(

√

1 − x2
)is bounded on every ompat subinterval of the open interval (0, 1), then f and gare linear.Niole Brillouët-Belluot Some further results onerning a onditional Goª¡b�Shinzel equation(joint work with J. Chudziak and J. Brzd�k)Let X be a real linear spae and letM : R → R be a ontinuous and multiplia-tive funtion. We determine the solutions f :X → R of the funtional equation

f(x+M(f(x))y)f(x)f(y)[f(x +M(f(x))y) − f(x)f(y)] = 0



13th International Conferene on Funtional Equations and Inequalities [121℄whih are ontinuous on rays, i.e., whih are suh that, for every x ∈ X \ {0},
fx: R → R de�ned by fx(t) = f(tx) is ontinuous.In the partiular ases where M ≡ 1 and M(x) ≡ x, we obtain the ontinuouson rays solutions of a onditional exponential equation and those of a onditionalGoª¡b�Shinzel equation.These results extend those given by the authors at the 47th ISFE in Gargnano.Janusz Brzd�k On nonstability of the linear reurrene of order one(joint work with D. Popa and B. Xu)Let K be either the �eld of reals or the �eld of omplex numbers, X be aBanah spae over K, (an)n≥0 a sequene in K \ {0}, and (bn)n≥0 a sequene in
X . We present a result onerning nonstability of the linear reurrene

yn+1 = anyn + bn, n ≥ 0.This orresponds to the ontents, e.g., of reent papers [1�5℄.[1℄ J. Brzd�k, D. Popa, B. Xu, Note on nonstability of the linear reurrene, Abh. Math.Sem. Univ. Hamburg 76 (2006), 183�189.[2℄ J. Brzd�k, D. Popa, B. Xu, The Hyers�Ulam stability of nonlinear reurrenes, J.Math. Anal. Appl. 335 (2007), 443�449.[3℄ J. Brzd�k, D. Popa, B. Xu, Hyers�Ulam stability for linear equations of higher orders,Ata Math. Hungar. 120 (2008), 1�8.[4℄ D. Popa, Hyers�Ulam�Rassias stability of a linear reurrene, J. Math. Anal. Appl.309 (2005), 591�597.[5℄ T. Trif, On the stability of a general gamma-type funtional equation, Publ. Math.Debreen 60 (2002), 47�61.Pál Burai Some results on Orliz-onvex funtions(joint work with A. Házy)Let X be a linear spae over the real �eld R, and C ⊂ X be an open, nonemptyone. A funtion f : C → R is alled s-onvex (Orliz-onvex) if
f (λsx+ (1 − λ)sy) ≤ λf(x) + (1 − λ)f(y)for all x, y ∈ C, λ ∈ (0, 1], where s ∈ [1,∞) is a �xed number. In this talk we makesome examination in this lass of funtions.Liviu C dariu Remarks on the �xed point method for Ulam�Hyers stabilityIn [1℄ and [2℄ some generalized Ulam�Hyers stability results for Cauhy fun-tional equation have been proved. One of the results reads as follows:Let us onsider a real linear spae E, a omplete p-normed spae F and a sub-homogenous funtional of order α ||(·, ·)||α:E × E → [0,∞), with α 6= p. Inthese onditions, the following stability property holds: For eah ε > 0 there exists

δ(ε) > 0 suh that for every mapping f :E → F whih satis�es
||f(x) + f(y) − f(x+ y)||p ≤ δ(ε) · ||(x, y)||α, x, y ∈ E,



[122℄ Report of Meetingthere exists a unique additive mapping a:E → F suh that
||f(x) − a(x)||p ≤ ε · ||(x, x)||α, x ∈ E.We intend to outline the results onerning the generalized Ulam�Hyers stabil-ity for di�erent other kinds of funtional equations. Both the Hyers diret methodand the �xed point method will be emphasized and we shall onsider funtionsde�ned on linear spaes and taking values in p-normed spaes or random normedspaes.[1℄ L. C dariu, A general theorem of stability for the Cauhy's equation, Bull. �tiinµ.Univ. Politeh. Timi³. Ser. Mat. Fiz. 47(61) (2002), 14�28.[2℄ L. C dariu, V. Radu, On the stability of the Cauhy funtional equation: a �xedpoints approah, Iteration theory (ECIT'02), 43�52, Grazer Math. Ber. 346, Karl�Franzens�Univ. Graz, Graz, 2004.[3℄ D.H. Hyers, G. Isa, Th.M. Rassias, Stability of funtional equations in severalvariables, Progress in Nonlinear Di�erential Equations and their Appliations 34,Birkhäuser Boston, In., Boston, MA, 1998.[4℄ V. Radu, The �xed point alternative and the stability of funtional equations, FixedPoint Theory 4 (2003), 91�96.Jaek Chmieli«ski Stability of linear isometries and orthogonality preservingmappingsIn referene to a question posed by the author during the 12th ICFEI, a shortsurvey on linear approximate isometries in normed spaes and respetive stabilityproblems will be given.Next, an appliation to the problem of stability of orthogonality preservingmappings in normed spaes will be shown. Results from a joint work with P. Wój-ik will be presented.Jaek Chudziak Stability of a omposite funtional equationAt the 47th International Symposium on Funtional Equations (Gargnano,Italy) J. Brzd�k has posed several questions onerning a quotient stability of thefollowing generalization of the Goª¡b�Shinzel funtional equation

f(x+M(f(x))y) = f(x)f(y).In our talk we present the answers for some of them.Krzysztof Ciepli«ski Stability of the multi-Jensen equationAssume that V is a normed spae, W is a Banah spae and m ≥ 2 is aninteger. A funtion f :V m →W is alled multi-Jensen (we also say that f satis�esmulti-Jensen equation) if it is a Jensen mapping in eah variable, that is
f(x1, . . . , xi−1,

1

2
(xi + yi), xi+1, . . . , xm)

=
1

2
f(x1, . . . , xi−1, xi, xi+1, . . . , xm) +

1

2
f(x1, . . . , xi−1, yi, xi+1, . . . , xm),

i ∈ {1, . . . ,m}, x1, . . . , xi, yi, . . . , xm ∈ V.



13th International Conferene on Funtional Equations and Inequalities [123℄This notion was introdued by W. Prager and J. Shwaiger in 2005 with theonnetion with generalized polynomials (see [1℄).In this talk the stability of multi-Jensen equation is disussed.[1℄ W. Prager, J. Shwaiger,Multi-a�ne and multi-Jensen funtions and their onnetionwith generalized polynomials, Aequationes Math. 69 (2005), 41�57.Stefan Czerwik S.M. Ulam � his life and results in mathematis, physis andbiologyWe shall present the information about the life of S.M. Ulam and his resultsin di�erent areas of siene: mathematis, physis and biology; partiularly instability of funtional equations and H-bomb.Zoltán Darózy On an elementary inequality and onjugate means(joint work with Zs. Páles)Let n ≥ 2, k ≥ 1. In this talk we give the neessary and su�ient onditionfor the real numbers p1, p2, . . . , pn, q1, q2, . . . , qk to ful�ll the following property:If
min{xi} ≤Ml ≤ max{xi}, l = 1, 2, . . . , kholds for all real numbers x1, x2, . . . , xn and M1,M2, . . . ,Mk, then
min{xi} ≤

n
∑

i=1

pixi +

k
∑

l=1

qlMl ≤ max{xi}.Let I be a nonvoid open interval and let Ml: I
n → I (l = 1, 2, . . . , k) be means.If there exist p1, p2, . . . , pn, q1, q2, . . . , qk with the property above and a stritlymonotone, ontinuous funtion ϕ on I, then

M(x1, x2, . . . , xn)

= ϕ−1

( n
∑

i=1

piϕ(xi) +

k
∑

l=1

qlϕ(Ml(x1, x2, . . . , xn))

)

, x1, x2, . . . , xn ∈ Iis a mean value and we all it the onjugate mean generated by the means M1,
M2, . . . ,Mk.We deal with several problems on onjugate means.Judita Das l On onjugate means(joint work with Z. Darózy)Let I ⊂ R be a nonvoid open interval.A funtion M : I2 → I is said to be a onjugate mean on I if there exist realnumbers p, q ∈ [0, 1] and a ontinuous, stritly monotone real valued funtion ϕde�ned on I suh that

M(x, y) = ϕ−1
(

pϕ(x) + qϕ(y) + (1 − p− q)ϕ
(x+ y

2

))

, x, y ∈ I.We deal with the equality problem in the lass of onjugate means.



[124℄ Report of MeetingJoahim Domsta A omparison of quantum dynamial semigroups obtainable bymixing or partial traingSome simple examples of quantum systems are olleted to illustrate require-ments su�ient for the evolution of a subsystem aording to a quantum dynamialsemigroup. For this, a lass of quantum dynamis of a system S oupled to a reser-voir R is analyzed in the Hilbert spae HSR = HS ⊗HR, where HR = L2(R) and
HS = l2I , with I standing for a omplete at most ountable set of pure orthogonalstates of S. The Hamiltonian of SR is built of tensor produts of multipliers atingon HS and HR. The hosen linear oupling implies the exponential deohereneof the redued evolution of S if and only if the oupation density in R is of theCauhy type. Then the system indiates the exponential deoherene. On theother hand, sine the oupation density in S is disrete, the redued evolution of
R is never governed by a semigroup (unless there is no oupling).In the onsidered ase, the redued evolution of the subsystem S as well asof the reservoir R an be equivalently obtained by taking the expetation (i.e.by averaging) of the unitary dynamis of the alone standing system S or R withsuitably hosen random Hamiltonians. Thus again, the probability distributionof the random perturbation for S must be of the Cauhy type if the exponentialdeoherene should follow.In the models of the third lass the phase of the quantum system S varies a-ording to a stohasti proess with independent stationary inrements. In otherwords, this is an example of a random dynamial system. Then the exponentialdeoherene of the evolution of the averaged state follows, independently of thedistribution of the proess. In suh ases the It�-Shrödinger equation for the ran-dom unitary dynamis and the master equation for the averaged density matriesare obtained in the dependene on the probability distribution of the proess. Forpresenting the Cauhy distribution in a di�erent ontext, a relation to the expo-nential deay of the autoorrelation of autonomous systems is disussed brie�y.Andrey S. Filhenkov On the simplest topologially transitive skew produts inthe plane(joint work with L.S. Efremova)Let F (x, y) = (f(x), gx(y)) : I → I be a skew produt of interval maps, I is aretangle in the plane, I = I1 × I2 (I1, I2 are losed intervals). Let T 1(I) be thespae of C1(I)-smooth skew produts of interval maps.In this talk we present onditions of the density of the set of periodi points inthe phase spae of the skew produt.Theorem.Let F ∈ T 1(I) satisfy the following onditions:1) F (x, y) is a topologially transitive skew produt of interval maps,2) the partial derivative ∂gx(y)

∂y
monotonially dereases with respet to y ∈ I2for any x ∈ I1,3) gx(∂I2) = ∂I2 for any x ∈ I1, where ∂I2 is the boundary of I2.



13th International Conferene on Funtional Equations and Inequalities [125℄Then the set of periodi points of the skew produt of interval maps is dense in I.In this talk we also onstrut the topologially transitive skew produt whihsatis�es all onditions of the above theorem. We use here the unimodal mapstheory (see [2℄). For the omparison in [3℄ it is proved the existene of the topolog-ially transitive ylindrial asade (the skew produt over the irrational rotationof the irle) without periodi points. In [1℄ it is onstruted an example of on-tinuous but not smooth topologially transitive skew produt in the unit squarewhih has the dense set of periodi points in horizontal �bers y = 0 and y = 1.[1℄ Ll. Alseda, S. Kolyada, J. Llibre, L. Snoha, Entropy and periodi points for transitivemaps, Trans. Amer. Math. So. 351 (1999), 1551�1573.[2℄ L.S. Efremova, A.S. Filhenkov, About one example of the topologially transitive skewprodut of interval maps in the plane, Math problems, M.:MPhTI 2009, 61�68.[3℄ E.A. Sidorov, Topologially transitive ylindrial asades (Russian), Mat. Zametki14 (1973), 441�452.Gian Luigi Forti Symboli dynamis generated by graphsIn many natural phenomena strings onsisting of sequenes of symbols playa entral role. Also the evolution of large lasses of dynamial systems an bedesribed, under ertain onditions, as a sequene of symbols. In this ontext,a entral question is how to enumerate and to haraterize the full set of possiblesequenes generated by a dynamial system.At �rst, the properties of the symboli dynamis generated by a graph onan alphabet are presented and it is shown that the number of sequenes of length
n is either exponential or polynomial with respet to n.Then by a ombination of several graphs we obtain di�erent laws. In parti-ular we an obtain laws observed in omplex systems and onjetured in 1992 byEbeling and Niolis.We �nish by presenting a probabilisti approah to the problem.[1℄ V. Basios, G.-L. Forti, G. Niolis, Symboli dynamis generated by a ombination ofgraphs, Internat. J. Bifur. Chaos Appl. Si. Engrg. 18 (2008), 2265�2274.Roman Ger On a problem of CuulièreIn the February 2008 issue of The Amerian Mathematial Monthly (Problemsand Solutions, p.166) the following question was proposed by R. Cuulière:Find all nondereasing funtions f from R to R suh that

f(x+ f(y)) = f(f(x)) + f(y) for all real x and y(Problem 11345).We shall present:� the general Lebesgue measurable solution,� monotoni solutions,� a desription of the general solutionof the funtional equation in question.



[126℄ Report of MeetingAttila Gilányi Conditional stability of monomial funtional equationsDuring the 42nd International Symposium on Funtional Equations in Opava,Czeh Republi, 2004, J. Azél announed the program of the investigation ofonditional funtional equations (.f. [1℄). Conneted to this program, we presentsome onditional stability results for monomial funtional equations.More preisely, in the ase of various sets D ⊆ R×R and H ⊆ R, and assumingthat Y is a Banah spae, n is a positive integer, α is an arbitrary, ε and δ arenonnegative real numbers, we examine whether the validity of the inequality
∥

∥∆n
yf(x) − n!f(y)

∥

∥ ≤ ε|x|α + δ|y|α, (x, y) ∈ Dimplies the existene of nonnegative onstants c and d and a monomial funtion
g: R → Y of degree n (i.e. a solution of the funtional equation ∆n

y g(x)−n!g(y) =
0, x, y ∈ R) for whih

‖f(x) − g(x)‖ ≤ (cε+ dδ)|x|α, x ∈ Hholds.[1℄ J. Azél, 5. Remark, Report of Meeting, Aequationes Math. 69 (2005), 183.Dorota Gªazowska An invariane of the geometri mean with respet to theCauhy mean-type mappings(joint work with J. Matkowski)We onsider the problem of invariane of the geometri mean with respet tothe Cauhy mean-type mappings (

Df,g, Dh,k
), i.e., the funtional equation

G ◦
(

Df,g, Dh,k
)

= G.Assuming that the generators g and k are power funtions we show that thefuntions f and h have to be of high lass of regularity. This fat allows toredue the problem to di�erential equations and �nd some neessary onditionsfor generators f and h.Eszter Gselmann On the stability of derivationsIn this talk we investigate the stability of a system of funtional equationsthat de�nes real derivations. More preisely, the problem of Ulam is onsidered inonnetion with the following system of equations
f(x+ y) = f(x) + f(y), x ∈ Rand
f(xn) = cxkf(xm), x ∈ R \ {0} ,where f : R → R is the unknown funtion, c ∈ R and n,m, k ∈ R are arbitrarily�xed. Using a preliminary lemma that is also presented, it is proved that theabove system of funtional equations is stable in the sense of Hyers and Ulam,under some onditions on the parameters c, n,m and k.



13th International Conferene on Funtional Equations and Inequalities [127℄Grzegorz Guzik On some disjoint iteration semigroups on the torusGeneral onstrution of measurable (ontinuous) disjoint iteration semigroupsof triangular mappings on the torus is given.Attila Házy Bernstein�Doetsh type results for h-onvex funtionsThe onept of h-onvexity was introdued by S. Varo²ane in [1℄. In our talkwe introdue a more general onept of the h-onvexity, and the onept of the soalled (H,h)-onvexity.A h-onvex (or (H,h)-onvex) funtion is de�ned as a funtion f :D → R(where D is a nonempty, open, onvex subset of a real (or omplex) linear spae)whih satis�es
f(λx + (1 − λ)y) ≤ h(λ)f(x) + h(1 − λ)f(y),for all x, y ∈ D and λ ∈ [0, 1] (resp. λ ∈ H), where h is a given real funtion.The main goal of our talk is to prove some regularity and Bernstein�Doetshtype result for h-onvex and (H,h)-onvex funtions. We also ollet some fatson suh funtions. Finally, we ollet some interesting, easily-proved properties of

h-onvex funtions.[1℄ S. Varo²ane, On h-onvexity, J. Math. Anal. Appl. 326 (2007), 303�311.Eliza Jabªo«ska About solutions of a generalized Goª¡b�Shinzel equationLet n ∈ N and let X be a metrizable linear spae over K ∈ {R,C}. We onsidersolutions f :X → K of the funtional equation
f(x+ f(x)ny) = f(x)f(y) for x, y ∈ Xsuh that either f is bounded on a set of seond ategory with the Baire propertyor f is Baire measurable. Our result generalizes a result of J. Brzd�k.Hans-Heinrih Kairies A sum type operatorOur sum type operator F :D → F [D] is given by

F [ϕ](x) :=

∞
∑

k=0

2−kϕ(2kx),where D = {ϕ: R → R :
∑∞

k=0 2−kϕ(2kx) onverges for every x ∈ R}.We treat the following aspets:1. Historial bakground.2. Basi properties of F and its restritions Frg:Drg → F [Drg] to sixteen sub-spaes Drg of D, whih are all vetor spaes and in part Banah spaes.3. Funtional equations for F [ϕ] and haraterizations.4. Some Fourier analysis for F [ϕ].



[128℄ Report of Meeting5. Images F [S] and F−1[S].6. Eigenvalues and eigenspaes for all the sixteen Frg.7. Continuous and residual spetra.8. Extensions.Barbara Kol�ga-Kulpa On a lass of equations stemming from various quadra-ture rules(joint work with T. Szostok)We deal with a funtional equation of the form
F (y) − F (x) = (y − x)

n
∑

k=1

akf(λkx+ (1 − λk)y), x, y ∈ R (1)motivated by quadrature rules of approximate integration. In previous results thesolutions of this equation were found only in some partiular ases. For example,oe�ients λk were supposed to be rational or the equation in question was solvedonly for n = 2.We prove that every funtion f : R → R satysfying equation (1) with somefuntion F : R → R, where ∑n
k=1 ak 6= 0, is a polynomial of degree at most 2n− 1.In our results we do not assume any spei� form of oe�ients ouring at theright-hand side of (1) and we allow n to be any positive integer. Moreover, weobtain solutions of our equation without any regularity assumptions onerningfuntions f and F.Zygfryd Kominek On a Jensen�Hosszú equation(joint work with J. Sikorska)It is known that in the lass of funtions ating the interval I = [0, 1] (I = (0, 1))into a real Banah spae the Jensen funtional equation is stable and the Hosszúfuntional equation has not this property. So, we have a nontrivial pair of theequivalent equations suh that one of them is stable and the other is not. Fromthis point of view it seems interesting to onsider the funtional equation of theform

f(x+ y − xy) + f(xy) = 2f
(x+ y

2

)

, x, y ∈ I. (1)The left-hand-side of equation (1) is the same as the left-hand-side of the Hosszúfuntional equation, and the right-hand-side of our equation oinides with theleft-hand side of the Jensen equation. We will prove that equation (1) is alsoequivalent to the Jensen (and in the same reason to the Hosszú) equation and,moreover, that equation (1) is stable in the sense of Hyers and Ulam.Dorota Krassowska On iteration semigroups ontaining generalized onvex andonave funtionsLet I ⊂ R be an open interval and let M,N : I2 → I be ontinuous funtions.A funtion f : I → I is said to be (M,N)-onvex ((M,N)-onave) if
f(M(x, y)) ≤ (≥)N(f(x), f(y)), x, y ∈ I.



13th International Conferene on Funtional Equations and Inequalities [129℄A funtion f : I → I simulteneously (M,N)-onvex and (M,N)-onave isalled (M,N)-a�ne (see [1℄).We prove that if in a ontinuous iteration semigroup {f t, t ≥ 0} every element
f t is (M,N)-onvex or (M,N)-onave and there exist r > s > 0 suh that f r and
fs are (M,N)-a�ne, then M = N and every element of a semigroup is (M,M)-a�ne. We also onsider the ase whereM = N and we show that if in a ontinuousiteration semigroup {f t, t ≥ 0} there exist f r < id and fs < id suh that r

s
6∈ Qand f r is (M,M)-onvex and fs is (M,M)-onave, then every element of thesemigroup is (M,M)-a�ne.[1℄ J. Matkowski, Iteration groups with generalized onvex and onave elements, Iter-ation theory (ECIT 94) (Opava), 199�216, Grazer Math. Ber. 334, Karl-Franzens-Univ. Graz, Graz, 1997.Zbigniew Le±niak On onjugay of Brouwer homeomorphismsWe onsider Brouwer homeomorphisms of the plane for whih the osillatingset is empty. The main result says that if the sets of indies of overings of theplane onsisting of maximal parallelizable regions for two Brouwer homeomor-phisms are isomorphi and if for eah of these regions there exists a one-to-oneorrespondene between the set of singular lines ontained in the boundary of theregion and the set of singular lines ontained in the interior of the region, thenthese Brouwer homeomorphisms are onjugated. This theorem holds for Brouwerhomeomorphisms that are embeddable in a �ow as well as for Brouwer homeo-morphisms for whih there exists a foliation of the plane onsisting of invarianttopologial lines.Andrzej Mah Stability of some funtional equations and open problems(joint work with Z. Moszner)Some results on stability of ertain equations and systems of equations aregiven. A number of open problems of stability, raised by Z. Moszner, is presented.The answer for one of them is given.[1℄ D.H. Hyers, On the stability of the linear funtional equation, Pro. Nat. Aad. Si.U.S.A 27 (1941), 222�224.[2℄ A. Mah, On some funtional equations involving Babbage equation, Results Math.51 (2007), 97�106.[3℄ A. Mah, Z. Moszner, On stability of the translation equation in some lasses offuntions. Aequationes Math. 72 (2006), 191�197.[4℄ A. Mah, Z. Moszner, On some funtional equations involving involutions, Österreih.Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 216 (2007), 3�13 (2008).[5℄ Z. Moszner, On the stability of funtional equations, Aequationes Math. 77 (2009),33�88.Ewelina Mainka On uniformly ontinuous Nemytskii operators generated by set-valued funtionsLet I = [0, 1], let Y be a real normed linear spae, C a onvex one in Y and

Z a Banah spae. Denote by clb(Z) the set of all nonempty losed and boundedsubsets of Z.



[130℄ Report of MeetingIf a superposition operator N generated by a set-valued funtion F : I × C →
clb(Z) maps the set Hα(I, C) of all funtions ϕ: I → C satisfying the Hölder on-dition into the set Hβ(I, clb(Z)) of all set-valued funtions φ: I → clb(Z) satisfyingthe Hölder ondition and is uniformly ontinuous, then

F (x, y) = A(x, y)
∗
+ B(x), x ∈ I, y ∈ Cfor some set-valued funtions A,B suh that A(·, y), B ∈ Hβ(I, clb(Z)), y ∈ C and

A(x, ·) ∈ L(C, clb(Z)), x ∈ I.Using Jensen funtional equation is essential in the proof. A onverse result isalso onsidered.Judit Makó On ϕ-onvexity(joint work with Zs. Páles)In this talk a new onept of approximate onvexity is de�nied, termed ϕ-onvexity. The funtion ϕ is hosen in a partiular way. Assume that I isa nonempty open real interval of R and denote I∗ := (I − I) ∩ R+, where R+stands for the set of nonnegative real numbers. Let ϕ: I∗ → R+ be a given fun-tion. A real valued funtion f : I → R is alled ϕ-onvex if
f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)+ tϕ

(

(1− t)|x− y|
)

+ (1− t)ϕ
(

t|x− y|
) (1)for all t ∈ [0, 1] and for all x, y ∈ I. If (1) holds for t = 1

2 , then we say that f is
ϕ-midonvex.In this talk we give some equivalent onditions for ϕ-onvexity. Furthermore,we searh relations between the loal upper-bounded ϕ-midonvex funtions and
ϕ-onvex funtions.Gyula Maksa Nonnegative information funtions revisited(joint work with E. Gselmann)Motivated by the known result that there are nonnegative information fun-tions di�erent from the Shannon information funtion, in this talk, we present someproperties of the set on whih every nonnegative information funtion oinideswith the Shannon's one.Fruzsina Mészáros Density funtion solutions of a funtional equation(joint work with K. Lajkó)The funtional equation

fU (u) fV (v) = fX

( 1 − v

1 − uv

)

fY (1 − uv)
v

1 − uvis investigated for almost all (u, v) ∈ (0, 1)2. Suppose only that the unknownfuntions fX , fY , fU , fV : (0, 1) → R are density funtions of some random variables(i.e. nonnegative and Lebegue integrable with integral 1). Does it follow that theyare positive almost everywhere on (0, 1)?Using a method of A. Járai in onnetion with the haraterization of theDirihlet distribution, we give an a�rmative answer to this question.The obtained result is related to an independene property for beta dist-ributions.



13th International Conferene on Funtional Equations and Inequalities [131℄Bartosz Miherda On the properties of four elements in funtion spaesLet Xρ be a modular spae whih is a lattie with respet to the ordering ≥given by some pointed onvex one K ⊂ Xρ. For x, y ∈ Xρ denote x∧y = inf(x, y)and x ∨ y = sup(x, y).Then we say that ρ satis�es the lower property of four elements (LPFE) if forany x, y, w, z ∈ Xρ suh that x ≥ y, we have
ρ(x− w) + ρ(y − z) ≥ ρ(x− w ∨ z) + ρ(y − w ∧ z),and it satis�es the upper property of four elements (UPFE) if for any x, y, w, z ∈

Xρ suh that x ≥ y, we have
ρ(x− w) + ρ(y − z) ≤ ρ(x− w ∧ z) + ρ(y − w ∨ z).These inequalities are useful for the study of projetion and antiprojetionoperators in modular spaes (see [1℄ and [2℄).In our talk we present a lass of funtion modulars whih satisfy both (LPFE)and (UPFE). We also give some other examples and ounterexamples.[1℄ G. Isa, G. Lewiki, On the property of four elements in modular spaes, Ata Math.Hungar. 83 (1999), 293�301.[2℄ B. Miherda, The properties of four elements in Orliz-Musielak spaes, Math. In-equal. Appl. 4 (2001), 599�608.Vladimir Mityushev Appliation of funtional equations to determination of thee�etive ondutivity of omposites with elliptial inlusionsAnalysis onerning the transport properties of inhomogeneous materials is offundamental theoretial interest. Analytial formulae for the marosopi proper-ties with physial and geometrial parameters in symboli form is useful to preditthe behavior of omposites. The method of funtional equations is one of the on-strutive methods to derive suh analytial exat and approximate formulae. Thepresent talk is devoted to appliation of the method to two�dimensional ompos-ites with elliptial inlusions. The sizes, the loations and the orientations of theellipses an be arbitrary. The analytial formulae ontains all above geometrialparameters in symboli form.Lajos Molnár Charaterizing some spei� elements in spaes of operators andfuntions and its useWe haraterize ertain spei� elements in spaes of funtions or Hilbert spaeoperators and use those haraterizations to determine the strutures of di�erentkinds of automorphisms and isometries of the underlying spaes.Janusz Morawie Re�nement equations and Markov operators(joint work with R. Kapia)Let (Ω,A, P ) be a omplete probability spae, let L: Ω → Rn be a randomvetor and let K: Ω → Rn×n be a random matrix. We disuss the lose onnetionbetween the problem of the existene of non-trivial L1-solutions f : Rn → R of the



[132℄ Report of Meetingre�nement equation
f(x) =

∫

Ω

| detK(ω)|f(K(ω)x− L(ω)) dP (ω)and the problem of the existene of invariant probability Borel measures of a veryspeial Markov operator de�ned (on the spae of all �nite Borel measures on Rn)by
Mµ(A) =

∫

Ω

∫

Rp

χA(K(ω)−1(x+ L(ω)))dµ(x) dP (ω).Jaek Mrowie On stability of some funtional equationReently, Soon�Mo Jung has proved the Hyers�Ulam stability of the Fibonaifuntional equation
f(x) = f(x− 1) + f(x− 2)in the lass of funtions f : R → X , where X is a real Banah spae. The samemethod with little modi�ations may be applied to prove stability of the moregeneral funtional equation
f(x) = af(x− 1) + bf(x− 2),where a, b ∈ R, in the same lass of funtions. However, for some values of a and

b this equation is not stable.Anna Mure«ko A generalization of Bernstein�Doetsh theoremLet V be an open onvex subset of a nontrivial real normed spae X . We givea partial generalization of Bernstein�Doetsh theorem. Namely, if there exist abase B of X and a point x ∈ V suh that a midonvex funtion f :X → R is loallybounded above on b-ray at x for eah b ∈ B, then f is onvex. Moreover, underthe above assumption, f is also ontinuous in ase X = RN , but not in general.Adam Najdeki On stability of some funtional equationLet S be a nonempty set, k, n ∈ N and gj:S × S → S for j ∈ {1, . . . , k}. Weare going to disuss the stability of the funtional equation
k

∑

j=1

f(gj(s, t)) = f(s)f(t), s, t ∈ Sin the lass of funtions f from S to the normed algebraMn(C) of omplex n× nmatries.Kazimierz Nikodem Remarks on strongly onvex funtionsLet D be a onvex subset of a normed spae and c > 0. A funtion f :D → Ris alled strongly onvex with modulus c if
f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) − ct(1 − t)‖x− y‖2for all x, y ∈ D and t ∈ [0, 1]. We say that f is midpoint strongly onvex with



13th International Conferene on Funtional Equations and Inequalities [133℄modulus c if
f
(x+ y

2

)

≤
f(x) + f(y)

2
−
c

4
‖x− y‖2, x, y ∈ D.Some properties of midpoint strongly onvex funtions (orresponding to thelassial results of Jensen onvex funtions) are presented. A relationship betweenstrong onvexity and generalized onvexity in the sense of Bekenbah is also given.Andrey A. Nuyatov Representation of spae of entire funtions of Fisher'spairsIn [2℄ resolvability of the equation

ψ1(z)MF1
[f ] + . . .+ ψm(z)MFm

[f ] = g(z) (1)is proved, −→ψ = (ψ1(z), . . . , ψm(z)) ∈ Hm
Cn , MFj

[f ] ≡ (Fj , f(z+w)) � the operatorof onvolution in the spae H(Cn), whih harateristi funtion is equal to ϕj(z),
j = 1, . . . ,m. Resolvability of this equation is onneted by onept of Fisher'spairs (see [1℄):A pair of polynomials (P (z), Q(D)), D = (D1, . . . , Dn), Dj = ∂/∂zj forms aFisher pair if

H(Cn) = (P (z)) ⊕ KerQ(D).In this onnetion, equation (1) an be written down in the following way
Σ0

k=mPk(z)MP∗

k
[f ] = g(z), (2)where degPk = degP ∗

k = k, k = 0, . . . ,m. Equation (2) will beome
Σ0

k=m

(

Σ0
|α|=ka

k
αz

α
)(

Σ0
|α|=ka

k
αD

αf
)

= g(z). (3)We will show under what onditions the di�erential equation with variable fators
Σ0

|β|=m

[(

Σ0
|α|=mbαβz

α
)

Dβf
]

= g(z) (4)is led to equation (3), i.e., the fators of equation (3) are expressed through thefators of equation (4). Let B = ||bαβ|| be matrix of fators of equation (4).Theorem.If the transposed matrix to B an be represented in the form of BT = Σ0
k=mBk,where Bk = ||bkαβ || ( k = m,m − 1, . . . , 0) - Hermitean onjugate matrixes of arank 1, thus the only elements of the last of 1

(n−1)!

∑k
i=0

∏n−1
j=1 (i+ j), n ≥ 2 rowsand 1

(n−1)!

∑k
i=0

∏n−1
j=1 (i+ j), n ≥ 2 olumns are nonzero, then equation (4) is ledto equation (3).The program whih heks onditions of redution of the given equation toequation (3) and if it is possible is written and expresses the fators of equation(3) through the fators of equation (4) and writes down equation (3).[1℄ H.S. Shapiro, An algebrai theorem of E. Fisher, and the holomorphi Goursat prob-lem, Bull. London Math. So. 21 (1989), 513�537.



[134℄ Report of Meeting[2℄ V.V. Napalkov, On the theory of linear di�erential equations with variable oe�ients(Russian), Dokl. Akad. Nauk 397 (2004), 748�750.Andrzej Olbry± On some inequality onneted with Wright onvexityWe onsider the funtional inequality
f(λx+ (1− λ)y) ≤ G(x, y, λ)f(x) + [1−G(x, y, λ)]f(y), x, y ∈ (a, b), λ ∈ (0, 1),where f : (a, b) → R and G: (a, b) × (a, b) × (0, 1) → R is a funtion symetri withrespet to x and y.Jolanta Olko On a family of multifuntionsLet {f t, t ∈ R}, {gt, t ∈ R} be groups of inreasing selfmappings of an interval
I suh that f t ≤ gt, t ∈ R. We study properties of the family {Ht, t ∈ R} ofmultifuntions de�ned as follows

Ht(x) = [f t(x), gt(x)], x ∈ I, t ∈ R.Zsolt Páles An appliation of Blumberg's theorem in the omparison of weightedquasi-arithmeti meansWe present omparison theorems for the weighted quasi-arithmeti means andfor weighted Bajraktarevi¢ means without supposing in advane that the weightsare the same. The results have been obtained jointly with Gyula Maksa underdi�erentiability assumptions. Using Blumberg's theorem (stating, for every realfuntion, the existene of a ountable dense set suh that the restrition of thefuntion to this set is ontinuous), these regularity assumptions are ompletelyremoved.Boris Paneah Several remarks on approximate solvability of the linear funtionalequationsWe onsider the general linear funtional operator
PF (x) :=

N
∑

j=1

cj(x)F ◦ aj(x), x ∈ D ⊂ Rp.Here F ∈ C(I, B) (the spae of all B-valued ontinuous funtions on I) with I =
(−1, 1), B a Banah spae, oe�ients cj and arguments aj of P are ontinuousfuntions D → R and D → I, respetively, D is a domain with a ompat losure.Reently a deep onnetion between this operator and di�erent problems fromanalysis, geometry and even gas dynami has been disovered. In a series of workssome existing and uniqueness problems have been studied as well as the overde-terminedness for some types of the operators P has been established. Beauseof the linearity of P studying homogeneous equation PF ≈ 0 and, in partiular,searhing an approximate solution to this equation provokes the speial interest(from both theoretial and pratial points of view). It worth noting that eventhe notion of the approximate solution by itself needs to be de�ned aurately.



13th International Conferene on Funtional Equations and Inequalities [135℄At the �rst part of the talk I formulate and disuss the new notions identifyingproblem and approximate solution related to linear funtional operator P . Inpartiular, it will be lari�ed the interrelation of the identifying and well-knownUlam problems. It will be explained also that the latter problem bears a diretrelation to the approximate solvability rather then to some mythi stability.At the seond part of the talk the set of linear funtional operators for whih Isueeded in proving the solvability of the identifying problem and the approximatesolvability of the equation PF ≈ 0 will be desribed and disussed.In onlusion a list of the most interesting unsolved problems will be demon-strated.Boris Paneah On approximate solvability of the Cauhy equation of arbitrarydegreeThe talk is devoted to the well-known but not well studied funtional operator
CnF := F (0) +

n
∑

k=1

(−1)k
∑

1≤j1<...<jk≤n

F (xj1 + . . .+ xjk
),where x = (x1, . . . , xn) is a point of a bounded domain in Rn and F is a funtion:

I → B with B a Banah spae and I = {t : 0 ≤ t ≤ 1}. We show at �rst wherefrom this operator arises in di�erent �elds of mathematis and physis, and thenwe formulate the problem of approximate solvability of the equation CnF ≈ 0. Inthe seond part of the talk we solve this problem.Magdalena Piszzek On multivalued iteration semigroupsLet K be a losed onvex one with a nonempty interior in a Banah spaeand let G:K → cc(K) be a ontinuous additive multifuntion. The equality
Ft ◦G = G ◦ Ft, t ≥ 0is a neessary and su�ient ondition under whih the family {Ft, t ≥ 0} ofmultifuntions

Ft(x) =

∞
∑

i=0

ti

i!
Gi(x), x ∈ K, t ≥ 0is an iteration semigroup.Dorian Popa A property of a funtional inlusion onneted with Hyers-UlamstabilityWe prove that a set-valued map F :X → P0(Y ) satisfying the funtional inlu-sion F (x)♦F (y) ⊆ F (x ∗ y) admits, in appropriate onditions, a unique seletion

f :X → Y satisfying the funtional equation f(x) ⋄ f(y) = f(x ∗ y), where (X, ∗),
(Y, ⋄) are square-symmetri grupoids and ♦ is the extension of ⋄ to the olletion
P0(Y ) of all nonempty parts of Y .[1℄ J. Azél, Letures on funtional equations and their appliations, Mathematis inSiene and Engineering 19, Aademi Press, New York�London, 1966.



[136℄ Report of Meeting[2℄ J. Brzd�k, A. Pietrzyk, A note on stability of the general linear equation, AequationesMath. 75 (2008), 267�270.[3℄ Z. Gajda, R. Ger, Subadditive multifuntions and Hyers�Ulam stability, General in-equalities 5 (Oberwolfah, 1986), 281�291, Internat. Shriftenreihe Numer. Math. 80Birkhäuser, Basel, 1987.[4℄ D.H. Hyers, G. Isa, Th.M. Rassias, Stability of funtional equations in severalvariables, Progress in Nonlinear Di�erential Equations and their Appliations 34,Birkhäuser Boston, In., Boston, MA, 1998.[5℄ Zs. Páles, Hyers�Ulam stability of the Cauhy funtional equation on square-symmetri grupoids, Publ. Math. Debreen 58 (2001), 651�666.[6℄ D. Popa, A stability result for a general linear inlusion, Nonlinear Funt. Anal. Appl.9 (2004), 405�414.[7℄ D. Popa, Funtional inlusions on square-symmetri grupoids and Hyers�Ulam sta-bility, Math. Inequal. Appl. 7 (2004), 419�428.[8℄ A. Smajdor, Additive seletions of superadditive set-valued funtions, AequationesMath. 39 (1990), 121�128.[9℄ W. Smajdor, Subadditive set-valued funtions, Glas. Mat. Ser. III 21 (41) (1986),343�348.[10℄ W. Smajdor, Superadditive set-valued funtions and Banah-Steinhaus theorem,Rad. Mat. 3 (1987), 203�214.Vladimir Yu. Protasov Lipshitz stability of linear operators in Banah spaesThe well-known onept of Ulam�Hyers�Rassias stability for the additiveCauhy equation establishes, in partiular, the p-stability of linear maps betweenBanah spaes for all positive parameters p 6= 1. The only exeption is the Lip-shitz ase, when p = 1 (see [1℄ and referenes therein). One of possible ways toobtain stability results for this ase is to introdue the notion of Lipshitz linearstability. Let X,Y be arbitrary Banah spaes and F :X → Y be a map with theonly assumption that there is K > 0 suh that ‖F (x)‖ ≤ K‖x‖, x ∈ X . For agiven ε > 0 we onsider the following ondition on F :
‖{a, b}F − {b, c}F‖ ≤ ε a, c ∈ X, b ∈ [a, c], (1)where {x1, x2}F denotes the divided di�erene F (x2)−F (x1)

‖x2−x1‖
. This ondition is ful-�lled for ε = 0 preisely when F is linear. We say that a map F an be linearlyLipshitz C-approximated if there is a linear operator A:X → Y suh that

‖{x1, x2}F−A‖ ≤ C, x1, x2 ∈ X.This means that ‖F (x1) − F (x2) − (Ax1 − Ax2)‖ ≤ C‖x1 − x2‖. Observe that if
F (0) = 0, then ‖F (x)−Ax‖ ≤ C‖x‖ for any x. Thus, Lipshitz linear approxima-tion property implies the linear approximation in the sense of Ulam�Hyers�Rassiasstability for p = 1. Consider now the following property alled in the sequel Lips-hitz linear stability (LLS):For given Banah spaes X and Y there is a funtion C(ε), whih tends to zeroas ε → 0, suh that any map F :X → Y possessing property (1) an be linearlyLipshitz C(ε)-approximated.



13th International Conferene on Funtional Equations and Inequalities [137℄Any Lipshitz ε-perturbation of a linear operator possesses property (1). Thequestion is whether the onverse is true: if (1) holds for a map F , then F an belinearly Lipshitz C(ε)-approximated? In other words, if a map F :X → Y anbe linearly Lipshitz ε-approximated on any straight line l ⊂ X , an it be C(ε)-approximated globally on X? This problem was stated for ase of funtionals(when Y = R) by Prof. Zsolt Páles in 12th ICFEI [2, Problem 2, pp.150�151℄both for the entire spae X and for onvex domains D ⊂ X . First we answer thequestion of LLS for funtionals:Theorem 1If X is an arbitrary Banah spae and Y = R, then the LLS property holds with
C(ε) = 2ε.The proof is based on the separation priniple, and annot be extended from thease Y = R to an arbitrary Banah spae Y . This extension, nevertheless, an berealized using a totally di�erent idea, whih leads to the following result:Theorem 2The LLS property holds with C(ε) = 2ε for any Banah spaes X,Y , whenever Xis separable.It appears that the estimate C(ε) = 2ε is the best possible in both those theorems,and annot be improved already for X = R2, Y = R. Then we onsider LLS formaps F de�ned on onvex open bounded domains D ⊂ X , in whih ase C(ε)already depends on the geometry of the domain.[1℄ Th.M. Rassias, On the stability of funtional equations and a problem of Ulam, AtaAppl. Math. 62 (2000), 23�130.[2℄ Report of Meeting: 12th ICFEI, Ann. Aad. Pedagog. Cra. Stud. Math. 7 (2008),125�159.Vladimir Yu. Protasov Euler binary partition funtion and re�nement equa-tionsRe�nement equations, i.e., di�erene funtional equations with the double on-trations of the argument have been studied in the literature in great detail dueto their appliations in funtional analysis, wavelets theory, ergodi theory, prob-ability, et. Any re�nement equation is written in the form

ϕ (x) =
d−1
∑

k=0

ckϕ(2x− k), (1)where {ck} are omplex oe�ients suh that ∑d−1
k=0 ck = 2. This equation al-ways possesses a unique, up to multipliation by a onstant, ompatly supportedsolution ϕ in the spae of distributions S′.We present a rather surprising appliation of re�nement equations to a well-known problem of the ombinatorial number theory: the asymptotis of the Eulerpartition funtion. For an arbitrary integer d ≥ 2 the binary partition funtion

b(k) = b(d, k) is de�ned on the set of nonnegative integers k as the total number of



[138℄ Report of Meetingdi�erent binary expansions k =
∑∞

j=0 dj2
j , where the �digits� dj take values fromthe set {0, . . . , d− 1}. The asymptoti behavior of b(k) as k → ∞ was studied byL. Euler, K. Mahler, N.G. de Bruijn, D.E. Knuth, B. Reznik and others.It appears that the exponent of growth of the funtion b(k) an be expressedby the solution ϕ of re�nement equation (1) with equal oe�ients ck = 1

d
. Usingthis argument we answer two open questions formulated by B. Reznik in 1990(see [1℄).[1℄ B. Reznik, Some binary partition funtions, Analyti number theory (Allerton Park,IL, 1989), 451�477, Progr. Math. 85, Birkhäuser Boston, Boston, MA, 1990.[2℄ V.Yu. Protasov, On the problem of the asymptotis of the partition funtion, Math.Notes 76 (2004), 144�149.Viorel Radu Ulam�Hyers stability of funtional equations in loally onvex prob-abilisti spaes: a �xed point methodIn [1℄ and [2℄ some generalized Ulam�Hyers stability results for Cauhy fun-tional equation have been proved. Our aim is to outline the results onerning thegeneralized Ulam�Hyers stability for di�erent other kinds of funtional equations.The �xed point method (f. [4℄) will be emphasized, for funtions de�nedon linear spaes and taking values in fuzzy normed spaes and loally onvexprobabilisti spaes.[1℄ D. Miheµ, V. Radu, On the stability of the additive Cauhy funtional equation inrandom normed spaes, J. Math. Anal. Appl. 343 (2008), 567�572.[2℄ L. C dariu, V. Radu, On the stability of the Cauhy funtional equation: a �xedpoints approah, Iteration theory (ECIT'02), 43�52, Grazer Math. Ber. 346, Karl�Franzens�Univ. Graz, Graz, 2004.[3℄ D.H. Hyers, G. Isa, Th.M. Rassias, Stability of funtional equations in severalvariables, Progress in Nonlinear Di�erential Equations and their Appliations 34,Birkhäuser Boston, In., Boston, MA, 1998.[4℄ V. Radu, The �xed point alternative and the stability of funtional equations, FixedPoint Theory 4 (2003), 91�96.Ewa Rak Domination and distributivity inequalities(joint work with J. Drewniak)Domination is a property of operations whih plays an important role in onsid-erations onneted with the distributivity funtional inequalities. Shweizer andSklar [4℄ introdued the notion of domination for assoiative binary operationswith ommon range and ommon neutral element. In partiular, the property ofdomination was onsidered in the families of triangular norms and onorms (seee.g. [1, 2, 3℄). In our onsiderations we shall show some of dependenies betweenthe property of domination and the subdistributivity or the superdistributivity ofoperations on the unit interval.[1℄ J. Drewniak, P. Dryga±, U. Dudziak, Domination between multiplae operations, Is-sues in Soft Computing. Deisions and Operations Researh, EXIT, Warszawa 2005,149�160.



13th International Conferene on Funtional Equations and Inequalities [139℄[2℄ S. Saminger-Platz, The dominane relation in some families of ontinuousArhimedean t-norms and opulas, Fuzzy Sets and Systems 160 (2009), 2017�2031.[3℄ P. Sarkoi, Domination in the families of Frank and Hamaher t-norms, Kybernetia(Prague) 41 (2005), 349�360.[4℄ B. Shweizer, A. Sklar, Probabilisti metri spaes, North-Holland Series in Probabil-ity and Applied Mathematis, North-Holland Publishing Co., New York, 1983.Themistoles M. Rassias Stanisªaw Marin UlamIn this speial session, I will talk brie�y on the life and works of S.M. Ulam.Maiej Sablik Bisymmetrial funtionalsLet Ωi, i = 1, 2 be ompat sets. Consider spaes B(Ωi,R) of bounded fun-tions de�ned on Ωi, and let F and G be funtionals de�ned in B(Ω1,R) and
B(Ω2,R), respetively. We haraterize F and G suh that the equation

G (Ft(x(s, t))) = F (Gs(x(s, t)))holds for every x ∈ B(Ω1 ×Ω2,R), under some additional regularity assumptions.It turns out that F andG are onjugated to an integral with respet to some Radonmeasure in Bi. The main tool in the proof is a result of Gy. Maksa from [1℄.[1℄ Gy. Maksa, Solution of generalized bisymmetry type equations without surjetivityassumptions, Aequationes Math. 57 (1999), 50�74.Ekaterina Shulman Stable quasi-mixing of the horoyle �ow(joint work with F. Nazarov)We onsider the behavior of a one-parameter subgroup of a Lie group underthe in�uene of a sequene of kiks. Our approah follows [1℄ where a speial aseof the problem was related to an asymptoti behavior of �approximate� solutionsof some funtional equations on a disrete group.Let a Lie group G at on a set X , and (ht)t∈R be a one-parameter subgroup of
G; it is a dynamial system ating on X . We perturb this system by a sequene ofkiks {φi} ⊂ G. The kiks arrive with some positive period τ . The dynamis of thekiked system is desribed by a sequene of produts Pτ (i) = φih

τφi−1h
τ . . . φ1h

τthat depend on the period τ .A dynamial property of a subgroup (ht) is alled kik stable, if for everysequene of kiks {φi}, the kiked sequene Pτ (i) inherits this property for a �large�set of periods τ . The property we will onentrate on, is quasi-mixing.A sequene {P (i)} ating on a measure spae (X,µ) by measure-preservingautomorphisms is alled quasi-mixing if there exists a subsequene {ik} → ∞suh that for any two L2-funtions F1 and F2 on X
∫

X

F1(P (ik)x)F2(x) dµ →

∫

X

F1(x) dµ

∫

X

F2(x) dµ when k → ∞.In our ase X = PSL(2,R)/Γ, where Γ ⊂ PSL(2,R) is a lattie. The group
PSL(2,R) ats on X by left multipliation. The prinipal tool used in [1℄ for the



[140℄ Report of Meetingstudy of stable mixing in this setting, is the Howe�Moore theorem whih gives thegeometri desription of quasi-mixing systems: if the sequene P (i) is unboundedthen it is quasi-mixing.It follows from the Howe-Moore theorem that the horoyle �ow
ht =

(

1 t
0 1

)is quasi-mixing on X . We prove that it is kik stably quasi-mixing. This answersthe question raised by L. Polterovih and Z. Rudnik in [1℄.Let us mention an appliation to seond order di�erene equations. A disreteShrödinger-type equation is the equation
qk+1 − (2 + tck)qk + qk−1 = 0, k ≥ 1. (1)Corollary.For every sequene {cn}, the set of the parameters t ∈ R+ for whih all solutionsof the di�erene equation (1) are bounded, has �nite measure.[1℄ L. Polterovih, Z. Rudnik, Kik stability in groups and dynamial systems, Nonlin-earity 14 (2001), 1331�1363.Justyna Sikorska A diret method for proving the Hyers�Ulam stability of somefuntional equationsWe study the stability of the equation of the form

f(x) = af(h(x)) + bf(−h(x))with some onditions imposed on onstants a, b and funtion h. The results arelater applied (by use of a diret method � the Hyers sequenes) for proving thestability of several funtional equations.Barbara Sobek Quadrati equation of Pexider type on a restrited domainLet X be a real (or omplex) loally onvex linear topologial spae. Assumethat U is a nonempty, open and onneted subset of X ×X . Let
U1 := {x : (x, y) ∈ U for some y ∈ X},

U2 := {y : (x, y) ∈ U for some x ∈ X}and
U+ := {x+ y : (x, y) ∈ U},

U− := {x− y : (x, y) ∈ U}.We onsider the funtional equation
f(x+ y) + g(x− y) = h(x) + k(y), (x, y) ∈ U,where f :U+ → Y , g:U− → Y , h:U1 → Y and k:U2 → Y are unknown funtionsand (Y,+) is a ommutative group. The general solution of the equation is given.We also present an extension result.



13th International Conferene on Funtional Equations and Inequalities [141℄Joanna Szzawi«ska Some remarks on a family of multifuntionsLet f : R → R denote the funtion given by
f(t) =

∞
∑

n=0

ant
n, t ∈ R,where an ≥ 0 for n ∈ N. If K is a losed onvex one in a real Banah spae and

H :K → cc(K) a linear and ontinuous set-valued funtion with nonempty, onvexand ompat values in K, then for all t ≥ 0 the set-valued funtion
F t(x) :=

∞
∑

n=0

ant
nHn(x), x ∈ Kis linear and ontinuous and

F t ◦ F s(x) ⊆

∞
∑

n=0

cnH
n(x), x ∈ K,where

cn =
n

∑

k=0

akan−kt
ksn−k, t, s ≥ 0.The neessary and su�ient ondition for the equality

F t ◦ F s(x) =

∞
∑

n=0

cnH
n(x), x ∈ K, t, s ≥ 0will be given.Tomasz Szostok On a funtional equation stemming from some property of tri-anglesBasing on some geometrial property disovered by G. Monge, in [1℄ authorsonsidered the following funtional equation

∣

∣

∣

∣

1

2
(y − x)f

(x+ y

2

)

−
1

2
(f(y) − f(x))

x + y

2

∣

∣

∣

∣

=

y
∫

x

f(t) dt+
1

2
xf(x) −

1

2
yf(y).They proved that the only solutions of this equation are the a�ne funtions.Roughly speaking this means that Monge theorem works only for ollinear points.In the present talk we modify this equation in suh way that it will be satis�edby some funtions di�erent from f(x) = ax + b. Then we solve the obtainedequation.[1℄ C. Alsina, M. Sablik, J. Sikorska, On a funtional equation based upon a result ofGaspard Monge, J. Geom. 85 (2006), 1�6.



[142℄ Report of MeetingJaek Tabor Approximate (ε, p)-midonvexity for p ∈ [0, 1](joint work with Józef Tabor and M. �oªdak)For p ∈ [0, 1] we put
Tp(x) :=

∞
∑

k=0

1

2k
dp(2kx), x ∈ R,where d(x) = 2dist(x,Z) and by 00 we understand 0.A funtion f : I → R, where I is a subinterval of R, is alled (ε, p)-midonvex if

J f(x, y) :=
f(x) + f(y)

2
−
f(x) + f(y)

2
≤ ε|x− y|p, x, y ∈ I.It is known that if f is a ontinuous (ε, p)-midonvex funtion, then

f(rx + (1 − r)y) − rf(x) − (1 − r)f(y) ≤ εTp(r|x − y|), x, y ∈ I, r ∈ [0, 1].The above estimation is optimal for p = 0 (theorem of C.T. Ng and K. Nikodem)and p = 1 (theorem of Z. Boros). Zs. Palés asked what happens in the ase when
p ∈ [0, 1].We show that the above problem an be redued to veri�ation of the followinghypotheses:
min{J dp(x, y)+

1

2
dp(x−y),J dp(x, y)+

1

2
J dp(2x, 2y)+

1

4
dp(2x−2y)} ≤ dp

(x− y

2

)for x, y ∈ [−1, 1]. The above inequality an be easily veri�ed for p = 0 and p = 1(giving in partiular another proof of the result of Z. Boros). Although numerialsimulations support the assertion that the above hypothesis holds for all p ∈ (0, 1),we were not able to prove it.Józef Tabor Jensen semionave funtions with power moduli(joint work with Jaek Tabor and A. Mure«ko)We study the relation between Jensen semionavity and semionavity in thease when modulus of semionavity is of the form ω(r) = Crp for p ∈ (0, 1]. As itis known ontinuous Jensen semionave funtion with modulus ω is semionavewith modulus
ω̃(r) :=

∞
∑

k=0

ω
( r

2k

)

.In ase of ω(r) = Crp for p ∈ (0, 1] we improve this result and determine thesmallest ω̃.Gheorghe Toader Invariane in some families of means(joint work with S. Toader)As it is known from the lassial example of the arithmeti-geometri meanof Gauss (see [1℄), the determination of a (M,N)−invariant mean P is a verydi�ult problem. That is why we study the (equivalent) problem of �nding a



13th International Conferene on Funtional Equations and Inequalities [143℄mean N whih is omplementary to M with respet to P. For the determinationof omplementaries, three methods have been used: the diret alulation (see [4℄),the use of the methods of funtional equations (see [2℄), and the series expansionof means (see [3℄). In the urrent paper we onsider the method of series expansionof means to study the invariane in the family of extended logarithmi means.[1℄ J.M. Borwein, P.B. Borwein, Pi and the AGM. A study in analyti number theory andomputational omplexity, Canadian Mathematial Soiety Series of Monographs andAdvaned Texts, A Wiley-Intersiene Publiation, John Wiley & Sons, In., NewYork, 1987.[2℄ Z. Darózy, Zs. Páles, Gauss-omposition of means and the solution of the Matkowski-Sut� problem, Publ. Math. Debreen 61 (2002), 157�218.[3℄ D.H. Lehmer, On the ompounding of ertain means, J. Math. Anal. Appl. 36 (1971),183�200.[4℄ Gh. Toader, S. Toader, Greek means and the arithmeti-geometri mean, RGMIAMonographs, Vitoria University, 2005 (http://rgmia.vu.edu.au/monographs).Peter Volkmann Continuity of solutions of a ertain funtional equationThe ontinuous solutions f : R → R of the funtional equation
min{f(x+ y), f(x− y)} = |f(x) − f(y)|had been given in a talk during the Conferene on Inequalities and Appliationsat Noszvaj 2007 (http://riesz.math.klte.hu/∼ia07). Here we show that the on-tinuity of a solution of this funtional equation follows from the ontinuity at onepoint.Marek C. Zdun Iteration groups and semigroups � reent resultsThis is a survey talk on seleted topis onerning iteration groups and semi-groups where some progress has been ahieved during the last years. Espeiallywe onern on the problem of embeddability of given funtions in iteration groupsand iterative roots.In the talk we disuss the following diretions in iteration theory:1. Measurable iteration semigroups.2. Embedding of di�eomorphisms in regular iteration semigroups on Rn.3. Iteration groups of �xed point free homeomorphisms on the plane.4. Embedding of interval homeomorphisms with two �xed points in regulariteration groups.5. Commuting funtions and embeddability.6. Iterative roots.7. The struture of iteration groups of homeomorphisms on an interval.8. The struture of iteration groups of homeomorphisms on the irle.



[144℄ Report of Meeting9. Approximately iterated funtions.10. Set-valued iteration semigroups.Marek �oªdak Bernstein�Doetsh type theorem for approximately onvex fun-tions(joint work with Jaek Tabor and Józef Tabor)Let X be a real topologial vetor spae, let D be a subset of X and let
α:X → [0,∞) be an even funtion loally bounded at zero.A funtion f :D → R is alled (α, t)-preonvex (where t ∈ (0, 1) is �xed), if

f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) + α(x− y)for all x, y ∈ D suh that [x, y] ⊂ D.We give a version of Bernstein�Doetsh theorem and some related results forsuh funtions.Problems and Remarks1. Problem.Consider funtional equations of the form
n

∑

i=1

aif

( ni
∑

k=1

bikxk

)

= 0,

n
∑

i=1

ai 6= 0 (1)and
m

∑

i=1

αif

( mi
∑

k=1

βikxk

)

= 0,

m
∑

i=1

αi 6= 0, (2)where all parameters are real and f : R → R.Assume that the two funtional equations are equivalent, i.e., they have thesame set of solutions.Can we say something about the ommon stability? More preisely, if (1)is stable, what an we say about the stability of (2). Under whih additionalonditions the stability of (1) implies that of (2)? Gian Luigi Forti2. Problem and Remark.Let X be a normed spae, D ⊆ X be an open onvex set and let f :D → R bea Lipshitz perturbation of a onvex funtion g:D → R, i.e., let f be of the form
f = g + ℓ,where g is a onvex funtion and ℓ:D → R is ε-Lipshitz, i.e.,

|ℓ(x) − ℓ(y)| ≤ ε‖x− y‖, x, y ∈ D.
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f(tx+ (1 − t)y) − tf(x) − (1 − t)f(y)

=
[

g(tx+ (1 − t)y) − tg(x) − (1 − t)g(y)
]

+
[

ℓ(tx+ (1 − t)y) − tℓ(x) − (1 − t)ℓ(y)
]

≤ t
[

ℓ(tx+ (1 − t)y) − ℓ(x)
]

+ (1 − t)
[

ℓ(tx+ (1 − t)y) − ℓ(y)
]

≤ t
∣

∣ℓ(tx+ (1 − t)y) − ℓ(x)
∣

∣ + (1 − t)
∣

∣ℓ(tx+ (1 − t)y) − ℓ(y)
∣

∣

≤ tε‖(tx+ (1 − t)y) − x‖ + (1 − t)ε‖(tx+ (1 − t)y) − y‖

= 2εt(1 − t)‖x− y‖.Therefore, f satis�es the approximate onvexity inequality:
f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) + 2εt(1 − t)‖x− y‖. (1)On the other hand, in the ase X = R, we have the following onverse of theabove observation (whih is a partiular ase of a result obtained in [1℄).Proposition.Let I be an open interval and ε ≥ 0. Assume that f : I → R satis�es, for all x, y ∈ Iand t ∈ [0, 1], inequality (1). Then there exists a onvex funtion g : I → R suhthat the funtion ℓ := f − g is (2ε)-Lipshitz.The following more general and open problem seems to be of interest.ProblemDoes there exist a onstant γ (that may depend on X and D) suh that, whenevera funtion f :D → X satis�es inequality (1) for all x, y ∈ D and t ∈ [0, 1], thenthere exists a onvex funtion g:D → R suh that the funtion ℓ := f − g is

γε-Lipshitz on D?A result related to this problem was stated by V. Protasov during the 13thICFEI:If a funtion f :X → R satis�es, for all x, y ∈ X and t ∈ [0, 1],
∣

∣f(tx+ (1 − t)y) − tf(x) − (1 − t)f(y)| ≤ 2εt(1 − t)‖x− y‖,then there exists a ontinuous linear funtional x∗ ∈ X∗ suh that ℓ := f − x∗ is
(4ε)-Lipshitz on X.[1℄ Zs. Páles, On approximately onvex funtions, Pro. Amer. Math. So. 131 (2003),243�252. Zsolt Páles3. Problem.Let X be a Hilbert spae, D ⊆ X an open onvex set, ε > 0 and let f :D → Rbe a ontinuous funtion suh that
f(tx+ (1 − t)y) − tf(x) − (1 − t)f(y) ≤ εt(1 − t)‖x− y‖, x, y ∈ D, t ∈ [0, 1].



[146℄ Report of MeetingDoes there exist an x0 ∈ D suh that f is di�erentiable at x0?This problem is motivated by the results of S. Rolewiz.Jaek Tabor and Józef Tabor4. Problem.In onnetion with some problem in theoretial physis, O.G. Bokov introduedin [1℄ the following funtional equation
f(x, y)f(x+ y, z) + f(y, z)f(y + z, x) + f(z, x)f(z + x, y) = 0. (1)In [2℄ A.V. Yagzhev determined all analyti solutions f : Cn × Cn → C of (1).However, his proof is not lear and presents several gaps. So, we may wonderabout the validity of the result. Therefore, the problem is to �nd all analytisolutions f : C × C → C of (1) with a nie mahematial proof. Also, we may askabout the solutions of (1) in a more general setting.[1℄ O.G. Bokov, A model of Lie �elds and multiple-time retarded Green's funtions of aneletromagneti �eld in dieletri media, Nauhn. Tr. Novosib. Gos. Pedagog. Inst.86 (1973), 3�9.[2℄ A.V. Yagzhev, A funtional equation from theoretial physis, Funt. Anal. Appl. 16(1982), 38�44. Niole Brillouët-Belluot5. Remark.During the last �fteen years a great number of papers onerning stabilityof funtional equations have been published. Unfortunately in many of thesepapers motivations for studying a given equation or/and possible appliationsof the stability results are missing. In my opinion this will eventually produea disredit of the topi and, onsequently, a disredit of the �eld of funtionalequations: a thing that we, funtional equationists, ertainly do not want. Theseonsiderations are mainly direted to younger olleagues, in order to invite themto investigate genuine, not rather arti�ial, mathematial problems.Gian Luigi Forti6. Remark.Let (X, ‖ · ‖) be a normed spae, D ⊂ X be a onvex set and c > 0 be a �xedonstant. A funtion f :D → R is alled strongly onvex with modulus c if
f
(

tx+ (1 − t)y
)

≤ tf(x) + (1 − t)f(y) − ct(1 − t)‖x− y‖2 (1)for all x, y ∈ D and t ∈ [0, 1]. Under the assumption (A) that (X, ‖ · ‖) is an innerprodut spae, the following equivalene (B) holds:
f :D → R is strongly onvex with modulus c if and only if g = f − c‖ · ‖2 isonvex.The following example gives an answer to the question posed by Zsolt Pálesafter my talk at this onferene and shows that assumption (A) is essential for(B).



13th International Conferene on Funtional Equations and Inequalities [147℄Example.Let X = R2 and ‖x‖ = |x1| + |x2| for x = (x1, x2). Take f = ‖ · ‖2. Then
g = f − ‖ · ‖2 = 0 is onvex. However, f is not strongly onvex with modulus 1.Indeed, for x = (1, 0) and y = (0, 1) we have

f
(x+ y

2

)

= 1 > 0 =
f(x) + f(y)

2
−

1

4
‖x− y‖2,whih ontradits (1).One an also prove that if (B) holds for every f :X → R, then (X, ‖ · ‖) mustbe an inner produt spae. Thus ondition (B) gives another haraterization ofthe inner produt spaes among normed spaes. Kazimierz Nikodem7. Remark.The Institute of Mathematis of the Pedagogial University of Craow aeptedin 1983 for realization Dobiesªaw Brydak's proposal of ontinuing in Poland theseries of �ve international onferenes on funtional equations, whih had beenorganized by our Hungarian olleagues at Miskol and Debreen from 1966 to1979 (see [1℄).The First International Conferene on Funtional Equations and Inequalitieswas held at Sielpia in Kiele region of Poland from May 27 to June 2, 1984. Infat, it was a seond onferene on funtional equations held in Poland, ever afterthat organized by Professors Stanisªaw Goª¡b and Marek Kuzma at Zakopanein Otober 9-13, 1967 (see [2℄). The organizers of the 1st ICFEI were DobiesªawBrydak, Bogdan Chozewski and Józef Tabor. The meeting was opened (andthen attended) by Professor Zenon Moszner, Retor Magni�us of the PedagogialUniversity of Craow (see [3℄).The general statistial data, onerning 1st, 13th and all ICFEIs (in brakets:the numbers of di�erent persons partiipating) are presented in Table 1, whereasin Tables 2 and 3 the distribution of partiipants into ountries and ities (ofa�liation) is exhibited. Table 4 shows the number of all ICFEIs the partiipant ofthe 13th one attended, with "⋆" meaning her or his presene at the 1st ICFEI. (Allthe data have been olleted by Miss Janina Wierioh, a member of organizingsta�s from 1991 (3rd ICFEI) on.)ICFEI All partiipants Foreign partiipants Countries Talks Sessions1st 59 9 8 41 813th 76 31 10 73 26All 13 857 (269) 206 (111) 32 694 239Table 1. General data



[148℄ Report of MeetingCountry 1st ICFEI 13th ICFEI CitiesAustralia 2 - La Trobe, MelbourneAustria 1 1 Graz ‖ InnsbrukCzehoslovakia 1 - BrnoFrane - 1 NantesGermany - 2 Clausthal-Zellerfeld, LobauGreee - 1 AthensHungary 2 14 Miskol ‖ Debreen 13, Miskol 1Israel - 1 HaifaItaly 1 1 Milan ‖ MilanRomania - 5 Cluj-Napoa 3, Timi³oara 2Russia - 5 Mosow 1, Nizhny Novgorod 3,Vologda 1Switzerland 1 - BernWest Germany 1 - Karlsruhe
∑ 9 31Table 2. Partiipants from abroadCity 1st ICFEI 13th ICFEIBiaªystok 1 -Bielsko-Biaªa 3 3Cz�stohowa 1 -Gda«sk 1 1Gliwie - 2Katowie 11 12Kiele 4 1Kraków 22 16Rzeszów 6 8Zielona Góra - 2

∑ 50 45Table 3. Polish partiipantsAording to Table 4 in the 13th ICFEI took part 13 olleagues who alsoattended our �rst meeting held 25 years ago. Among them were: Karol Baron,Roman Ger, Maiej Sablik (all from Katowie) who partiipated in all ICFEIs,and from abroad: Gian Luigi Forti (Milan) and Peter Volkmann (Karlsruhe) whotook part in 5, respetively 10, onferenes. Moreover, what may be surprising, atthe 13th ICFEI were present less Polish mathematiians than in the 1st one. Onean also observe that 9 olleagues (7 from abroad) ame to our onferene for the�rst time (at least four of them seemed to be younger than the ICFEI).The most numerous group of our guests from abroad usually was that of Hun-garians (altogether 85 presenes, 14 partiipants of the 13th ICFEI). The author



13th International Conferene on Funtional Equations and Inequalities [149℄then proposed to transform the popular saying on Hungarian-Polish fraternity asfollows:Magyar-Lengyel jó barát - igen függvényegyenletek, igen függvényegyenlötlen-ségek (Hungarian and Pole are good nephews - both in funtional equations andinequalities). R. Badora 9 J. Mako 1A. Bahyryz 5 G. Maksa 6Sz. Baják 1 F. Mészáros 3K. Baron 13 ⋆ B. Miherda 1L. Bartªomiejzyk 8 V. Mityushev 3S. Belmesova 1 L. Molnár 3M. Bessenyei 2 J. Morawie 10Z. Boros 6 J. Mrowie 5N. Brillouët-Belluot 7 A. Mure«ko 5J. Brzd�k 9 A. Najdeki 5P. Burai 2 K. Nikodem 10 ⋆L. C dariu 2 A. Nuyatov 1J. Chmieli«ski 11 A. Olbry± 3B. Chozewski 12 ⋆ J. Olko 6J. Chudziak 7 B. Paneah 4K. Ciepli«ski 6 Z. Páles 9M. Czerni 11 ⋆ M. Piszzek 4S. Czerwik 9 V.D. Popa 2Z. Darózy 8 V.Yu. Protasov 2J. Dasal 2 B. Przebieraz 3J. Domsta 8 V. Radu 2A. Filhenkov 1 E. Rak 2G.-L. Forti 5 ⋆ Th.M. Rassias 3W. Förg-Rob 10 M. Sablik 13 ⋆R. Ger 13 ⋆ E. Shulman 3A. Gilányi 6 J. Sikorska 8D. Gªazowska 4 A. Smajdor 10 ⋆E. Gselmann 1 B. Sobek 2G. Guzik 6 P. Solarz 6A. Házy 3 J. Szzawi«ska 10E. Jabªo«ska 3 T. Szostok 6H.-H. Kairies 11 Jaek Tabor 7B. Kol�ga-Kulpa 4 Józef Tabor 12 ⋆Z. Kominek 12 ⋆ G. Toader 4D. Krassowska 5 S. Toader 1Z. Le±niak 9 P. Volkmann 10 ⋆A. Mah 8 ⋆ M.C. Zdun 10 ⋆E. Mainka 1 M. �oªdak 4Table 4. Numbers of all ICFEIs attended by partiipants
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