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Za
h TeitlerBounding symboli
 powers via asymptoti
 multiplieridealsAbstra
t. We revisit a bound on symboli
 powers found by Ein�Lazarsfeld�Smith and subsequently improved by Takagi�Yoshida. We show that theoriginal argument of [6℄ a
tually gives the same improvement. On the otherhand, we show by examples that any further improvement based on thesame te
hnique appears unlikely. This is primarily an exposition; only someexamples and remarks might be new.1. Uniform bounds for symboli
 powersFor a radi
al ideal I, the symboli
 power I(p) is the 
olle
tion of elementsthat vanish to order at least p at ea
h point of Zeros(I). If I is a
tually prime,then I(p) is the I-asso
iated primary 
omponent of Ip; if I is only radi
al, writing
I = C1 ∩ . . . ∩ Cs as an interse
tion of prime ideals, I(p) = C

(p)
1 ∩ . . . ∩ C

(p)
s .The in
lusion Ip ⊆ I(p) always holds, but the reverse in
lusion holds only in somespe
ial 
ases, su
h as when I is a 
omplete interse
tion.Swanson [15℄ showed that for rings R satisfying a 
ertain hypothesis, for ea
hideal I, there is an integer e = e(I) su
h that the symboli
 power I(er) ⊆ Irfor all r ≥ 0. Ein�Lazarsfeld�Smith [6℄ showed that in a regular lo
al ring Rin equal 
hara
teristi
 0 and for I a radi
al ideal, one 
an take e(I) = bight(I),the big height of I, whi
h is the maximum of the 
odimensions of the irredu
ible
omponents of the 
losed subset of zeros of I. In parti
ular, bight(I) is at mostthe dimension of the ambient spa
e, so e = dimR is a single value that works forall ideals. More generally, for any k ≥ 0, I(er+kr) ⊆ (I(k+1))r for all r ≥ 1. Veryshortly thereafter, Ho
hster�Huneke [9℄ generalized this result by 
hara
teristi
 pmethods.It is natural to regard these results in the form I(m) ⊆ Ir for m ≥ f(r) = er,

e = bight(I). Repla
ing f(r) = er with a smaller fun
tion would give a strongerbound on symboli
 powers (
ontainment in Ir would begin sooner). So it is naturalto ask, how far 
an one redu
e the bounding fun
tion f(r) = er?AMS (2000) Subje
t Classi�
ation: 14B05.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.



[68℄ Za
h TeitlerBo

i�Harbourne [3℄ introdu
ed the resurgen
e of I, ρ(I)= sup{m
r

: I(m) 6⊆ Ir}.Thus if m > ρ(I)r, I(m) ⊆ Ir. The Ein�Lazarsfeld�Smith and Ho
hster�Hunekeresults show ρ(I) ≤ bight(I) ≤ dim R. It 
an be smaller. For example, if I issmooth or a redu
ed 
omplete interse
tion, ρ(I) = 1. More interestingly, Bo

i�Harbourne [3℄ show that if I is an ideal of n redu
ed points in general positionin P2, ρ(I) = ρn ≤ 3
2 . On the other hand, Bo

i�Harbourne show for ea
h n,

1 ≤ e ≤ n, and ǫ > 0 there are ideals I on Pn with bight(I) = e su
h that
ρ(I) > e − ǫ. This suggests that one 
annot expe
t improvement in the slope ofthe linear bound m ≥ er, at least not in very general terms. So one naturallyturns toward the possibility of subtra
ting a 
onstant term.Huneke raised the question of whether, for I an ideal of redu
ed points in P2,
I(3) ⊆ I2. Bo

i�Harbourne's result ρ ≤ 3

2 gives an a�rmative answer to Huneke'squestion, and mu
h more, for points in general position. Some other 
ases havebeen treated, e.g., points on a 
oni
, but the general 
ase, i.e., points in arbitraryposition, remains open.A 
onje
ture of Harbourne (Conje
ture 8.4.3 in [1℄) states that for a homoge-neous ideal I on Pn, I(m) ⊆ Ir for all m ≥ nr − (n − 1), and even stronger, thatthe 
ontainment holds for all m ≥ er − (e − 1), where e = bight(I). Huneke'squestion would follow at on
e as the 
ase n = e = r = 2.Some results in this dire
tion have been obtained by various authors. Hunekehas observed that Harbourne's 
onje
ture holds in 
hara
teristi
 p for values
r = pk, k ≥ 1, see Example IV.5.3 of [8℄ or Example 8.4.4 of [1℄. Takagi�Yoshida [17℄ and Ho
hster�Huneke independently showed by 
hara
teristi
 p meth-ods that I(er+kr−1) ⊆ (I(k+1))r for all k ≥ 0 and r ≥ 1 when I is F -pure (seebelow). More generally, Takagi�Yoshida show a 
hara
teristi
 p version of thefollowing:Theorem 1.1 ([17℄)Let R be a regular lo
al ring of equal 
hara
teristi
 0, I ⊆ R a redu
ed ideal,
e = bight(I) the greatest height of an asso
iated prime of I, and ℓ an integer,
0 ≤ ℓ < lct(I(•)), where lct(I(•)) is the log 
anoni
al threshold of the graded systemof symboli
 powers of I, see below. Then I(m) ⊆ Ir whenever m ≥ er − ℓ. Moregenerally, for any k ≥ 0, I(m) ⊆ (I(k+1))r whenever m ≥ er + kr − ℓ.This statement is a slight modi�
ation of Remark 3.4 of [17℄.The Ein�Lazarsfeld�Smith uniform bounds on symboli
 powers des
ribed aboveare the 
ase ℓ = 0. The F -pure 
ase implies lct(I(•)) > 1, so we may take ℓ = 1.(More pre
isely, F -pure means lct(I) > 1, and we will see lct(I(•)) ≥ lct(I).)The idea of the proof is to produ
e an ideal J with I(m) ⊆ J and J ⊆ (I(k+1))r.Ein�Lazarsfeld�Smith introdu
ed asymptoti
 multiplier ideals in [6℄ and, amongother results, proved the uniform bounds des
ribed above by taking J to bean asymptoti
 multiplier ideal. For Takagi�Yoshida the ideal J is a generalized testideal, a 
hara
teristi
 p analogue of the asymptoti
 multiplier ideals introdu
ed byHara�Yoshida [11℄.In this note, J will be an asymptoti
 multiplier ideal. We will review multiplierideals in �2 and dis
uss some examples in �3: the asymptoti
 multiplier idealsof monomial ideals and hyperplane arrangements. We will revisit the argument



Bounding symboli
 powers via asymptoti
 multiplier ideals [69℄given by Ein�Lazarsfeld�Smith in the 
ase ℓ = 0 to show that it a
tually givesTheorem 1.1 in �4.In �5 we 
onsider two ways in whi
h the argument of �4 falls short of theimproved bounds we hope for. First, the 
ondition 0 ≤ ℓ < lct(I(•)), while gen-eralizing the result of [6℄, is nevertheless quite restri
tive. Se
ond, the argumentof [6℄ a
tually produ
es two ideals, I(m) ⊆ J1 ⊆ J2 ⊆ (I(k+1))r. We will 
onsideras an example the ideal I = (xy, xz, yz) of the union of the three 
oordinate axesin C3. We will show that in this example the �rst and last in
lusions are a
tuallyequalities, while the middle in
lusion J1 ⊆ J2 is very far. So if any improvementremains to be found, one must 
onsider the middle in
lusion.2. Multiplier idealsHen
eforth we �x X = C
n and 
onsider ideals in the ring R = C[x1, . . . , xn].Note that for a prime homogeneous ideal I, a homogeneous form F vanishes toorder p along the proje
tive variety de�ned by I in Pn−1 if and ony if it vanishes toorder p on the a�ne variety de�ned by I in C

n. In this way the Bo

i�Harbourneresults and Huneke question for points in P2 translate to questions about symboli
powers of (homogeneous) ideals in the a�ne setting.2.1. Ordinary multiplier idealsTo an ideal I ⊆ C[x1, . . . , xn], regarded as a sheaf of ideals on X = Cn,and a real parameter t ≥ 0 one may asso
iate the multiplier ideal J (It) ⊆
C[x1, . . . , xn]. The multiplier ideals are de�ned in terms of a resolution of sin-gularities of I. For details, see [4℄, [12℄.Note, in the notation J (It) the t indi
ates dependan
e on the parameter t,rather than a power of I. In parti
ular, J (It) is de�ned for all real t ≥ 0, whereas
It on its own only makes sense for integer t ≥ 0. See, however, Property 2.2.Rather than present the somewhat involved de�nition here, we give a shortlist of properties of multiplier ideals whi
h are all that we will use. (The readermay take these as axioms, although the properties listed here do not 
hara
terizemultiplier ideals.)Property 2.1For any nonzero ideal I, J (I0) = (1), the unit ideal. As the parameter t in
reases,the multiplier ideals get smaller: if t1 < t2, then J (It1) ⊇ J (It2).On the other hand, if I1 ⊆ I2, then J (It

1) ⊆ J (It
2).Thus multiplier ideals, as fun
tions of two arguments, are �order-preserving� inthe ideal and �order-reversing� in the real parameter.Property 2.2For any real number t ≥ 0 and integer k > 0, J (Ikt) = J ((Ik)t).Property 2.3For any t ≥ 0 and integer p ≥ 0, IpJ (It) ⊆ J (Ip+t). See Proposition 9.2.32 (iv)of [12℄.



[70℄ Za
h TeitlerProperty 2.4When Zeros(I) is smooth and irredu
ible with 
odimension codim(Zeros(I)) = e =

bight(I), J (It) = I⌊t⌋−e+1. In parti
ular, J (It) ⊆ I for t ≥ e. More generally, if
I is redu
ed and Zeros(I) = V1 ∪ . . . ∪ Vs, then restri
ting to a neighborhood ofa general point on ea
h Vi, we see J (It) vanishes on Vi for t ≥ codim Vi, hen
e
J (It) ⊆ I for t ≥ max codim Vi = bight(I).The above list is a small sele
tion of the many interesting properties of multi-plier ideals. See [4℄, [12℄ for more, in
luding ex
ellent expositions of the de�nition(from whi
h all the above properties follow immediately). Among these manyother properties we single out one whi
h we will use here, due to Demailly�Ein�Lazarsfeld [5℄.Subadditivity Theorem
J (It1+t2) ⊆ J (It1)J (It2). In parti
ular for any integer r ≥ 0, J (Irt) ⊆ J (It)r.2.2. Asymptoti
 multiplier idealsA graded system of ideals a• = {an}

∞
n=1 is a 
olle
tion of ideals satisfying apaq ⊆

ap+q, and (to avoid trivialities) at most �nitely many of the an may be zero. Notethat ap, ap+1 are not required to satisfy any parti
ular relation, but (ap)
k ⊆ akp.By 
onvention, a0 = C[x1, . . . , xn], so that ⊕∞

n=0 an is a C[x1, . . . , xn]-algebra.A trivial graded system is one of the form an = a
n
1 . Our main interest will be inthe graded system of symboli
 powers of a (redu
ed) ideal I, I(•) = {I(n)}n≥0.To a graded system a• and real parameter t ≥ 0 one 
an asso
iate an asymptoti
multiplier ideal J (at

•), or J (t · I(•)), de�ned by
J (at

•) = max
p≥1

J
(

a

t
p

p

)

.This de�nition was given in [6℄. We must justify the existen
e and well-de�nednessof this maximum; we repeat the argument of [6℄. Note that sin
e (ap)
q ⊆ aqp, bythe properties of multiplier ideals we have

J
(

a

t
p

p

)

= J
(

(aq
p)

t
pq

)

⊆ J
(

a

t
pq

pq

)

.The Noetherian property assures that among the ideals J (

a

t
p

p

), one is a (relative)maximum. If J (

a

t
p

p

) is a maximum, then by the above, J (

a

t
p

p

)

= J
(

a

t
pq

pq

). Hen
eif J (

a

t
p

p

) and J
(

a

t
q

q

) both are maxima, then they 
oin
ide with ea
h other. Thusthere is a unique maximum of this 
olle
tion of ideals.In parti
ular, J (at
•) = J

(

a

t
p

p

) for p ≫ 0 and su�
iently divisible, i.e., forall su�
iently large multiples of some p0. We say that su
h a p 
omputes theasymptoti
 multiplier ideal.Example 2.5In the trivial 
ase an = a
n
1 , the asymptoti
 multiplier ideals redu
e to the ordinarymultiplier ideals: J (at

•) = J (at
1). This has the following 
onsequen
e: If I is a



Bounding symboli
 powers via asymptoti
 multiplier ideals [71℄redu
ed ideal de�ning a smooth and irredu
ible variety of 
odimension e, then
J (t · I(•)) = J (It) = I⌊t⌋+1−e.As before, if I is only redu
ed, then by restri
ting to a neighborhood of a smoothpoint on ea
h irredu
ible 
omponent of Zeros(I), we see that J (t · I(•)) ⊆ I for

t ≥ e = bight(I). And, more generally, J ((e + k) · I(•)) ⊆ I(k+1) for any k ≥ 0and any redu
ed ideal I.Remark 2.6Conversely, an ⊆ J (an
• ). In fa
t, for every n, t, an · J (at

•) ⊆ J (at+n
• ) (Theo-rem 11.1.19 (iii) of [12℄). This is exa
tly the extra pie
e we will add to the argumentof [6℄ to dedu
e Theorem 1.1.As before, J (a0

•) = (1) and if t1 < t2, then J (at1
• ) ⊇ J (at2

• ). The asymptoti
multiplier ideals satisfy subadditivity: J (at1+t2
• ) ⊆ J (at1

• )J (at2
• ), so J (art

• ) ⊆
J (at

•)
r [12, 11.2.3℄. This follows immediately from the subadditivity theoremfor ordinary multiplier ideals. (Let p large and divisible enough 
ompute all theasymptoti
 multiplier ideals appearing in the equation, then apply the ordinarysubadditivity theorem for ap.)2.3. Log 
anoni
al thresholdsFor an ideal I 6= (0), (1), we de�ne lct(I) = sup{t | J (It) = (1)}. This isa positive rational number. It turns out that J (I lct(I)) 6= (1). (See [7℄ or [12℄.)Let I be a radi
al ideal and let e′ be the minimum of the 
odimensions of theirredu
ible 
omponents of Zeros(I). Then lct(I) satis�es

0 < lct(I) ≤ e′.(Restri
ting to a neighborhood of a general point on a 
odimension e′ 
omponentof Zeros(I), J (Ie′

) vanishes on the 
omponent by Property 2.4.)For a graded system of ideals a•, we de�ne lct(a•) = sup{t | J (at
•) = (1)}.This may be in�nite or irrational. However for the graded system of symboli
powers of a radi
al ideal I, we have lct(I(•)) ≤ e′ as above.As shown in [13, Remark 3.3℄,

lct(a•) = sup p lct(ap) = lim p lct(ap).Taking p = 1, this shows lct(I(•)) ≥ lct(I) for a radi
al ideal I.3. ExamplesIn this se
tion we give the asymptoti
 multiplier ideals of graded systems ofmonomial ideals, espe
ially for the symboli
 powers of a radi
al (i.e., squarefree)monomial ideal, and the asymptoti
 multiplier ideals of graded systems of divisorand hyperplane arrangements.



[72℄ Za
h Teitler3.1. Monomial idealsThe following theorem gives the ordinary multiplier ideals of a monomial ideal.Theorem 3.1 ([10℄)Let I be a monomial ideal with Newton polyhedron N = Newt(I). Then J (It) isthe monomial ideal 
ontaining xv if and only if v + (1, . . . , 1) ∈ Int(t · N).Here Int( ) denotes topologi
al interior. In parti
ular, lct(I) = 1
t
, where

t · (1, . . . , 1) is in the boundary of Newt(I).Let I• = {Ip} be a graded system of monomial ideals. Let Np = Newt(Ip).Then Ik
p ⊆ Ipk, so k ·Np ⊆ Npk, whi
h means 1

p
Np ⊆ 1

pk
Npk. Let N(I•) =

⋃

1
p
Np.Sin
e this is an as
ending union of 
onvex sets, it is 
onvex.Theorem 3.2 ([13℄)

J (It
•) is the monomial ideal 
ontaining xv if and only if v + (1, . . . , 1) ∈

Int(t · N(I•)).Proof. If p 
omputes J (It
•) and xv ∈ J (It

•) = J
(

I
t
p

p

), then v + (1, . . . , 1) ∈
Int( t

p
Np) ⊆ Int(t · N(I•)). Conversely if v + (1, . . . , 1) ∈ Int(t · N(I•)), then

v + (1, . . . , 1) ∈ Int( t
p
Np) for some p, when
e xv ∈ J

(

I
t
p

p

)

⊆ J (It
•).For a graded system of monomial ideals, lct(I•) = 1

t
, where t · (1, . . . , 1) is inthe boundary of N(I•).More 
an be said in a spe
ial situation:Proposition 3.3If a graded system is given by Ip = C

p
1 ∩ . . . ∩ Cp

r for �xed monomial ideals
C1, . . . , Cr, then in the above notation, N(I•) =

⋂

Newt(Ci).Proof. For a monomial ideal a, let monom(a) denote the set of exponent ve
-tors of monomials in a, so that Newt(a) is the 
onvex hull conv(monom(a)). For
p ≥ 1 we have monom(Ip) =

⋂

monom(Cp
i ), so

Newt(Ip) ⊆
⋂

Newt(Cp
i ) = p ·

⋂

Newt(Ci).This shows N(I•) ⊆
⋂

Newt(Ci).For the reverse in
lusion, note ⋂

Newt(Ci) is a rational polyhedron. For psu�
iently divisible, p ·
⋂

Newt(Ci) is a latti
e polyhedron; in parti
ular all itsextremal points (verti
es) have integer 
oordinates, and p·
⋂

Newt(Ci) is the 
onvexhull of the integer (latti
e) points it 
ontains. So let v be an integer point in
p ·

⋂

Newt(Ci) =
⋂

Newt(Cp
i ). Then xv ∈ C

p
i for ea
h i, so xv ∈

⋂

C
p
i = Ip. Thisshows p ·

⋂

Newt(Ci) ⊆ conv(monom(Ip)). Therefore ⋂

Newt(Ci) ⊆
1
p
Newt(Ip) ⊆

N(I•).One 
an 
he
k that in the situation of the above proposition, lct(I•) =
min lct(Ci).



Bounding symboli
 powers via asymptoti
 multiplier ideals [73℄Proposition 3.4Let I = I1 be a redu
ed monomial ideal and Ip = I(p). Suppose I is not the maximalideal. Let N be the 
onvex region de�ned by the linear inequalities that 
orrespondto unbounded fa
ets of Newt(I). Then N = N(I(•)); in parti
ular J (t · I(•)) is themonomial ideal 
ontaining xv if and only if v + (1, . . . , 1) ∈ Int(t · N).Proof. Let I = C1 ∩ . . . ∩ Cr, the Ci minimal primes of I. Then I(p) =
C

p
1 ∩ . . .∩Cp

r . As long as I is non-maximal, equivalently ea
h Ci is non-maximal,the Newt(Ci), together with the fa
ets of the positive orthant, 
orrespond pre-
isely to the unbounded fa
ets of Newt(I). The result follows by the previouspropositions.In parti
ular, ea
h lct(Ci) = htCi, so lct(I(•)) = min htCi = e′, where e′ isthe minimum 
odimension of any irredu
ible 
omponent of the variety V (I).3.2. Hyperplane arrangementsLet D be a divisor with real (or rational or integer) 
oe�
ients. The multiplierideals J (t · D) are de�ned similarly to the multiplier ideals of ideals. All theproperties des
ribed above hold for multiplier ideals of divisors. In fa
t, when D isa divisor with integer 
oe�
ients with de�ning ideal I, J (t ·D) = J (It). See [12℄for details.The multiplier ideals of hyperplane arrangements were 
omputed in [14℄, withthe following result.Theorem 3.5Let D = b1H1 + . . . + brHr be a weighted 
entral arrangement, where the Hi arehyperplanes in Cn 
ontaining the origin and the bi are nonnegative real numbers,the weights. Let L(D) be the interse
tion latti
e of the arrangement D, the setof proper subspa
es of Cn whi
h are interse
tions of the Hi. For W ∈ L(D),let r(W ) = codim(W ) and s(W ) =
∑

{bi | W ⊆ Hi} = ordW (D). Then themultiplier ideals of D are given by
J (t · D) =

⋂

W∈L(D)

I
⌊t·s(W )⌋+1−r(W )
W ,where IW is the ideal of W .In fa
t, the interse
tion over W ∈ L(D) 
an be redu
ed to an interse
tionover W ∈ G for 
ertain subsets G ⊆ L(D) 
alled building sets; see [16℄. The log
anoni
al threshold is given by lct(D) = minW∈L(D)

r(W )
s(W ) ; this may be redu
ed toa minimum over W ∈ G.With this in hand it is easy to des
ribe a similar result for graded systems ofhyperplane arrangements.We will say a graded system of divisors is a sequen
e D• = {Dp}p≥1 su
hthat Dp + Dq ≥ Dp+q. Equivalently, for ea
h 
omponent E, the ordE(Dp) satisfy

ordE(Dp) + ordE(Dq) ≥ ordE(Dp+q). If the Dp have integer weights, then the
ondition of the Dp forming a graded system of divisors is equivalent to requiring



[74℄ Za
h Teitlerthe ideals Ip = I(Dp) to form a graded system of ideals. De�ne the asymptoti
multiplier ideal J (t · D•) = maxp J ( t
p
Dp), as for graded systems of ideals.The following lemma will be helpful:Lemma 3.6 ([13℄, Lemma 1.4)Let {ap} be a sequen
e of non-negative real numbers su
h that ap + aq ≥ ap+q forall p, q. Then 1

p
ap 
onverges to a �nite limit; in fa
t 1

p
ap → inf 1

p
ap.For a graded system D• of divisors, let

D∞ =
∑

aEE, where aE = lim
p→∞

1

p
ordE(Dp).Proposition 3.7Let D• be a graded system of divisors. Then J (t · D•) = J (t · D∞).This follows from 
onsidering a 
ommon resolution of singularities of all the

Dp and D∞. The following is an immediate 
onsequen
e.Proposition 3.8Let D• be a graded system of divisors, where ea
h Dp is a 
entral hyperplanearrangement. Let the hyperplanes be H1, . . . , Hr. Let Dp = b1,pH1 + . . . + br,pHr,and let bi,∞ = lim
bi,p

p
. Let L(D0) be the interse
tion latti
e of the (redu
ed)arrangement D0 = H1 ∪ . . . ∪ Hr, and for W ∈ L(D0) let s∞(W ) =

∑

{bi,∞ :
W ⊆ Hi}, r(W ) = codim(W ). Then

J (t · D•) =
⋂

W∈L(D0)

I
⌊t·s∞(W )⌋+1−r(W )
W = J (t · D∞),where D∞ is de�ned as above.Again the interse
tion 
an be redu
ed to W ∈ G for a building set G ⊆ L(D0).The log 
anoni
al threshold is given by lct(D•) = lct(D∞) = minW

r(W )
s∞(W ) .4. Proof of TheoremAt this point the theorem is easy to prove. The real work was to develop thede�nition of multiplier ideals and show they have the properties des
ribed in �2.We have J (Ie) ⊆ I. Together with the subadditivity theorem this gives thefollowing 
hain of in
lusions:

J (Ier) ⊆ J (Ie)r ⊆ Ir.Unfortunately I(er) is not ne
essarily 
ontained in J (Ier). We must enlarge thesemultiplier ideals enough to 
ontain I(er) but not too mu
h to destroy the 
ontain-ment in Ir. First rewrite the above as
J ((Ip)

er
p ) ⊆ J ((Ip)

e
p )r ⊆ Ir.



Bounding symboli
 powers via asymptoti
 multiplier ideals [75℄These are the same ideals by Property 2.2. Now let p be su�
iently large anddivisible and enlarge Ip to I(p). The multiplier ideals be
ome asymptoti
 multiplierideals, and we will see in a moment that the in
lusions above still hold:
J (er · I(•)) ⊆ J (e · I(•))r ⊆ Ir.By Remark 2.6 we have I(er) ⊆ J (er ·I(•)). So this shows I(er) ⊆ Ir. This explainswhy we use asymptoti
 multiplier ideals rather than ordinary multiplier ideals inthis proof. We arrive at the following proof of Theorem 1.1.Proof. We have the following 
hain of in
lusions:

I(er+kr−ℓ) = I(er+kr−ℓ)J (ℓ · I(•))

⊆ J ((er + kr) · I(•)) ⊆ J ((e + k) · I(•))r

⊆ (I(k+1))r

(⋆)whi
h is justi�ed as follows. For ℓ < lct(I(•)), J (ℓ · I(•)) = (1). The �rst in
lusionis Remark 2.6. The se
ond in
lusion holds by the subadditivity theorem. The lastin
lusion is Example 2.5.Theorem 2.2 of [6℄ is shown by exa
tly the above argument with ℓ = 0.5. Non-improvementUsing �
lassi
al� methods, Bo

i�Harbourne have given some improvementsin spe
ial 
ases to the Ein�Lazarsfeld�Smith theorem that I(er) ⊆ Ir for everyredu
ed ideal I with bight(I) = e. For example [3℄ shows the resurgen
e of anideal I of general points in P2 is at most 3
2 , so I(m) ⊆ Ir for m ≥ 3r

2 . However,the argument given above for the proof of Theorem 1.1, either via asymptoti
multiplier ideals or via 
hara
teristi
 p methods, is the only way I am aware of toshow for every redu
ed ideal I of height e that I(er) ⊆ Ir (i.e., the resurgen
e isat most e) or even that the resurgen
e is �nite for every redu
ed ideal.One may ask, how far 
an the same multiplier ideal methods be pushed toimprove the bounds in the Ein�Lazarsfeld�Smith theorem?5.1. Restri
tion of log 
anoni
al thresholdThe value ℓ in Theorem 1.1 is severely restri
ted. Let e′ be the minimum of the
odimensions of the irredu
ible 
omponents of Zeros(I). We saw 0 < lct(I) ≤ e′,but it often happens that lct(I) is mu
h smaller than e′. For I a homogeneousideal in C[x1, . . . , xn], we have
1

mult0(I)
≤ lct(I) ≤

n

mult0(I)([12, 9.3.2-3℄), where mult0(I) is the multipli
ity of I at the origin, equivalently,the least degree of a nonzero form in I. So if lct(I) > 1, then I must 
ontain aform of degree stri
tly less than n.



[76℄ Za
h TeitlerFor ideals of redu
ed sets of points in P
2 one 
an show the 
onverse, so lct(I) > 1if and only if the points lie on a 
oni
 (whi
h may be redu
ible). So Theorem 1.1implies Harbourne's 
onje
ture and answers Huneke's question only for points ona 
oni
, whi
h (for smooth 
oni
s at least) had already been treated by Bo

i�Harbourne [2℄.We only need ℓ < lct(I(•)), whi
h is a priori less restri
tive than ℓ < lct(I),but still restri
ts us to ℓ ≤ e′ − 1. Indeed, there are radi
al ideals I with lct(I) <

lct(I(•)). However I do not know of an ideal I su
h that there is an integer ℓ,
lct(I) ≤ ℓ < lct(I(•)).For a radi
al homogeneous ideal I,

lct(I(•)) ≤
n

lim
p→∞

1
p

mult0(I(p))
,where the limit exists be
ause mult0(I

(p)) + mult0(I
(q)) ≥ mult0(I

(p+q)). If
lct(I(•)) > 1, then for some p there must be a homogeneous form F vanishingto order p along the variety de�ned by I, of degree stri
tly less than pn. Thisis weaker than the requirement that if lct(I) > 1, then I must 
ontain a form ofdegree less than n, whi
h is the same statement with the added 
ondition p = 1;but it does not seem very mu
h weaker.5.2. The se
ond in
lusionLet I = (xy, xz, yz) ⊆ C[x, y, z] be the ideal of the union of the three 
oordinateaxes. Using Howald's theorem and its asymptoti
 version one 
an 
ompute all theideals appearing in (⋆). Sin
e they are all integrally 
losed monomial ideals, wegive them by giving their Newton polyhedra. Here e = 2; we take k = 0. First,

N• = {(a, b, c) | a + b, a + c, b + c ≥ 1} ∋
(1

2
,
1

2
,
1

2

)

.We have lct(I) = 3
2 and lct(I(•)) = 2, so we take ℓ = 1. Now,

Newt[I(2r−1)] = {(a, b, c) | a + b, a + c, b + c ≥ 2r − 1, a + b + c ≥ 3r − 1},

Newt[J (2r · I(•))] = {(a, b, c) | a + b, a + c, b + c ≥ 2r − 1, a + b + c ≥ 3r − 1},

Newt[(J (2 · I(•)))r] = {(a, b, c) | a + b, a + c, b + c ≥ r, a + b + c ≥ 2r},

Newt[Ir] = {(a, b, c) | a + b, a + c, b + c ≥ r, a + b + c ≥ 2r}.This example shows that the pla
e where improvements are needed is the se
-ond in
lusion in (⋆), whi
h relies on the subadditivity theorem.A
knowledgementI am grateful to Brian Harbourne for inviting me to write this material (origi-nally as an appendix to le
ture notes [8℄ for a 
ourse he gave at a summer s
hoolin Cra
ow in Mar
h, 2009) and for numerous helpful 
onversations.
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