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Zah TeitlerBounding symboli powers via asymptoti multiplieridealsAbstrat. We revisit a bound on symboli powers found by Ein�Lazarsfeld�Smith and subsequently improved by Takagi�Yoshida. We show that theoriginal argument of [6℄ atually gives the same improvement. On the otherhand, we show by examples that any further improvement based on thesame tehnique appears unlikely. This is primarily an exposition; only someexamples and remarks might be new.1. Uniform bounds for symboli powersFor a radial ideal I, the symboli power I(p) is the olletion of elementsthat vanish to order at least p at eah point of Zeros(I). If I is atually prime,then I(p) is the I-assoiated primary omponent of Ip; if I is only radial, writing
I = C1 ∩ . . . ∩ Cs as an intersetion of prime ideals, I(p) = C

(p)
1 ∩ . . . ∩ C

(p)
s .The inlusion Ip ⊆ I(p) always holds, but the reverse inlusion holds only in somespeial ases, suh as when I is a omplete intersetion.Swanson [15℄ showed that for rings R satisfying a ertain hypothesis, for eahideal I, there is an integer e = e(I) suh that the symboli power I(er) ⊆ Irfor all r ≥ 0. Ein�Lazarsfeld�Smith [6℄ showed that in a regular loal ring Rin equal harateristi 0 and for I a radial ideal, one an take e(I) = bight(I),the big height of I, whih is the maximum of the odimensions of the irreduibleomponents of the losed subset of zeros of I. In partiular, bight(I) is at mostthe dimension of the ambient spae, so e = dimR is a single value that works forall ideals. More generally, for any k ≥ 0, I(er+kr) ⊆ (I(k+1))r for all r ≥ 1. Veryshortly thereafter, Hohster�Huneke [9℄ generalized this result by harateristi pmethods.It is natural to regard these results in the form I(m) ⊆ Ir for m ≥ f(r) = er,

e = bight(I). Replaing f(r) = er with a smaller funtion would give a strongerbound on symboli powers (ontainment in Ir would begin sooner). So it is naturalto ask, how far an one redue the bounding funtion f(r) = er?AMS (2000) Subjet Classi�ation: 14B05.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[68℄ Zah TeitlerBoi�Harbourne [3℄ introdued the resurgene of I, ρ(I)= sup{m
r

: I(m) 6⊆ Ir}.Thus if m > ρ(I)r, I(m) ⊆ Ir. The Ein�Lazarsfeld�Smith and Hohster�Hunekeresults show ρ(I) ≤ bight(I) ≤ dim R. It an be smaller. For example, if I issmooth or a redued omplete intersetion, ρ(I) = 1. More interestingly, Boi�Harbourne [3℄ show that if I is an ideal of n redued points in general positionin P2, ρ(I) = ρn ≤ 3
2 . On the other hand, Boi�Harbourne show for eah n,

1 ≤ e ≤ n, and ǫ > 0 there are ideals I on Pn with bight(I) = e suh that
ρ(I) > e − ǫ. This suggests that one annot expet improvement in the slope ofthe linear bound m ≥ er, at least not in very general terms. So one naturallyturns toward the possibility of subtrating a onstant term.Huneke raised the question of whether, for I an ideal of redued points in P2,
I(3) ⊆ I2. Boi�Harbourne's result ρ ≤ 3

2 gives an a�rmative answer to Huneke'squestion, and muh more, for points in general position. Some other ases havebeen treated, e.g., points on a oni, but the general ase, i.e., points in arbitraryposition, remains open.A onjeture of Harbourne (Conjeture 8.4.3 in [1℄) states that for a homoge-neous ideal I on Pn, I(m) ⊆ Ir for all m ≥ nr − (n − 1), and even stronger, thatthe ontainment holds for all m ≥ er − (e − 1), where e = bight(I). Huneke'squestion would follow at one as the ase n = e = r = 2.Some results in this diretion have been obtained by various authors. Hunekehas observed that Harbourne's onjeture holds in harateristi p for values
r = pk, k ≥ 1, see Example IV.5.3 of [8℄ or Example 8.4.4 of [1℄. Takagi�Yoshida [17℄ and Hohster�Huneke independently showed by harateristi p meth-ods that I(er+kr−1) ⊆ (I(k+1))r for all k ≥ 0 and r ≥ 1 when I is F -pure (seebelow). More generally, Takagi�Yoshida show a harateristi p version of thefollowing:Theorem 1.1 ([17℄)Let R be a regular loal ring of equal harateristi 0, I ⊆ R a redued ideal,
e = bight(I) the greatest height of an assoiated prime of I, and ℓ an integer,
0 ≤ ℓ < lct(I(•)), where lct(I(•)) is the log anonial threshold of the graded systemof symboli powers of I, see below. Then I(m) ⊆ Ir whenever m ≥ er − ℓ. Moregenerally, for any k ≥ 0, I(m) ⊆ (I(k+1))r whenever m ≥ er + kr − ℓ.This statement is a slight modi�ation of Remark 3.4 of [17℄.The Ein�Lazarsfeld�Smith uniform bounds on symboli powers desribed aboveare the ase ℓ = 0. The F -pure ase implies lct(I(•)) > 1, so we may take ℓ = 1.(More preisely, F -pure means lct(I) > 1, and we will see lct(I(•)) ≥ lct(I).)The idea of the proof is to produe an ideal J with I(m) ⊆ J and J ⊆ (I(k+1))r.Ein�Lazarsfeld�Smith introdued asymptoti multiplier ideals in [6℄ and, amongother results, proved the uniform bounds desribed above by taking J to bean asymptoti multiplier ideal. For Takagi�Yoshida the ideal J is a generalized testideal, a harateristi p analogue of the asymptoti multiplier ideals introdued byHara�Yoshida [11℄.In this note, J will be an asymptoti multiplier ideal. We will review multiplierideals in �2 and disuss some examples in �3: the asymptoti multiplier idealsof monomial ideals and hyperplane arrangements. We will revisit the argument



Bounding symboli powers via asymptoti multiplier ideals [69℄given by Ein�Lazarsfeld�Smith in the ase ℓ = 0 to show that it atually givesTheorem 1.1 in �4.In �5 we onsider two ways in whih the argument of �4 falls short of theimproved bounds we hope for. First, the ondition 0 ≤ ℓ < lct(I(•)), while gen-eralizing the result of [6℄, is nevertheless quite restritive. Seond, the argumentof [6℄ atually produes two ideals, I(m) ⊆ J1 ⊆ J2 ⊆ (I(k+1))r. We will onsideras an example the ideal I = (xy, xz, yz) of the union of the three oordinate axesin C3. We will show that in this example the �rst and last inlusions are atuallyequalities, while the middle inlusion J1 ⊆ J2 is very far. So if any improvementremains to be found, one must onsider the middle inlusion.2. Multiplier idealsHeneforth we �x X = C
n and onsider ideals in the ring R = C[x1, . . . , xn].Note that for a prime homogeneous ideal I, a homogeneous form F vanishes toorder p along the projetive variety de�ned by I in Pn−1 if and ony if it vanishes toorder p on the a�ne variety de�ned by I in C

n. In this way the Boi�Harbourneresults and Huneke question for points in P2 translate to questions about symbolipowers of (homogeneous) ideals in the a�ne setting.2.1. Ordinary multiplier idealsTo an ideal I ⊆ C[x1, . . . , xn], regarded as a sheaf of ideals on X = Cn,and a real parameter t ≥ 0 one may assoiate the multiplier ideal J (It) ⊆
C[x1, . . . , xn]. The multiplier ideals are de�ned in terms of a resolution of sin-gularities of I. For details, see [4℄, [12℄.Note, in the notation J (It) the t indiates dependane on the parameter t,rather than a power of I. In partiular, J (It) is de�ned for all real t ≥ 0, whereas
It on its own only makes sense for integer t ≥ 0. See, however, Property 2.2.Rather than present the somewhat involved de�nition here, we give a shortlist of properties of multiplier ideals whih are all that we will use. (The readermay take these as axioms, although the properties listed here do not haraterizemultiplier ideals.)Property 2.1For any nonzero ideal I, J (I0) = (1), the unit ideal. As the parameter t inreases,the multiplier ideals get smaller: if t1 < t2, then J (It1) ⊇ J (It2).On the other hand, if I1 ⊆ I2, then J (It

1) ⊆ J (It
2).Thus multiplier ideals, as funtions of two arguments, are �order-preserving� inthe ideal and �order-reversing� in the real parameter.Property 2.2For any real number t ≥ 0 and integer k > 0, J (Ikt) = J ((Ik)t).Property 2.3For any t ≥ 0 and integer p ≥ 0, IpJ (It) ⊆ J (Ip+t). See Proposition 9.2.32 (iv)of [12℄.



[70℄ Zah TeitlerProperty 2.4When Zeros(I) is smooth and irreduible with odimension codim(Zeros(I)) = e =

bight(I), J (It) = I⌊t⌋−e+1. In partiular, J (It) ⊆ I for t ≥ e. More generally, if
I is redued and Zeros(I) = V1 ∪ . . . ∪ Vs, then restriting to a neighborhood ofa general point on eah Vi, we see J (It) vanishes on Vi for t ≥ codim Vi, hene
J (It) ⊆ I for t ≥ max codim Vi = bight(I).The above list is a small seletion of the many interesting properties of multi-plier ideals. See [4℄, [12℄ for more, inluding exellent expositions of the de�nition(from whih all the above properties follow immediately). Among these manyother properties we single out one whih we will use here, due to Demailly�Ein�Lazarsfeld [5℄.Subadditivity Theorem
J (It1+t2) ⊆ J (It1)J (It2). In partiular for any integer r ≥ 0, J (Irt) ⊆ J (It)r.2.2. Asymptoti multiplier idealsA graded system of ideals a• = {an}

∞
n=1 is a olletion of ideals satisfying apaq ⊆

ap+q, and (to avoid trivialities) at most �nitely many of the an may be zero. Notethat ap, ap+1 are not required to satisfy any partiular relation, but (ap)
k ⊆ akp.By onvention, a0 = C[x1, . . . , xn], so that ⊕∞

n=0 an is a C[x1, . . . , xn]-algebra.A trivial graded system is one of the form an = a
n
1 . Our main interest will be inthe graded system of symboli powers of a (redued) ideal I, I(•) = {I(n)}n≥0.To a graded system a• and real parameter t ≥ 0 one an assoiate an asymptotimultiplier ideal J (at

•), or J (t · I(•)), de�ned by
J (at

•) = max
p≥1

J
(

a

t
p

p

)

.This de�nition was given in [6℄. We must justify the existene and well-de�nednessof this maximum; we repeat the argument of [6℄. Note that sine (ap)
q ⊆ aqp, bythe properties of multiplier ideals we have
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.The Noetherian property assures that among the ideals J (
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), one is a (relative)maximum. If J (
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) is a maximum, then by the above, J (
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). Heneif J (
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) and J
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) both are maxima, then they oinide with eah other. Thusthere is a unique maximum of this olletion of ideals.In partiular, J (at
•) = J

(

a

t
p

p

) for p ≫ 0 and su�iently divisible, i.e., forall su�iently large multiples of some p0. We say that suh a p omputes theasymptoti multiplier ideal.Example 2.5In the trivial ase an = a
n
1 , the asymptoti multiplier ideals redue to the ordinarymultiplier ideals: J (at

•) = J (at
1). This has the following onsequene: If I is a



Bounding symboli powers via asymptoti multiplier ideals [71℄redued ideal de�ning a smooth and irreduible variety of odimension e, then
J (t · I(•)) = J (It) = I⌊t⌋+1−e.As before, if I is only redued, then by restriting to a neighborhood of a smoothpoint on eah irreduible omponent of Zeros(I), we see that J (t · I(•)) ⊆ I for

t ≥ e = bight(I). And, more generally, J ((e + k) · I(•)) ⊆ I(k+1) for any k ≥ 0and any redued ideal I.Remark 2.6Conversely, an ⊆ J (an
• ). In fat, for every n, t, an · J (at

•) ⊆ J (at+n
• ) (Theo-rem 11.1.19 (iii) of [12℄). This is exatly the extra piee we will add to the argumentof [6℄ to dedue Theorem 1.1.As before, J (a0

•) = (1) and if t1 < t2, then J (at1
• ) ⊇ J (at2

• ). The asymptotimultiplier ideals satisfy subadditivity: J (at1+t2
• ) ⊆ J (at1

• )J (at2
• ), so J (art

• ) ⊆
J (at

•)
r [12, 11.2.3℄. This follows immediately from the subadditivity theoremfor ordinary multiplier ideals. (Let p large and divisible enough ompute all theasymptoti multiplier ideals appearing in the equation, then apply the ordinarysubadditivity theorem for ap.)2.3. Log anonial thresholdsFor an ideal I 6= (0), (1), we de�ne lct(I) = sup{t | J (It) = (1)}. This isa positive rational number. It turns out that J (I lct(I)) 6= (1). (See [7℄ or [12℄.)Let I be a radial ideal and let e′ be the minimum of the odimensions of theirreduible omponents of Zeros(I). Then lct(I) satis�es

0 < lct(I) ≤ e′.(Restriting to a neighborhood of a general point on a odimension e′ omponentof Zeros(I), J (Ie′

) vanishes on the omponent by Property 2.4.)For a graded system of ideals a•, we de�ne lct(a•) = sup{t | J (at
•) = (1)}.This may be in�nite or irrational. However for the graded system of symbolipowers of a radial ideal I, we have lct(I(•)) ≤ e′ as above.As shown in [13, Remark 3.3℄,

lct(a•) = sup p lct(ap) = lim p lct(ap).Taking p = 1, this shows lct(I(•)) ≥ lct(I) for a radial ideal I.3. ExamplesIn this setion we give the asymptoti multiplier ideals of graded systems ofmonomial ideals, espeially for the symboli powers of a radial (i.e., squarefree)monomial ideal, and the asymptoti multiplier ideals of graded systems of divisorand hyperplane arrangements.



[72℄ Zah Teitler3.1. Monomial idealsThe following theorem gives the ordinary multiplier ideals of a monomial ideal.Theorem 3.1 ([10℄)Let I be a monomial ideal with Newton polyhedron N = Newt(I). Then J (It) isthe monomial ideal ontaining xv if and only if v + (1, . . . , 1) ∈ Int(t · N).Here Int( ) denotes topologial interior. In partiular, lct(I) = 1
t
, where

t · (1, . . . , 1) is in the boundary of Newt(I).Let I• = {Ip} be a graded system of monomial ideals. Let Np = Newt(Ip).Then Ik
p ⊆ Ipk, so k ·Np ⊆ Npk, whih means 1

p
Np ⊆ 1

pk
Npk. Let N(I•) =

⋃

1
p
Np.Sine this is an asending union of onvex sets, it is onvex.Theorem 3.2 ([13℄)

J (It
•) is the monomial ideal ontaining xv if and only if v + (1, . . . , 1) ∈

Int(t · N(I•)).Proof. If p omputes J (It
•) and xv ∈ J (It

•) = J
(

I
t
p

p

), then v + (1, . . . , 1) ∈
Int( t

p
Np) ⊆ Int(t · N(I•)). Conversely if v + (1, . . . , 1) ∈ Int(t · N(I•)), then

v + (1, . . . , 1) ∈ Int( t
p
Np) for some p, whene xv ∈ J

(

I
t
p

p

)

⊆ J (It
•).For a graded system of monomial ideals, lct(I•) = 1

t
, where t · (1, . . . , 1) is inthe boundary of N(I•).More an be said in a speial situation:Proposition 3.3If a graded system is given by Ip = C

p
1 ∩ . . . ∩ Cp

r for �xed monomial ideals
C1, . . . , Cr, then in the above notation, N(I•) =

⋂

Newt(Ci).Proof. For a monomial ideal a, let monom(a) denote the set of exponent ve-tors of monomials in a, so that Newt(a) is the onvex hull conv(monom(a)). For
p ≥ 1 we have monom(Ip) =

⋂

monom(Cp
i ), so

Newt(Ip) ⊆
⋂

Newt(Cp
i ) = p ·

⋂

Newt(Ci).This shows N(I•) ⊆
⋂

Newt(Ci).For the reverse inlusion, note ⋂

Newt(Ci) is a rational polyhedron. For psu�iently divisible, p ·
⋂

Newt(Ci) is a lattie polyhedron; in partiular all itsextremal points (verties) have integer oordinates, and p·
⋂

Newt(Ci) is the onvexhull of the integer (lattie) points it ontains. So let v be an integer point in
p ·

⋂

Newt(Ci) =
⋂

Newt(Cp
i ). Then xv ∈ C

p
i for eah i, so xv ∈

⋂

C
p
i = Ip. Thisshows p ·

⋂

Newt(Ci) ⊆ conv(monom(Ip)). Therefore ⋂

Newt(Ci) ⊆
1
p
Newt(Ip) ⊆

N(I•).One an hek that in the situation of the above proposition, lct(I•) =
min lct(Ci).



Bounding symboli powers via asymptoti multiplier ideals [73℄Proposition 3.4Let I = I1 be a redued monomial ideal and Ip = I(p). Suppose I is not the maximalideal. Let N be the onvex region de�ned by the linear inequalities that orrespondto unbounded faets of Newt(I). Then N = N(I(•)); in partiular J (t · I(•)) is themonomial ideal ontaining xv if and only if v + (1, . . . , 1) ∈ Int(t · N).Proof. Let I = C1 ∩ . . . ∩ Cr, the Ci minimal primes of I. Then I(p) =
C

p
1 ∩ . . .∩Cp

r . As long as I is non-maximal, equivalently eah Ci is non-maximal,the Newt(Ci), together with the faets of the positive orthant, orrespond pre-isely to the unbounded faets of Newt(I). The result follows by the previouspropositions.In partiular, eah lct(Ci) = htCi, so lct(I(•)) = min htCi = e′, where e′ isthe minimum odimension of any irreduible omponent of the variety V (I).3.2. Hyperplane arrangementsLet D be a divisor with real (or rational or integer) oe�ients. The multiplierideals J (t · D) are de�ned similarly to the multiplier ideals of ideals. All theproperties desribed above hold for multiplier ideals of divisors. In fat, when D isa divisor with integer oe�ients with de�ning ideal I, J (t ·D) = J (It). See [12℄for details.The multiplier ideals of hyperplane arrangements were omputed in [14℄, withthe following result.Theorem 3.5Let D = b1H1 + . . . + brHr be a weighted entral arrangement, where the Hi arehyperplanes in Cn ontaining the origin and the bi are nonnegative real numbers,the weights. Let L(D) be the intersetion lattie of the arrangement D, the setof proper subspaes of Cn whih are intersetions of the Hi. For W ∈ L(D),let r(W ) = codim(W ) and s(W ) =
∑

{bi | W ⊆ Hi} = ordW (D). Then themultiplier ideals of D are given by
J (t · D) =

⋂

W∈L(D)

I
⌊t·s(W )⌋+1−r(W )
W ,where IW is the ideal of W .In fat, the intersetion over W ∈ L(D) an be redued to an intersetionover W ∈ G for ertain subsets G ⊆ L(D) alled building sets; see [16℄. The loganonial threshold is given by lct(D) = minW∈L(D)

r(W )
s(W ) ; this may be redued toa minimum over W ∈ G.With this in hand it is easy to desribe a similar result for graded systems ofhyperplane arrangements.We will say a graded system of divisors is a sequene D• = {Dp}p≥1 suhthat Dp + Dq ≥ Dp+q. Equivalently, for eah omponent E, the ordE(Dp) satisfy

ordE(Dp) + ordE(Dq) ≥ ordE(Dp+q). If the Dp have integer weights, then theondition of the Dp forming a graded system of divisors is equivalent to requiring



[74℄ Zah Teitlerthe ideals Ip = I(Dp) to form a graded system of ideals. De�ne the asymptotimultiplier ideal J (t · D•) = maxp J ( t
p
Dp), as for graded systems of ideals.The following lemma will be helpful:Lemma 3.6 ([13℄, Lemma 1.4)Let {ap} be a sequene of non-negative real numbers suh that ap + aq ≥ ap+q forall p, q. Then 1

p
ap onverges to a �nite limit; in fat 1

p
ap → inf 1

p
ap.For a graded system D• of divisors, let

D∞ =
∑

aEE, where aE = lim
p→∞

1

p
ordE(Dp).Proposition 3.7Let D• be a graded system of divisors. Then J (t · D•) = J (t · D∞).This follows from onsidering a ommon resolution of singularities of all the

Dp and D∞. The following is an immediate onsequene.Proposition 3.8Let D• be a graded system of divisors, where eah Dp is a entral hyperplanearrangement. Let the hyperplanes be H1, . . . , Hr. Let Dp = b1,pH1 + . . . + br,pHr,and let bi,∞ = lim
bi,p

p
. Let L(D0) be the intersetion lattie of the (redued)arrangement D0 = H1 ∪ . . . ∪ Hr, and for W ∈ L(D0) let s∞(W ) =

∑

{bi,∞ :
W ⊆ Hi}, r(W ) = codim(W ). Then

J (t · D•) =
⋂

W∈L(D0)

I
⌊t·s∞(W )⌋+1−r(W )
W = J (t · D∞),where D∞ is de�ned as above.Again the intersetion an be redued to W ∈ G for a building set G ⊆ L(D0).The log anonial threshold is given by lct(D•) = lct(D∞) = minW

r(W )
s∞(W ) .4. Proof of TheoremAt this point the theorem is easy to prove. The real work was to develop thede�nition of multiplier ideals and show they have the properties desribed in �2.We have J (Ie) ⊆ I. Together with the subadditivity theorem this gives thefollowing hain of inlusions:

J (Ier) ⊆ J (Ie)r ⊆ Ir.Unfortunately I(er) is not neessarily ontained in J (Ier). We must enlarge thesemultiplier ideals enough to ontain I(er) but not too muh to destroy the ontain-ment in Ir. First rewrite the above as
J ((Ip)

er
p ) ⊆ J ((Ip)

e
p )r ⊆ Ir.



Bounding symboli powers via asymptoti multiplier ideals [75℄These are the same ideals by Property 2.2. Now let p be su�iently large anddivisible and enlarge Ip to I(p). The multiplier ideals beome asymptoti multiplierideals, and we will see in a moment that the inlusions above still hold:
J (er · I(•)) ⊆ J (e · I(•))r ⊆ Ir.By Remark 2.6 we have I(er) ⊆ J (er ·I(•)). So this shows I(er) ⊆ Ir. This explainswhy we use asymptoti multiplier ideals rather than ordinary multiplier ideals inthis proof. We arrive at the following proof of Theorem 1.1.Proof. We have the following hain of inlusions:

I(er+kr−ℓ) = I(er+kr−ℓ)J (ℓ · I(•))

⊆ J ((er + kr) · I(•)) ⊆ J ((e + k) · I(•))r

⊆ (I(k+1))r

(⋆)whih is justi�ed as follows. For ℓ < lct(I(•)), J (ℓ · I(•)) = (1). The �rst inlusionis Remark 2.6. The seond inlusion holds by the subadditivity theorem. The lastinlusion is Example 2.5.Theorem 2.2 of [6℄ is shown by exatly the above argument with ℓ = 0.5. Non-improvementUsing �lassial� methods, Boi�Harbourne have given some improvementsin speial ases to the Ein�Lazarsfeld�Smith theorem that I(er) ⊆ Ir for everyredued ideal I with bight(I) = e. For example [3℄ shows the resurgene of anideal I of general points in P2 is at most 3
2 , so I(m) ⊆ Ir for m ≥ 3r

2 . However,the argument given above for the proof of Theorem 1.1, either via asymptotimultiplier ideals or via harateristi p methods, is the only way I am aware of toshow for every redued ideal I of height e that I(er) ⊆ Ir (i.e., the resurgene isat most e) or even that the resurgene is �nite for every redued ideal.One may ask, how far an the same multiplier ideal methods be pushed toimprove the bounds in the Ein�Lazarsfeld�Smith theorem?5.1. Restrition of log anonial thresholdThe value ℓ in Theorem 1.1 is severely restrited. Let e′ be the minimum of theodimensions of the irreduible omponents of Zeros(I). We saw 0 < lct(I) ≤ e′,but it often happens that lct(I) is muh smaller than e′. For I a homogeneousideal in C[x1, . . . , xn], we have
1

mult0(I)
≤ lct(I) ≤

n

mult0(I)([12, 9.3.2-3℄), where mult0(I) is the multipliity of I at the origin, equivalently,the least degree of a nonzero form in I. So if lct(I) > 1, then I must ontain aform of degree stritly less than n.



[76℄ Zah TeitlerFor ideals of redued sets of points in P
2 one an show the onverse, so lct(I) > 1if and only if the points lie on a oni (whih may be reduible). So Theorem 1.1implies Harbourne's onjeture and answers Huneke's question only for points ona oni, whih (for smooth onis at least) had already been treated by Boi�Harbourne [2℄.We only need ℓ < lct(I(•)), whih is a priori less restritive than ℓ < lct(I),but still restrits us to ℓ ≤ e′ − 1. Indeed, there are radial ideals I with lct(I) <

lct(I(•)). However I do not know of an ideal I suh that there is an integer ℓ,
lct(I) ≤ ℓ < lct(I(•)).For a radial homogeneous ideal I,

lct(I(•)) ≤
n

lim
p→∞

1
p

mult0(I(p))
,where the limit exists beause mult0(I

(p)) + mult0(I
(q)) ≥ mult0(I

(p+q)). If
lct(I(•)) > 1, then for some p there must be a homogeneous form F vanishingto order p along the variety de�ned by I, of degree stritly less than pn. Thisis weaker than the requirement that if lct(I) > 1, then I must ontain a form ofdegree less than n, whih is the same statement with the added ondition p = 1;but it does not seem very muh weaker.5.2. The seond inlusionLet I = (xy, xz, yz) ⊆ C[x, y, z] be the ideal of the union of the three oordinateaxes. Using Howald's theorem and its asymptoti version one an ompute all theideals appearing in (⋆). Sine they are all integrally losed monomial ideals, wegive them by giving their Newton polyhedra. Here e = 2; we take k = 0. First,

N• = {(a, b, c) | a + b, a + c, b + c ≥ 1} ∋
(1

2
,
1

2
,
1

2

)

.We have lct(I) = 3
2 and lct(I(•)) = 2, so we take ℓ = 1. Now,

Newt[I(2r−1)] = {(a, b, c) | a + b, a + c, b + c ≥ 2r − 1, a + b + c ≥ 3r − 1},

Newt[J (2r · I(•))] = {(a, b, c) | a + b, a + c, b + c ≥ 2r − 1, a + b + c ≥ 3r − 1},

Newt[(J (2 · I(•)))r] = {(a, b, c) | a + b, a + c, b + c ≥ r, a + b + c ≥ 2r},

Newt[Ir] = {(a, b, c) | a + b, a + c, b + c ≥ r, a + b + c ≥ 2r}.This example shows that the plae where improvements are needed is the se-ond inlusion in (⋆), whih relies on the subadditivity theorem.AknowledgementI am grateful to Brian Harbourne for inviting me to write this material (origi-nally as an appendix to leture notes [8℄ for a ourse he gave at a summer shoolin Craow in Marh, 2009) and for numerous helpful onversations.
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