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Abstract. We determine a general solution of the Popoviciu type functional
equation on groups.

1. Introduction

In 1965 T. Popoviciu [5], dealing with some inequality for convex functions,
has introduced the functional equation
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The solution and stability of (1) have been studied by W. Smajdor [6] and T. Trif
[7]- Recently, J. Brzdek [1] has considered stability of (1) on a restricted domain.
Solution and stability of the following “quadratic” version of (1),
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have been investigated by Y.W. Lee [3]. The results from [3] have been generalized
by the same author in [4], where the functional equation
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has been considered (m,n are nonzero integers such that m + 1 = 2n). The case
m = n = 1 has been studied by P. Kannappan [2]. For some further generalization
of (1) we refer to [8]. It is remarkable that the results mentioned above (except
for [1] and [6]) concern the case, where unknown function f is acting between two
real linear spaces. In the present paper we deal with the functional equation
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in a more general setting. Namely, we assume that m,n, M, N are positive in-
tegers, (G,+) is a commutative group uniquely divisible by m and n, (H,+) is
a commutative group uniquely divisible by 2 and f: G — H is an unknown func-
tion. Let us recall that a group (X, +) is said to be uniquely divisible by a given
positive integer k provided, for every x € X, there exists a unique y € X such that
x = ky; such an element will be denoted in a sequel by 7. Furthermore, given
arbitrary groups (X, +) and (Y, +), a function Q: X — Y is said to be quadratic
provided

Q(x+y) +Q(x —y)=2Q(z) +2Q(y)  forz,ye X

and a function A: X — Y is said to be additive provided

Alx +y) = A(z) + Aly) for z,y € X.

2. Results

We begin this section with the following theorem, which is a main result of the
paper.

THEOREM 1

Let m,n, M, N be positive integers, (G,+) be a commutative group uniquely di-
visible by m and n, and (H,+) be a commutative group uniquely divisible by 2.
Then a function f:G — H satisfies equation (4) for all z,y,z € G if and only if
there exist a quadratic function Q:G — H, an additive function A:G — H and
a B € H such that

(M — 3N +3)B =0, (5)
(N —n*)Q(z) = (M —m*)Q(x) =0 forz € G, (6)
(Mn+mn —2mN)A(x) =0 forzed@ (7)
and
f(z) =Q(x) + A(x) + B forxz e G. (8)

Proof. Assume that f satisfies (4). Then, applying (4) with z =y = 2z = 0,
we get

(M+3—-3N)f(0)=0. (9)
Define the functions Q: G — H and A:G — H by
Q(x) ::W—f@) foree G
and
Ax) = /(@) _2f( ?) for z € G,
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Q is an even function, A is odd and f is of the form (8). Furthermore, in view of
(9), (5) is valid. Note also, that by (4), for every z,y, z € G, we get

2 (FEEIEDY 4 ) 4+ S 2)
_ —(z+y) —(z+2) —(y+2)
V(=) () ()
Therefore, taking into account (9), we obtain that @ and A satisfy (4) for every

x,y,z € G. Now, we show that @ is a quadratic function. Since @ is even and
satisfies (4), for every x,y € G, we have

MQ(L) +20() + Q) = MQ(TL=2) + Q) + Q(y) + Q(—)
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Thus

MQ(L) +20) + Q) = N[Q(T2) + o(=2)] (10)

n
for x,y € G. Taking in (10) y = 0, we get 2Q(x) = 2NQ(3;) for x € G whence, as
H is uniquely divisible by 2, we have

x
Qz) = NQ(E) forx € G. (11)
Moreover, putting in (10) = 0, we obtain
y _ovo(Y
MQ(E) +Qy) = 2NQ(n) fory € G
which, together with (11), gives

Qly) = MQ(%) for y € G. (12)
Now, from (10)—(12) we deduce that @ is quadratic. Furthermore note that, as @
is quadratic, from (11) and (12) it follows (6).
Next, we consider the function A. As we have already noted, A is odd, vanishes
at 0 and satisfies (4), that is, for every z,y, z € G, it holds

MA( +A(x) + Aly) + A(2)

WA () e a(22))
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Applying (13) with z = 0, and then with y = z = 0, we get

MA(:”;‘”) + Al) + Aly) = N[a () a(2)+aB)] ay

n
for z,y € G and

MA(%) +A(z) = 2NA(%) for z € G, (15)
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respectively. By (15), for every z,y € G, we get

MA(JC;L”) A ty) = 2NA($;y).

Thus, in view of (14), we get

Az +y) — Az) — Aly) = N[A(Izy) —A(E) - a(9)].

n n

On the other hand, using the oddness of A and applying (13), for =,y € G, we

obtain
NA(5) - A7) -4 ()]
I R )
- MA(—“y _m(“y)) +A(z) + Aly) — Az + ).
Consequently,

Alx +y) — A(z) — Aly) = A(z) + A(y) — A(z +y) for z,y € G,

which means that 24 is an additive function. Since H is uniquely divisible by 2,
we conclude that A is additive. Finally note that as A is additive, (15) implies (7).
Since the converse is easy to check, the proof is completed.

The next two corollaries generalize to some extend Theorem 2.1 in [7] and
Theorem 2.1 in [4], respectively.

COROLLARY 1

Let m,n be positive integers, (G,+) be a commutative group uniquely divisible
by m and n, and (H,+) be a commutative group uniquely divisible by 2. Then
a function f:G — H satisfies equation

mf () 4 f@) + fl) + £(2)
S ) ()] e

n n

if and only if there exist a quadratic function Q:G — H, an additive function
A:G — H and a B € H such that (m —3n+3)B =0, Q =0 whenever m # 1 or
n# 1; and [ is of the form (8).

COROLLARY 2

Let m,n be positive integers, (G,+) be a commutative group uniquely divisible
by m and n, and (H,+) be a commutative group uniquely divisible by 2. Then
a function f:G — H satisfies equation (3) for all x,y,z € G if and only if there
exist a quadratic function Q: G — H, an additive function A:G — H and a B € H
such that (m? — 3n?> +3)B = 0, A = 0 whenever m + 1 # 2n; and f is of the
form (8).
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