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The aim of the paper is to give strong maximum principles for im-

plicit non-linear parabolic functional-differential problems together with
initial inequalities in relatively arbitrary (n+1)-dimensional time - space
sets more general than cylindrical domain.
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In this paper we consider implicit diagonal systems of non-linear parabolic
functional-differential inequalities of the form

F i(t, x, u(t, x), ui
t(t, x), ui

x(t, x), ui
xx(t, x), u)

≥ F i(t, x, v(t, x), vi
t(t, x), vi

x(t, x), vi
xx(t, x), v)

(i = 1, . . . , m)

(1.1)

for (t, x) = (t, x1, . . . , xn) ∈ D, where D ⊂ (t0, t0 + T ] × R
n is one of three

relatively arbitrary sets more general than the cylindrical domain (t0, t0 +T ]×
D0 ⊂ R

n+1. The symbol w (= u or v) denotes the mapping

w : D̃ 3 (t, x) −→ w(t, x) = (w1(t, x), . . . , wm(t, x)) ∈ R
m,

where D̃ is an arbitrary set contained in (−∞, t0 + T ]× R
n such that D̄ ⊂ D̃;

F i (i = 1, . . . , m) are functionals of w; wi
x(t, x) = gradxwi(t, x) (i = 1, . . . , m)

and wi
xx(t, x) (i = 1, . . . , m) denote the matrices of second order derivatives

with respect to x of wi(t, x) (i = 1, . . . , m). We give a lemma and a theorem
on strong maximum principles for problems together with inequalities of types
(1.1) and with initial inequalities.
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The results obtained are a generalization of some results given by R. Redhef-
fer and W. Walter [4], by J. Szarski [5] and [6], by P. Besala [1], by W. Walter
[8], by N. Yoshida [9], by the author [2] and [3], and base on those results.
To prove the results of this paper we use the theorem on a strong maximum
principle from [2].
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The notation and definitions given in this section are valid throughout this
paper. Some of them are similar to those applied by J. Szarski [7], [6], by
R. Redheffer and W. Walter [4], by P. Besala [1], by N. Yoshida [9] and by the
author [3].

We use the following notation:

R = (−∞,∞), N = {1, 2, . . .}, x = (x1, . . . , xn) (n ∈ N).

For any vectors z = (z1, . . . , zm) ∈ R
m, z̃ = (z̃1, . . . , z̃m) ∈ R

m we write

z ≤ z̃ if zi ≤ z̃i (i = 1, . . . , m).

Let t0 be a real finite number and let 0 < T < ∞. A set

D ⊂ {(t, x) : t > t0, x ∈ R
n}

(bounded or unbounded) is called a set of type (P ) if:

(a) The projection of the interior of D on the t-axis is the interval (t0, t0+T ).

(b) For every (t̃, x̃) ∈ D there is a positive r such that

{

(t, x) : (t − t̃)2 +

n
∑

i=1

(xi − x̃i)
2 < r, t < t̃

}

⊂ D.

We define the following sets:

St0 = int{x ∈ R
n : (t0, x) ∈ D̄} and σt0 = int[D̄ ∩ ({t0} × R

n)].

Let D̃ be a set contained in (−∞, t0 + T ] × R
n such that D̄ ⊂ D̃. We

introduce the following sets:

∂pD := D̃ \ D and Γ := ∂pD \ σt0 .

For an arbitrary fixed point (t̃, x̃) ∈ D we denote by S−(t̃, x̃) the set of
points (t, x) ∈ D that can be joined to (t̃, x̃) by a polygonal line contained in
D along which the t-coordinate is weakly increasing from (t, x) to (t̃, x̃).
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Let Zm(D̃) denote the space of mappings

w : D̃ 3 (t, x) −→ w(t, x) = (w1(t, x), . . . , wm(t, x)) ∈ R
m

continuous in D̄.
In the set of mappings bounded from above in D̃ and belonging to Zm(D̃)

we define the functional

[w]t = max
i=1,...,m

sup{0, wi(t̃, x) : (t̃, x) ∈ D̃, t̃ ≤ t}, where t ≤ t0 + T.

By Mn×n(R) we denote the space of real square symmetric matrices r =
[rjk ]n×n.

A mapping w ∈ Zm(D̃) is called regular in D if

wi
t, wi

x = gradxwi, wi
xx = [wi

xjxk
]n×n (i = 1, . . . , m)

are continuous in D.
Let the mappings

F i : D × R
m × R × R

n × Mn×n × Zm(D̃) 3 (t, x, z, p, q, r, w) −→

F i(t, x, z, p, q, r, w) ∈ R

(i = 1, . . . , m)

be given and let for an arbitrary regular in D function w ∈ Zm(D̃)

F i[t, x, w] := F i(t, x, w(t, x), wi
t(t, x), wi

x(t, x), wi
xx(t, x), w), (t, x) ∈ D

(i = 1, . . . , m).

Each two regular in D mappings u, v ∈ Zm(D̃) are said to be solutions of
the system

F i[t, x, u] ≥ F i[t, x, v] (i = 1, . . . , m) (2.1)

in D, if they satisfy (2.1) for all (t, x) ∈ D.
For a given regular mapping w in D and for an arbitrary fixed i ∈{1, . . . , m},

the mapping F i is called uniformly parabolic with respect to w in a subset
E ⊂ D if there is a constant κ > 0 (depending on E) such that for any two
matrices r̃ = [r̃jk ], r̂ = [r̂jk ] ∈ Mn×n(R) and for all (t, x) ∈ E we have

r̃ ≤ r̂ =⇒ F i(t, x, w(t, x), wi
t(t, x), wi

x(t, x), r̂, w)

− F i(t, x, w(t, x), wi
t(t, x), wi

x(t, x), r̃, w)

≥ κ

n
∑

j=1

(r̂jj − r̃jj ),
(2.2)

where r̃ ≤ r̂ means that
∑n

j,k=1(r̃jk − r̂jk)λjλk ≤ 0 for every (λ1, . . . , λn) ∈ R
n.
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If (2.2) is satisfied for r̃ = wi
xx(t, x), r̂ = wi

xx(t, x) + r, r ≥ 0 and κ = 0,
then F i is called parabolic with respect to w in E.

An unbounded set D of type (P ) is called a set of type (PΓ) if

Γ ∩ σt0 6= ∅. (2.3)

A bounded set D of type (P ) is called a set of type (PB).
It is easy to see that each set D of type (PB) satisfies condition (2.3).

Moreover, it is obvious that if D0 is a bounded subset [D0 is an unbounded
proper subset] of R

n, then D = (t0, t0 + T ] × D0 is a set of type (PB) [(PΓ),
respectively].

�0cf�X�0�����

As a consequence of Theorem 3.1 from [2] we obtain the following:

Lemma 3.1

Assume that:

1◦ D is a set of type (P ).

2◦ The mappings F i (i = 1, . . . , m) are weakly increasing with respect to

z1, . . . , zi−1, zi+1, . . . , zm (i = 1, . . . , m). Moreover, there is a positive

constant L > 0 such that

F i(t, x, z, p, q, r, w) − F i(t, x, z̃, p, q̃, r̃, w̃)

≤ L

(

max
k=1,...,m

| zk − z̃k | + | x |
n
∑

j=1

| qj − q̃j |

+ | x |2
n
∑

j,k=1

| rjk − r̃jk ] + [w − w̃]t

)

for all (t, x) ∈ D, z, z̃ ∈ R
m, p ∈ R, q, q̃ ∈ R

n, r, r̃ ∈ Mn×n(R), w, w̃ ∈
Zm(D̃), where sup(t,x)∈D̃(w(t, x) − w̃(t, x)) < ∞ (i = 1, . . . , m).

3◦ There are constants Ci > 0 (i = 1, 2) such that

F i(t, x, z, p, q, r, w) − F i(t, x, z, p̃, q, r, w) < C1(p̃ − p) (i = 1, . . . , m)

for all (t, x) ∈ D, z ∈ R
m, p > p̃, q ∈ R

n, r ∈ Mn×n(R), w ∈ Zm(D̃)

and

F i(t, x, z, p, q, r, w) − F i(t, x, z, p̃, q, r, w) < C2(p̃ − p) (i = 1, . . . , m)

for all (t, x) ∈ D, z ∈ R
m, p < p̃, q ∈ R

n, r ∈ Mn×n(R), w ∈ Zm(D̃).
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4◦ The mapping u ∈ Zm(D̃) is regular in D, and sup(t,x)∈D u(t, x) < ∞.

5◦ u(t, x) ≤ K for (t, x) ∈ ∂pD, where K = (K1, . . . , Km) is a constant

mapping.

6◦ The mappings u and K are solutions of the system

F i[t, x, u] ≥ F i[t, x, K] (i = 1, . . . , m)

in D.

7◦ The mappings F i (i = 1, . . . , m) are parabolic with respect to u in D and

uniformly parabolic with respect to K in any compact subset of D.

Then

u(t, x) ≤ K for (t, x) ∈ D̃.

Moreover, if there is a point (t̃, x̃) ∈ D such that u(t̃, x̃) = K then

u(t, x) = K for (t, x) ∈ S−(t̃, x̃).
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�@g0k
(PB)

Now, we shall give the following theorem on strong maximum principles
together with initial inequalities in sets of types (PΓ) and (PB):

Theorem 4.1

Assume that:

(i) D is a set of type (PΓ) or (PB) and assumptions 20 and 30 of Lemma 3.1

are satisfied.

(ii) The mapping u ∈ Zm(D̃) is regular in D and the maximum of u on Γ is

attained. Moreover,

K := max
(t,x)∈Γ

u(t, x). (4.1)

(iii) The inequality

u(t0, x) ≤ K for x ∈ St0 (4.2)

is satisfied.

(iv) The maximum of u in D̃ is attained. Moreover,

M := max
(t,x)∈D̃

u(t, x). (4.3)
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(v) The mappings u and M are solutions of the system

F i[t, x, u] ≥ F i[t, x, M ] (i = 1, . . . , m)

in D.

(vi) The mappings F i (i = 1, . . . , m) are parabolic with respect to u in D and

uniformly parabolic with respect to M in any compact subset of D.

Then

max
(t,x)∈D̃

u(t, x) = max
(t,x)∈Γ

u(t, x). (4.4)

Moreover, if there is a point (t̃, x̃) ∈ D such that u(t̃, x̃) = max(t,x)∈D̃ u(t, x)
then

u(t, x) = max
(t,x)∈Γ

u(t, x) for (t, x) ∈ S−(t̃, x̃).

Proof. We shall prove Theorem 4.1 for a set of type (PΓ) only since the
proof for a set of type (PB) is analogous.

We shall argue by contradiction. Suppose

M 6= K. (4.5)

From (4.1) and (4.3), we have

K ≤ M. (4.6)

Consequently

K < M. (4.7)

Observe, from assumption (iv), that

there is (t∗, x∗) ∈ D̃ such that u(t∗, x∗) = M := max
(t,x)∈D̃

u(t, x). (4.8)

By (4.8), by assumption (ii) and by (4.7), we have

(t∗, x∗) ∈ D̃ \ Γ = D ∪ σt0 . (4.9)

Suppose that

(t∗, x∗) ∈ D. (4.10)

From assumptions (ii) and (v), and from (4.8), we get























u ∈ Zm(D̃) and ui
t, ui

x, ui
xx (i = 1, . . . , m) are continuous in D,

F i[t, x, u] ≥ F i[t, x, M ] for (t, x) ∈ D (i = 1, . . . , m),

u(t, x) ≤ M for (t, x) ∈ D̃,

u(t∗, x∗) = M.

(4.11)
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The assumption that D is a set of type (P ), assumptions 2◦ and 3◦ (see assump-
tion (i)), formulas (4.10) and (4.11), and assumption (vi) imply, by Lemma 3.1,
the equation

u(t, x) = M for (t, x) ∈ S−(t∗, x∗). (4.12)

On the other hand, from the definition of a set of type (PΓ), there is a polygonal
line γ ⊂ S−(t∗, x∗) such that

γ ∩ Γ 6= ∅. (4.13)

Since u ∈ C(D̄, Rm), we have a contradiction of formulas (4.12) and (4.13)
with formulas (4.1) and (4.7). Therefore, (t∗, x∗) /∈ D and, consequently, from
(4.9), (t∗, x∗) ∈ σt0 . But this leads, by (4.7), to a contradiction of (4.2) with
(4.8). The proof of (4.4) is complete.

The second part of Theorem 4.1 is a consequence of equality (4.4) and of
Lemma 3.1. Therefore, the proof of Theorem 4.1 is complete.

Remark 4.1

If D is a set of type (PB) and if D̃ = D̄ then the first part of assumption (ii) of
Theorem 4.1 relative to the maximum of u and the first part of assumption (iv)
of this theorem are trivially satisfied since u, v ∈ C(D̄, Rm) and Γ is bounded
and closed set in this case.

Remark 4.2

If the mappings F i (i = 1, . . . , m) do not depend on the functional argument
w then Lemma 3.1 and Theorem 4.1 reduce to the lemma and the theorem,
respectively, on parabolic differential inequalities including terms

F i(t, x, u(t, x), ui
t(t, x), ui

x(t, x), ui
xx(t, x)) (i = 1, . . . , m)

and in this case we can put D̃ = D̄.

�®t¯$®±°,®±²±³t®±´

[1] P. Besala, An extension of the strong maximum principle for parabolic equations,
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 1003-1006.

[2] L. Byszewski, Strong maximum principle for implicit nonlinear parabolic func-

tional-differential inequalities in arbitrary domains, Univ. Iagell. Acta Math. 24

(1984), 327-339.

[3] L. Byszewski, Strong maximum and minimum principles for parabolic functio-

nal-differential problems with initial inequalities u(t0, x) ≤ (≥)K, Ann. Polon.
Math. 52 (1990), 187-194.

[4] R. Redheffer, W. Walter, Das Maximumprinzip in unbeschränkten Gebieten für

parabolische Ungleichungen mit Funktionalen, Math. Ann. 226 (1977), 155-170.

[5] J. Szarski, Differential Inequalities, PWN, Warszawa, 1967.



o�µ�qZrtsduwv x�ytzt{t|t}duw{txdv

[6] J. Szarski, Strong maximum principle for non-linear parabolic differential-

functional inequalities in arbitrary domains, Ann. Polon. Math. 29 (1974), 207-
217.

[7] J. Szarski, Inifinite systems for parabolic differential-functional inequalities, Bull.
Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 471-481.

[8] W. Walter, Differential and Integral Inequalities, Springer–Verlag, Berlin – Hei-
delberg – New York, 1970.

[9] N. Yoshida, Maximum principles for implicit parabolic equations, Proc. Japan
Acad. 49 (1973), 785-788.

Institute of Mathematics

Cracow University of Technology

ul. Warszawska 24

31-155 Kraków

Poland

E-mail: lbyszews@usk.pk.edu.pl


