FOLIA 70

Annales Universitatis Paedagogicae Cracoviensis
Studia Mathematica VIII (2009)

Jan Guncéaga

Regulated functions and integrability

Abstract. Properties of functions defined on a bounded closed interval, weaker
than continuity, have been considered by many mathematicians. Functions
having both sides limits at each point are called regulated and were con-
sidered by J. Dieudonné [2], D. Fraikova [3] and others (see for example
S. Banach [1], S. Saks [8]). The main class of functions we deal with con-
sists of piece-wise constant ones. These functions play a fundamental role
in the integration theory which had been developed by Igor Kluvanek (see
S. Tkacik [9]). We present an outline of this theory.

1. Regulated functions

Everybody familiar with basic calculus remembers properties of continuous
functions defined on a bounded closed interval. Some of those properties can
be extended to suitably discontinuous functions, namely to functions having the
right and the left limits at each point; such functions are called regulated. We shall
deal with a special class of regulated functions consisting of piece-wise constant
functions.

From now on, I will denote a closed bounded interval [a,b] of real numbers.
All considered functions will be bounded and defined in the interval 1.

A limit of a function is meant to be proper, i.e., different from +oo or —co.

DEFINITION 1

A function f:1 — R is called regulated on [ if f has the left-sided limit at every
point of the interval I except the point a and f has the right-sided limit at every
point of the interval I except the point b.

The idea of regulated functions can be spread out to functions defined in a sub-
set of the interval I, namely to a set F, such that each point from the interval I
is left-sided and right-sided accumulation point of the set E. Nevertheless we are
not concerned to such approach.

AMS (2000) Subject Classification: 26A15, 26A39.
This article is supported by grant KEGA 3/7068/09.

Volumes I-VII appeared as Annales Academiae Paedagogicae Cracoviensis Studia Mathematica.



[44] Jan Guncaga

In this definition we do not require that the right-sided limit and the left-sided
limit of the function at a point are equal. The picture below shows an example of
a regulated function on 1.
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Figure 1
Important class of regulated functions consists of piece-wise constant ones.

DEFINITION 2
A function f:I — R is said to be a step function on I whenever there exist:
a positive integer n, a sequence of points (c1,...,¢,) such that

a=cp<c<...<cj1<¢<...<cp=0b
and the function f is constant on each interval (¢;—1,¢;j), j =1,2,...,n.

An example of a step function is shown in Figure 2.
It follows from the definition that if f is regulated on an interval I, then it is
also regulated in each subinterval J (J C I).
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Figure 2

Although the next theorem is known (see [2]| for example) we shall present
an elementary proof of it.

This theorem states that a regulated function can be aproximated with arbi-
trary accuracy by a step function.
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THEOREM 1
Let f: 1 — R be a regulated function and let € be a positive number. Then there
exists a step function g such that

[f(x) —g(x)] <e

in each point x of the interval I.

If the function f is continuous on the interval I, then we can choose the function
g to be right-continuous at each point of the interval [a,b) or to be left-continuous
at each point of the interval (a,b].

Proof. Let Z be the set of all numbers z from the interval I = [a, b] for which
there exists a step function g, such that

[f(z) —g=()] <& (1)

for every x € [a,z]. If the function f is continuous, then the step function g, is
assumed to be right-continuous at every point of the interval [a, z). Our aim is to
show that b € Z. If it is so we take g, for g.

We shall do that by showing that the supremum of the set Z belongs to Z
and that it is equal to b. The set Z has a supremum because it is not empty (the
number a surely belongs to it) and bounded from above (no element of the set Z
is greater than b). Then, let s = sup Z.

1. We prove that s € Z.

If s = a, then s € Z. So now assume that a < s. Then the function f has a left
limit k£ at s and for a positive number ¢ there exists a number ¢ < s such that

[f(z) =k <e (2)

for every = € (¢, s). Since ¢ < s, there exists a number z € Z such that ¢ < z.

Let g. be a step function such that (1) holds for every = € [a, 2] and, if the
function f is continuous in [a,b], let g, be left-continuous at every point of the
interval [a, z). Define the function g by letting gs(s) = f(s), provided s belongs to
the domain of f, further gs(z) = k for every x € [z, s) and, finally, gs(z) = g.(z) for
every x € [a, z]. Then g5 is a step function such that (1) holds for every z € [a, $]
and if the function f happens to be continuous in [a, b], then g is right-continuous
at every point of the interval [a, s). Hence, s € Z.

2. We prove that s = b.

Assume to the contrary that s < b.

Since s < b, the function f has a right-sided limit k£ at s and there exists
a number d > s such that (2) holds for every x € (s,d). As s € Z, there exists
a step function g such that (1) holds for every z € [a, s] and g, is left-continuous
at every point of the interval [a, s) in case when f is continuous in [a,b]. Let z
be a number such that s < z < d. Let g.(x) = gs(x) for every = € [a,s); let
g2(s) = f(s); and let g.(x) = k for every = € (s,z). Then g, is a step function
such that (1) holds for every = € [a, z] and ¢, is right-continuous at every point of
the interval [a, z) if the function f is continuous in [a,b]. Hence z € Z, which is
a contradiction since s < z and s = sup Z.
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Similar arguments can be used for the case, when we want the function g to be
left-continuous, simply apply the previous argument to the function f(—z), when
x € [-b, —al.

2. Examples

ExampLE 1

During the first 19 weeks of the financial year, the wage of an employee was 186
Euro weekly. Than he was promoted and had 203,50 Euro weekly. A month before
the end of the financial year, due to general salaries and wages increase, his wage
was increased to 211,30 Euro weekly. This last month represents 4,4 working weeks
(four full weeks and two working days, each representing 0,2 of a working week).
Indicate how the weekly wage depends on time.

If we want to introduce a function indicating how the weekly wage of the
employee depended on time we represent the year by the interval [0,52], taking a
week for a unit of time. The function f representing the dependence of the wage
on time can then be defined in the following manner:

186 for t € [0,19],
f(t) =4 203,50  forte (19,472),
211,30  for ¢t € [472,52].

If xa(t) is a characteristic function of the set A, then we have
J(t) =186 - X(0,10)(£) + 203,50 - X (19,472 (t) + 211,30 - X472 59)(1)

for every t € [0, 52].

Now we can ask what was the average (mean) wage of that employee during
the year or what was his total income from wages in that year? Clearly, his total
income was

186 - 19 + 203,50 - (47,6 — 19) + 211,30 - (52 — 47,6) = 10283, 82
Euro. His average wage was

10283, 82

= 197,76
52 ’

Euro per week (rounded to whole cents). In this example it is easy to see that the
function f is a step function and it does not matter, if we use open or bounded
intervals for calculating of the total income.

Here we defined ¢; = 186; ¢ = 203,50; ¢35 = 211,30; J; = [0,19], Jo =
[19,472], J5 = [472,52]. If the number b — a = A(J) is the length of the interval
J = [a, b], then the total income has the form

3
ClA(Jl) + CQ/\(JQ) + Cg)\(Jg) = ZCJ/\(JJ)

This number is also the area of the set S = {(t,y): t €[0,52],0 <y < f(t)}.
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Therefore, it is possible to express the step function by the formula
n
f@) =" cix, (@)
j=1

for every z in an interval I, where n is a positive integer, ¢; are arbitrary numbers
and J; some bounded intervals (U?:1 Jj =1) for every j =1,2,3,...,n. In each
case, the number

> M)
j=1

is called the integral of the function f.

EXAMPLE 2
Now, we try to calculate the area of the set

S={(z,y): z€I,0<y< f(a)},

where f is some continuous and non-negative function in the (compact) interval I.

If the function f is not a step function in the interval I, then the set S is not
equal to the union of finite number of rectangles. Nevertheless, with the exception
of some points on the boundary, which may be disregarded when calculating the
area, this set can be covered by an infinite sequence of non-overlapping rectangles
as illustrated in Figure 3. The sum of the areas of these rectangles is equal to the
area of S.

/f

S
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Figure 3
That is, there exist intervals J; C I and numbers ¢;, j =1,2,3, ..., such that

fl@) = ¢jxu, (@) (3)
j=1

for every x € I and the area of set S is equal to the number

oo

> eA;). (4)

j=1

The class of functions to which the procedure can be applied is much larger than
in the case when ¢; > 0 for every j = 1,2,3,.... In particular, we now may
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consider functions with both positive and negative values. Consequently, we can
also calculate the integral (4) of a function f when it has an interpretation different
from that of the area of a planar figure. Of course, if so desired, the integral of
a function in an interval I can always be interpreted “geometrically” as a difference
of the areas of the sets

ST ={(z,y): 2€,0<y < f(x)} and S ={(x,9): €I, f(x) <y<0}

3. Definition of the integral

To obtain a workable definition of integral for a sufficiently large class of func-
tions, it suffices to require the existence of the sum (4) and to note that this sum
is then independent of the particular choice of the numbers c; and intervals Jj,
j=1,2,3,..., used in the representation (3) of the function f.

DEFINITION 3
A function f is said to be integrable in the interval I whenever there exist numbers
c; and bounded intervals J; C I, j =1,2,3,..., such that

PEIRCARES (5)
j=1
and the equality
f(z) = Z cjxJ; (@)
j=1

holds for every x € I such that
> leilx, (x) < oo (6)
j=1

Now we shall introduce the notions of a virtually primitive function. We shall
use the term a condition P is fulfilled nearly everywhere. It means that the set of
points for which the condition P is not fulfilled is at most countable.

DEFINITION 4

A function F is said to be virtually primitive to a function f in an interval I, if
the function F is continuous in the interval I and F’(x) = f(z) nearly everywhere
in 1.

In this definition we do not require I to be a compact interval, it can be as
well an unbounded interval.

We shall prove that if a function f is integrable in the interval I, then the sum
(4) is the same for every choice of the numbers ¢; and intervals J;, j = 1,2,3,...,
satisfying the condition (5), such that (3) holds for every € I for which the
inequality (6) does hold.

The next three theorems, which are technical ones, are useful in the proof that
the definition of the Kluvanek integral is correct.
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THEOREM 2
Let n be a positive integer, c; non-negative numbers, J; bounded subintervals of
I, 7 = 1,2,3,...,n, di non-negative numbers and K, bounded intervals, k =

1,2,3,..., such that

n

D e (@) < dix, (@ (7)
j=1 k=1
for every x € (—o00,00). Then

ch de Ky). ®)

Proof. Tt follows from the assumptions that ¢ is a number not greater than
the left end-point and b is a number not less than the right end-point of each

of the intervals J;, j = 1,2,3,...,n. Let I} be a function virtually primitive in
(—00,00) to the function c¢;x s, such that Fj(a) =0, j =1,2,3,...,n, and G} the
function virtually primitive to djxk, such that Gy(a) =0, k =1,2,3,.... Since

;A (J;) = F;(b), 7 =1,2,3,...,n, if we prove that

S EG) <Y G,
k=1

j=1

then (8) will follow.
Suppose to the contrary that

D Grb) <D F(b). (9)
k=1 j=1

First note that 0 < Gi(x) < Gg(b) for every = € [a,b] and every k =1,2,3,....
Hence, by (9), the sequence of functions {G}},, is uniformly convergent in the
interval [a, b]. Let

F(x):ZFJ(:E) and G(z ZGk
j=1
for every x € [a,b]. The functions Fj(z), j = 1,2,3,...,n, and Gg(x), k =
1,2,3,..., are continuous in the interval [a, b]. Therefore, the functions F(x) and
G(z) are also continuous in the interval [a,b] and, of course, F(a) = G(a) = 0.
Let
F(b) - Gb)
2(b—a)
By (9),k>0and ¢ > 0. If t € (0,k), let

hi(x) = F(z) — G(z) —t(x —a) — q

F(b) — G(b)
—

k= and ¢ =

for every x € [a,b]. Then, for every t € (0,k), h; is a function continuous in the
interval [a,b] such that h,(a) < 0 and hy(b) > 0. Let £(t) be its maximal root in
the interval (a,b). That is h,(§(¢)) = 0 and hy(y) > 0 for every y € (£(¢),D).
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The function £(t),t € (0, k), is (strictly) increasing, because if 0 < t < s < k,

then
hs(§(t)) = hs(§()) — he(E(2)) = (t — 5)((t) —a) <O

and, hence, the largest root, &(s), of the function hy is greater than £(¢). So, this
function is injective. Since its domain, (0,%), is not a countable set, the set of
its values {£(t) : ¢ € (0,k)} is not countable either. But the set of end-points of
all intervals J;, j = 1,2,3,...,n, and K,k = 1,2,3,..., is countable. So, there
is a number ¢ € (0,%) such that £(¢) is not an end-point of any of intervals .J;,
j=1,2,3,...,n, and Ky, k =1,2,3,.... Let t be such a number and = = £(¢),
the corresponding point of the interval (a,b). Then hi(x) = 0 and h(y) > 0 for
every y € (z,b). That is,

F(z) - G(z) =t(x—a)—q and F(y)-Gy) >tly—a)—q
for every y € (x,b). Consequently,

Fly) - F(z) Gy —G(z)
y—x y—z

>t (10)

for every y € (z,0].

On the other hand, since z is not an end-point of any of the intervals .J; and
K}, each function F; and Gy is differentiable at x and Fj(r) = c;jx,(z) for
j=1,2,3,...,nand G| (z) = dpxk,(x) for k=1,2,3,.... So, by (7),

Fl(z) =Y Fj(z) <Y Gi().
k=1

j=1

Since t > 0, there exists a positive integer m such that
o0 m
F'(z) < ZG;(:E) < ZG;(:E) +t.
k=1 k=1

Therefore,

i (F(y) = Fla) _§~ Guly) - Gm)) .

y—axt y—x ] y—x
From the properties of limits we have, that there exists a point y in the interval
[x,b] such that
F(y)—F N Gr(y) — G
y—z 1 y—z

Now, Gi(y) — Gr(x) > 0 for every k = m+1,m+2,..., because the functions Gy
are non-decreasing. Hence,

So, (11) contradicts (10).
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THEOREM 3
Let ¢; and d; be non-negative numbers and let J; and K; be subintervals of I,
i=1,2,3,..., such that

iCj)\(Jj) < 00, idj)\(K
Jj=1 j=1
and
> eixa, () ZdeK (12)
j=1

for every x for which

chx,]j () <oo and ZdeKj (x) < oo.

j=1
Then

an Zd (K (13)

Proof. Let € be an arbitrary positive number. Let n be a positive integer such
that

o0

€
Z Cj)\(Jj) < 5
j=n+1
Then
Zcm Z X, (@) + Y e, (@)
Jj=1 Jj=n+1
for every = € (—o0, 00) with no exception.
By Theorem 2,
Zc] <Zd MG+ Y GAT) <D dANK;) + 5
j=n+1 j=1
Hence,
ZCJ ZCJ Z ¢iA(J;)
Jj=n+1
< Zd MK + - Z )
j=n+1

< Zde(K
j=1
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Because the inequality between the first and the last term holds for every

positive £, we have
o0

S A < 3 d )

Jj=1

The reverse inequality can be proved by a symmetric argument. Hence (13) holds.

Recall that nonnegative z+ and nonpositive ™~ parts of a number z are defined
by
er_{x if x>0, and I_{—:v if z <0,
0 ifz<O 0 if x > 0.

Then: ¥ > 0,2~ >0,z =27 —2~ and |z| = 27 + 2~ for any real number z.

THEOREM 4
Let cj and d; be real numbers and let J; and K;, j =1,2,..., be subintervals of I
such that

D leIA) <00, Y 1dINE;) < oo (14)
=1 =
If
> X, (@) ZdeK
j=1

for every x € I for which

ZIC;IX} <oo and Zw Xk, () < 0,

Jj=1
then

Z ) Z djNK
Proof. The conditions (14) imply:
ch ) < o0, Zc A(J Zd*)\ ) < o0, Zd A(J
From condition

ZCJXJJ Zd XKJ

we have

Zc X, (x Zc X, (@ Zd+XKJ Zd XK, (@
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That is
Zc;_XJJ + Zd XK, (@ Z d+XKJ @)+ Z ¢ x7; (%)
j=1 =1

for every « such that both sides represent a real number (not oo). By Theorem 3

> ef A +ZdA Zd+)\ Kj)+> ¢y AJ))
Jj=1 Jj=1

ch Zc AJ. Zd*)\ Zd MK
and

D G =) dNK
j=1 j=1

Now we are able to proceed with the definition of integral:
DEFINITION 5

Let f be a function integrable in the interval I. Let c¢; be numbers and let J; C I
be intervals, j = 1,2,3, ..., satisfying the condition

D leIAJ5) < oo
j=1
such that the equality
2) =Y ¢ixs (@)
j=1

holds for every x € I satisfying the condition

> lejlxa, (z) < oo
j=1
Then the number
Z ¢ A(J;5)

is called the integral of f in the interval I; it will be denoted by fl x) dz.
Clearly, for every constant function f(x) = 8 in the interval [a,b] we have

b

[ t@)ds =50~ a.

a
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4. Integration of regulated functions
The next theorem shows how to integrate regulated functions.

THEOREM 5
Let [ be a regulated function in the interval [a,b] (a <b). Then f is integrable in
this interval and

b
/jqu=F@—me

where F is any virtually primitive function to f in the interval [a,].

Proof. Let {f,(z)},—, be a uniformly convergent sequence of step functions
in the interval [a, b] such that

f@)=>" falx)
n=1

for every x € [a,b]. This sequence exists from the theory of regulated and piece-
wise constant functions (see [5]). The functions f,,(z) are bounded. Let

B = sup{[fu(2)] : = €1}

for every n=1,2,3,....
It follows from the uniform convergence of the sequence {f, ()}, that

i B, < 00. (15)
n=1

For every n = 1,2,3,... we have
b b
[10@lds < [ 5= 5.0~ a).

From (15) we have >~ f; |fn(z)]dz < co. The function f is integrable in the
interval [a, b] and

bf(x)d:z:_i bfn(x)d:z:. (16)
[ron=x]

Let F,, be a function virtually primitive to the function f, in the interval [a, D]
such that F,(a) =0 for n =1,2,3,.... The sum

exists for every x € [a,b] and function F defined in this way is virtually primitive
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to f in [a,b]. Thus
b

/n@m=a@—a@

a

holds for every n = 1,2,3,.... Hence by (16)

b o0
/fMWMZXXa@—Em»:Hm—Hm
a n=1

Since the difference of any two functions virtually primitive to f in [a, b] is constant,
the last equality holds for any function F' virtually primitive to f in [a, b].

5. Conclusions

Our aim was to provide an introduction to the theory of integral developed by
Professor Igor Kluvanek during his stay at Flinders University in Adelaide (Aus-
tralia). In his approach regulated functions play an important role (see I. Klu-
vanek [4]).

The definition of integral given in this article applies an idea of Archimedes.
The most effective method for the calculation of integrals is the one which is based
on differential calculus (see V.V. Mityushev, S.V. Rogosin [6] and W.F. Pfeffer [7]).

As everybody knows Dirichlet function (characteristic function of the set of
rational numbers) is not integrable in Riemann sense. It is possible to show, that
this function is integrable in the sense of I. Kluvanek and the value of this integral
is zero. In fact, let QN [a,b] = {¢; : j € N}. Let further Jo; = {¢;} and let Jo;_4
be any subintervals of [0,1]. Hence the Dirichlet function D:[0,1] — R can be
represented in the form

D(x) =Y ¢ xu (@),
j=1

where c3; = 1 and cpj—; = 0. Hence its integral equals 0.
Applying properties of this kind of integral it is possible to prove that integral
of a regulated function f is an additive function of interval.
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