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Ján Gun£agaRegulated fun
tions and integrabilityAbstra
t. Properties of fun
tions de�ned on a bounded 
losed interval, weakerthan 
ontinuity, have been 
onsidered by many mathemati
ians. Fun
tionshaving both sides limits at ea
h point are 
alled regulated and were 
on-sidered by J. Dieudonné [2℄, D. Fra¬ková [3℄ and others (see for exampleS. Bana
h [1℄, S. Saks [8℄). The main 
lass of fun
tions we deal with 
on-sists of pie
e-wise 
onstant ones. These fun
tions play a fundamental rolein the integration theory whi
h had been developed by Igor Kluvanek (see�. Tka
ik [9℄). We present an outline of this theory.1. Regulated fun
tionsEverybody familiar with basi
 
al
ulus remembers properties of 
ontinuousfun
tions de�ned on a bounded 
losed interval. Some of those properties 
anbe extended to suitably dis
ontinuous fun
tions, namely to fun
tions having theright and the left limits at ea
h point; su
h fun
tions are 
alled regulated. We shalldeal with a spe
ial 
lass of regulated fun
tions 
onsisting of pie
e-wise 
onstantfun
tions.From now on, I will denote a 
losed bounded interval [a, b] of real numbers.All 
onsidered fun
tions will be bounded and de�ned in the interval I.A limit of a fun
tion is meant to be proper, i.e., di�erent from +∞ or −∞.Definition 1A fun
tion f : I → R is 
alled regulated on I if f has the left-sided limit at everypoint of the interval I ex
ept the point a and f has the right-sided limit at everypoint of the interval I ex
ept the point b.The idea of regulated fun
tions 
an be spread out to fun
tions de�ned in a sub-set of the interval I, namely to a set E, su
h that ea
h point from the interval Iis left-sided and right-sided a

umulation point of the set E. Nevertheless we arenot 
on
erned to su
h approa
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[44℄ Ján Gun£agaIn this de�nition we do not require that the right-sided limit and the left-sidedlimit of the fun
tion at a point are equal. The pi
ture below shows an example ofa regulated fun
tion on I.
Figure 1Important 
lass of regulated fun
tions 
onsists of pie
e-wise 
onstant ones.Definition 2A fun
tion f : I → R is said to be a step fun
tion on I whenever there exist:a positive integer n, a sequen
e of points (c1, . . . , cn) su
h that

a = c0 < c1 < . . . < cj−1 < cj < . . . < cn = band the fun
tion f is 
onstant on ea
h interval (cj−1, cj), j = 1, 2, . . . , n.An example of a step fun
tion is shown in Figure 2.It follows from the de�nition that if f is regulated on an interval I, then it isalso regulated in ea
h subinterval J (J ⊆ I).

Figure 2Although the next theorem is known (see [2℄ for example) we shall presentan elementary proof of it.This theorem states that a regulated fun
tion 
an be aproximated with arbi-trary a

ura
y by a step fun
tion.



Regulated fun
tions and integrability [45℄Theorem 1Let f : I → R be a regulated fun
tion and let ε be a positive number. Then thereexists a step fun
tion g su
h that
|f(x) − g(x)| < εin ea
h point x of the interval I.If the fun
tion f is 
ontinuous on the interval I, then we 
an 
hoose the fun
tion

g to be right-
ontinuous at ea
h point of the interval [a, b) or to be left-
ontinuousat ea
h point of the interval (a, b].Proof. Let Z be the set of all numbers z from the interval I = [a, b] for whi
hthere exists a step fun
tion gz su
h that
|f(x) − gz(x)| < ε (1)for every x ∈ [a, z]. If the fun
tion f is 
ontinuous, then the step fun
tion gz isassumed to be right-
ontinuous at every point of the interval [a, z). Our aim is toshow that b ∈ Z. If it is so we take gb for g.We shall do that by showing that the supremum of the set Z belongs to Zand that it is equal to b. The set Z has a supremum be
ause it is not empty (thenumber a surely belongs to it) and bounded from above (no element of the set Zis greater than b). Then, let s = supZ.1. We prove that s ∈ Z.If s = a, then s ∈ Z. So now assume that a < s. Then the fun
tion f has a leftlimit k at s and for a positive number ε there exists a number c < s su
h that
|f(x) − k| < ε (2)for every x ∈ (c, s). Sin
e c < s, there exists a number z ∈ Z su
h that c < z.Let gz be a step fun
tion su
h that (1) holds for every x ∈ [a, z] and, if thefun
tion f is 
ontinuous in [a, b], let gz be left-
ontinuous at every point of theinterval [a, z). De�ne the fun
tion gs by letting gs(s) = f(s), provided s belongs tothe domain of f , further gs(x) = k for every x ∈ [z, s) and, �nally, gs(x) = gz(x) forevery x ∈ [a, z]. Then gs is a step fun
tion su
h that (1) holds for every x ∈ [a, s]and if the fun
tion f happens to be 
ontinuous in [a, b], then gs is right-
ontinuousat every point of the interval [a, s). Hen
e, s ∈ Z.2. We prove that s = b.Assume to the 
ontrary that s < b.Sin
e s < b, the fun
tion f has a right-sided limit k at s and there existsa number d > s su
h that (2) holds for every x ∈ (s, d). As s ∈ Z, there existsa step fun
tion gs su
h that (1) holds for every x ∈ [a, s] and gs is left-
ontinuousat every point of the interval [a, s) in 
ase when f is 
ontinuous in [a, b]. Let zbe a number su
h that s < z < d. Let gz(x) = gs(x) for every x ∈ [a, s); let

gz(s) = f(s); and let gz(x) = k for every x ∈ (s, z). Then gz is a step fun
tionsu
h that (1) holds for every x ∈ [a, z] and gz is right-
ontinuous at every point ofthe interval [a, z) if the fun
tion f is 
ontinuous in [a, b]. Hen
e z ∈ Z, whi
h isa 
ontradi
tion sin
e s < z and s = supZ.



[46℄ Ján Gun£agaSimilar arguments 
an be used for the 
ase, when we want the fun
tion g to beleft-
ontinuous, simply apply the previous argument to the fun
tion f(−x), when
x ∈ [−b,−a].2. ExamplesExample 1During the �rst 19 weeks of the �nan
ial year, the wage of an employee was 186Euro weekly. Than he was promoted and had 203,50 Euro weekly. A month beforethe end of the �nan
ial year, due to general salaries and wages in
rease, his wagewas in
reased to 211,30 Euro weekly. This last month represents 4,4 working weeks(four full weeks and two working days, ea
h representing 0,2 of a working week).Indi
ate how the weekly wage depends on time.If we want to introdu
e a fun
tion indi
ating how the weekly wage of theemployee depended on time we represent the year by the interval [0, 52], taking aweek for a unit of time. The fun
tion f representing the dependen
e of the wageon time 
an then be de�ned in the following manner:

f(t) =











186 for t ∈ [0, 19],

203, 50 for t ∈
(

19, 47 3
5

)

,

211, 30 for t ∈
[

47 3
5 , 52

]

.If χA(t) is a 
hara
teristi
 fun
tion of the set A, then we have
f(t) = 186 · χ[0,19](t) + 203, 50 · χ(19,47 3

5
)(t) + 211, 30 · χ[47 3

5
,52](t)for every t ∈ [0, 52].Now we 
an ask what was the average (mean) wage of that employee duringthe year or what was his total in
ome from wages in that year? Clearly, his totalin
ome was

186 · 19 + 203, 50 · (47, 6 − 19) + 211, 30 · (52 − 47, 6) = 10283, 82Euro. His average wage was
10283, 82

52
= 197, 76Euro per week (rounded to whole 
ents). In this example it is easy to see that thefun
tion f is a step fun
tion and it does not matter, if we use open or boundedintervals for 
al
ulating of the total in
ome.Here we de�ned c1 = 186; c2 = 203, 50; c3 = 211, 30; J1 = [0, 19], J2 =

[19, 47 3
5 ], J3 = [47 3

5 , 52]. If the number b − a = λ(J) is the length of the interval
J = [a, b], then the total in
ome has the form

c1λ(J1) + c2λ(J2) + c3λ(J3) =

3
∑

j=1

cjλ(Jj).This number is also the area of the set S = {(t, y) : t ∈ [0, 52], 0 ≤ y ≤ f(t)}.



Regulated fun
tions and integrability [47℄Therefore, it is possible to express the step fun
tion by the formula
f(x) =

n
∑

j=1

cjχJj
(x)for every x in an interval I, where n is a positive integer, cj are arbitrary numbersand Jj some bounded intervals (⋃n

j=1 Jj = I) for every j = 1, 2, 3, . . . , n. In ea
h
ase, the number
n
∑

j=1

cjλ(Jj)is 
alled the integral of the fun
tion f .Example 2Now, we try to 
al
ulate the area of the set
S = {(x, y) : x ∈ I, 0 ≤ y ≤ f(x)},where f is some 
ontinuous and non-negative fun
tion in the (
ompa
t) interval I.If the fun
tion f is not a step fun
tion in the interval I, then the set S is notequal to the union of �nite number of re
tangles. Nevertheless, with the ex
eptionof some points on the boundary, whi
h may be disregarded when 
al
ulating thearea, this set 
an be 
overed by an in�nite sequen
e of non-overlapping re
tanglesas illustrated in Figure 3. The sum of the areas of these re
tangles is equal to thearea of S.

Figure 3That is, there exist intervals Jj ⊂ I and numbers cj , j = 1, 2, 3, . . . , su
h that
f(x) =

∞
∑

j=1

cjχJj
(x) (3)for every x ∈ I and the area of set S is equal to the number

∞
∑

j=1

cjλ(Jj). (4)The 
lass of fun
tions to whi
h the pro
edure 
an be applied is mu
h larger thanin the 
ase when cj ≥ 0 for every j = 1, 2, 3, . . . . In parti
ular, we now may



[48℄ Ján Gun£aga
onsider fun
tions with both positive and negative values. Consequently, we 
analso 
al
ulate the integral (4) of a fun
tion f when it has an interpretation di�erentfrom that of the area of a planar �gure. Of 
ourse, if so desired, the integral ofa fun
tion in an interval I 
an always be interpreted �geometri
ally� as a di�eren
eof the areas of the sets
S+ = {(x, y) : x ∈ I, 0 ≤ y ≤ f(x)} and S− = {(x, y) : x ∈ I, f(x) ≤ y ≤ 0}.3. Definition of the integralTo obtain a workable de�nition of integral for a su�
iently large 
lass of fun
-tions, it su�
es to require the existen
e of the sum (4) and to note that this sumis then independent of the parti
ular 
hoi
e of the numbers cj and intervals Jj ,
j = 1, 2, 3, . . . , used in the representation (3) of the fun
tion f .Definition 3A fun
tion f is said to be integrable in the interval I whenever there exist numbers
cj and bounded intervals Jj ⊂ I, j = 1, 2, 3, . . . , su
h that

∞
∑

j=1

|cj |λ(Jj) < ∞ (5)and the equality
f(x) =

∞
∑

j=1

cjχJj
(x)holds for every x ∈ I su
h that

∞
∑

j=1

|cj |χJj
(x) < ∞. (6)Now we shall introdu
e the notions of a virtually primitive fun
tion. We shalluse the term a 
ondition P is ful�lled nearly everywhere. It means that the set ofpoints for whi
h the 
ondition P is not ful�lled is at most 
ountable.Definition 4A fun
tion F is said to be virtually primitive to a fun
tion f in an interval I, ifthe fun
tion F is 
ontinuous in the interval I and F ′(x) = f(x) nearly everywherein I.In this de�nition we do not require I to be a 
ompa
t interval, it 
an be aswell an unbounded interval.We shall prove that if a fun
tion f is integrable in the interval I, then the sum(4) is the same for every 
hoi
e of the numbers cj and intervals Jj , j = 1, 2, 3, . . . ,satisfying the 
ondition (5), su
h that (3) holds for every x ∈ I for whi
h theinequality (6) does hold.The next three theorems, whi
h are te
hni
al ones, are useful in the proof thatthe de�nition of the Kluvanek integral is 
orre
t.



Regulated fun
tions and integrability [49℄Theorem 2Let n be a positive integer, cj non-negative numbers, Jj bounded subintervals of
I, j = 1, 2, 3, . . . , n, dk non-negative numbers and Kk bounded intervals, k =
1, 2, 3, . . . , su
h that

n
∑

j=1

cjχJj
(x) ≤

∞
∑

k=1

dkχKk
(x) (7)for every x ∈ (−∞,∞). Then

n
∑

j=1

cjλ(Jj) ≤

∞
∑

k=1

dkλ(Kk). (8)Proof. It follows from the assumptions that a is a number not greater thanthe left end-point and b is a number not less than the right end-point of ea
hof the intervals Jj , j = 1, 2, 3, . . . , n. Let Fj be a fun
tion virtually primitive in
(−∞,∞) to the fun
tion cjχJj

su
h that Fj(a) = 0, j = 1, 2, 3, . . . , n, and Gk thefun
tion virtually primitive to dkχKk
su
h that Gk(a) = 0, k = 1, 2, 3, . . . . Sin
e

cjλ (Jj) = Fj(b), j = 1, 2, 3, . . . , n, if we prove that
n
∑

j=1

Fj(b) ≤

∞
∑

k=1

Gk(b),then (8) will follow.Suppose to the 
ontrary that
∞
∑

k=1

Gk(b) <

n
∑

j=1

Fj(b). (9)First note that 0 ≤ Gk(x) ≤ Gk(b) for every x ∈ [a, b] and every k = 1, 2, 3, . . . .Hen
e, by (9), the sequen
e of fun
tions {Gk}
∞

n=1 is uniformly 
onvergent in theinterval [a, b]. Let
F (x) =

n
∑

j=1

Fj(x) and G(x) =
∞
∑

k=1

Gk(x)for every x ∈ [a, b]. The fun
tions Fj(x), j = 1, 2, 3, . . . , n , and Gk(x), k =
1, 2, 3, . . . , are 
ontinuous in the interval [a, b]. Therefore, the fun
tions F (x) and
G(x) are also 
ontinuous in the interval [a, b] and, of 
ourse, F (a) = G(a) = 0.Let

k =
F (b) − G(b)

2(b − a)
and q =

F (b) − G(b)

2
.By (9), k > 0 and q > 0. If t ∈ (0, k), let

ht(x) = F (x) − G(x) − t(x − a) − qfor every x ∈ [a, b]. Then, for every t ∈ (0, k), ht is a fun
tion 
ontinuous in theinterval [a, b] su
h that ht(a) < 0 and ht(b) > 0. Let ξ(t) be its maximal root inthe interval (a, b). That is ht(ξ(t)) = 0 and ht(y) > 0 for every y ∈ (ξ(t), b).



[50℄ Ján Gun£agaThe fun
tion ξ(t), t ∈ (0, k), is (stri
tly) in
reasing, be
ause if 0 < t < s < k,then
hs(ξ(t)) = hs(ξ(t)) − ht(ξ(t)) = (t − s)(ξ(t) − a) < 0and, hen
e, the largest root, ξ(s), of the fun
tion hs is greater than ξ(t). So, thisfun
tion is inje
tive. Sin
e its domain, (0, k), is not a 
ountable set, the set ofits values {ξ(t) : t ∈ (0, k)} is not 
ountable either. But the set of end-points ofall intervals Jj , j = 1, 2, 3, . . . , n, and Kk, k = 1, 2, 3, . . . , is 
ountable. So, thereis a number t ∈ (0, k) su
h that ξ(t) is not an end-point of any of intervals Jj ,

j = 1, 2, 3, . . . , n, and Kk, k = 1, 2, 3, . . . . Let t be su
h a number and x = ξ(t),the 
orresponding point of the interval (a, b). Then ht(x) = 0 and ht(y) > 0 forevery y ∈ (x, b). That is,
F (x) − G(x) = t(x − a) − q and F (y) − G(y) > t(y − a) − qfor every y ∈ (x, b). Consequently,

F (y) − F (x)

y − x
−

G(y) − G(x)

y − x
> t (10)for every y ∈ (x, b].On the other hand, sin
e x is not an end-point of any of the intervals Jj and

Kk, ea
h fun
tion Fj and Gk is di�erentiable at x and F ′

j(x) = cjχJj
(x) for

j = 1, 2, 3, . . . , n and G′

k(x) = dkχKk
(x) for k = 1, 2, 3, . . . . So, by (7),

F ′(x) =
n
∑

j=1

F ′

j(x) ≤
∞
∑

k=1

G′

k(x).Sin
e t > 0, there exists a positive integer m su
h that
F ′(x) ≤

∞
∑

k=1

G′

k(x) <

m
∑

k=1

G′

k(x) + t.Therefore,
lim

y→x+

(

F (y) − F (x)

y − x
−

m
∑

k=1

Gk(y) − Gk(x)

y − x

)

< t.From the properties of limits we have, that there exists a point y in the interval
[x, b] su
h that

F (y) − F (x)

y − x
−

m
∑

k=1

Gk(y) − Gk(x)

y − x
< t. (11)Now, Gk(y)−Gk(x) > 0 for every k = m+1, m+2, . . . , be
ause the fun
tions Gkare non-de
reasing. Hen
e,

G(y) − G(x)

y − x
=

∞
∑

k=1

Gk(y) − Gk(x)

y − x
≥

m
∑

k=1

Gk(y) − Gk(x)

y − x
.So, (11) 
ontradi
ts (10).



Regulated fun
tions and integrability [51℄Theorem 3Let cj and dj be non-negative numbers and let Jj and Kj be subintervals of I,
j = 1, 2, 3, . . . , su
h that

∞
∑

j=1

cjλ(Jj) < ∞,

∞
∑

j=1

djλ(Kj) < ∞and
∞
∑

j=1

cjχJj
(x) =

∞
∑

j=1

djχKj
(x) (12)for every x for whi
h

∞
∑

j=1

cjχJj
(x) < ∞ and ∞

∑

j=1

djχKj
(x) < ∞.Then

∞
∑

j=1

cjλ(Jj) =

∞
∑

j=1

djλ(Kj). (13)Proof. Let ε be an arbitrary positive number. Let n be a positive integer su
hthat
∞
∑

j=n+1

cjλ(Jj) <
ε

2
.Then

n
∑

j=1

cjχJj
(x) ≤

∞
∑

j=1

djχKj
(x) +

∞
∑

j=n+1

cjχJj
(x)for every x ∈ (−∞,∞) with no ex
eption.By Theorem 2,

n
∑

j=1

cjλ(Jj) ≤

∞
∑

j=1

djλ(Kj) +

∞
∑

j=n+1

cjλ(Jj) <

∞
∑

j=1

djλ(Kj) +
ε

2
.Hen
e,

∞
∑

j=1

cjλ(Jj) =

n
∑

j=1

cjλ(Jj) +

∞
∑

j=n+1

cjλ(Jj)

<

∞
∑

j=1

djλ(Kj) +
ε

2
+

∞
∑

j=n+1

cjλ(Jj)

<

∞
∑

j=1

djλ(Kj) + ε.



[52℄ Ján Gun£agaBe
ause the inequality between the �rst and the last term holds for everypositive ε, we have
∞
∑

j=1

cjλ(Jj) ≤

∞
∑

j=1

djλ(Kj).The reverse inequality 
an be proved by a symmetri
 argument. Hen
e (13) holds.Re
all that nonnegative x+ and nonpositive x− parts of a number x are de�nedby
x+ =

{

x if x ≥ 0,

0 if x < 0
and x− =

{

−x if x < 0,

0 if x ≥ 0.Then: x+ ≥ 0, x− ≥ 0, x = x+ −x− and |x| = x+ +x− for any real number x.Theorem 4Let cj and dj be real numbers and let Jj and Kj , j = 1, 2, . . . , be subintervals of Isu
h that
∞
∑

j=1

|cj |λ(Jj) < ∞,

∞
∑

j=1

|dj |λ(Kj) < ∞. (14)If
∞
∑

j=1

cjχJj
(x) =

∞
∑

j=1

djχKj
(x)for every x ∈ I for whi
h

∞
∑

j=1

|cj |χJj
(x) < ∞ and ∞

∑

j=1

|dj |χKj
(x) < ∞,then

∞
∑

j=1

cjλ(Jj) =

∞
∑

j=1

djλ(Kj).Proof. The 
onditions (14) imply:
∞
∑

j=1

c+
j λ(Jj) < ∞,

∞
∑

j=1

c−j λ(Jj) < ∞,

∞
∑

j=1

d+
j λ(Kj) < ∞,

∞
∑

j=1

d−j λ(Jj) < ∞.From 
ondition
∞
∑

j=1

cjχJj
(x) =

∞
∑

j=1

djχKj
(x)we have

∞
∑

j=1

c+
j χJj

(x) −

∞
∑

j=1

c−j χJj
(x) =

∞
∑

j=1

d+
j χKj

(x) −

∞
∑

j=1

d−j χKj
(x).



Regulated fun
tions and integrability [53℄That is
∞
∑

j=1

c+
j χJj

(x) +

∞
∑

j=1

d−j χKj
(x) =

∞
∑

j=1

d+
j χKj

(x) +

∞
∑

j=1

c−j χJj
(x)for every x su
h that both sides represent a real number (not ∞). By Theorem 3

∞
∑

j=1

c+
j λ(Jj) +

∞
∑

j=1

d−j λ(Kj) =

∞
∑

j=1

d+
j λ(Kj) +

∞
∑

j=1

c−j λ(Jj),

∞
∑

j=1

c+
j λ(Jj) −

∞
∑

j=1

c−j λ(Jj) =
∞
∑

j=1

d+
j λ(Kj) −

∞
∑

j=1

d−j λ(Kj)and
∞
∑

j=1

cjλ(Jj) =

∞
∑

j=1

djλ(Kj).Now we are able to pro
eed with the de�nition of integral:Definition 5Let f be a fun
tion integrable in the interval I. Let cj be numbers and let Jj ⊂ Ibe intervals, j = 1, 2, 3, . . . , satisfying the 
ondition
∞
∑

j=1

|cj |λ(Jj) < ∞su
h that the equality
f(x) =

∞
∑

j=1

cjχJj
(x)holds for every x ∈ I satisfying the 
ondition

∞
∑

j=1

|cj |χJj
(x) < ∞.Then the number

∞
∑

j=1

cjλ(Jj)is 
alled the integral of f in the interval I; it will be denoted by ∫
I
f(x) dx.Clearly, for every 
onstant fun
tion f(x) = β in the interval [a, b] we have

b
∫

a

f(x) dx = β(b − a).



[54℄ Ján Gun£aga4. Integration of regulated fun
tionsThe next theorem shows how to integrate regulated fun
tions.Theorem 5Let f be a regulated fun
tion in the interval [a, b] (a < b). Then f is integrable inthis interval and
b
∫

a

f(x) dx = F (b) − F (a),where F is any virtually primitive fun
tion to f in the interval [a, b].Proof. Let {fn(x)}
∞

n=1 be a uniformly 
onvergent sequen
e of step fun
tionsin the interval [a, b] su
h that
f(x) =

∞
∑

n=1

fn(x)for every x ∈ [a, b]. This sequen
e exists from the theory of regulated and pie
e-wise 
onstant fun
tions (see [5℄). The fun
tions fn(x) are bounded. Let
βn = sup{|fn(x)| : x ∈ I}for every n = 1, 2, 3, . . . .It follows from the uniform 
onvergen
e of the sequen
e {fn(x)}

∞

n=1 that
∞
∑

n=1

βn < ∞. (15)For every n = 1, 2, 3, . . . we have
b
∫

a

|fn(x)| dx ≤

b
∫

a

βn dx = βn(b − a).From (15) we have ∑∞

n=1

∫ b

a
|fn(x)| dx < ∞. The fun
tion f is integrable in theinterval [a, b] and

b
∫

a

f(x) dx =

∞
∑

n=1

b
∫

a

fn(x) dx. (16)Let Fn be a fun
tion virtually primitive to the fun
tion fn in the interval [a, b]su
h that Fn(a) = 0 for n = 1, 2, 3, . . . . The sum
F (x) =

∞
∑

n=1

Fn(x)exists for every x ∈ [a, b] and fun
tion F de�ned in this way is virtually primitive



Regulated fun
tions and integrability [55℄to f in [a, b]. Thus
b
∫

a

fn(x) dx = Fn(b) − Fn(a)holds for every n = 1, 2, 3, . . . . Hen
e by (16)
b
∫

a

fn(x) dx =

∞
∑

n=1

(Fn(b) − Fn(a)) = F (b) − F (a).Sin
e the di�eren
e of any two fun
tions virtually primitive to f in [a, b] is 
onstant,the last equality holds for any fun
tion F virtually primitive to f in [a, b].5. Con
lusionsOur aim was to provide an introdu
tion to the theory of integral developed byProfessor Igor Kluvanek during his stay at Flinders University in Adelaide (Aus-tralia). In his approa
h regulated fun
tions play an important role (see I. Klu-vánek [4℄).The de�nition of integral given in this arti
le applies an idea of Ar
himedes.The most e�e
tive method for the 
al
ulation of integrals is the one whi
h is basedon di�erential 
al
ulus (see V.V. Mityushev, S.V. Rogosin [6℄ and W.F. Pfe�er [7℄).As everybody knows Diri
hlet fun
tion (
hara
teristi
 fun
tion of the set ofrational numbers) is not integrable in Riemann sense. It is possible to show, thatthis fun
tion is integrable in the sense of I. Kluvanek and the value of this integralis zero. In fa
t, let Q ∩ [a, b] = {qj : j ∈ N}. Let further J2j = {qj} and let J2j−1be any subintervals of [0, 1]. Hen
e the Diri
hlet fun
tion D: [0, 1] → R 
an berepresented in the form
D(x) =

∞
∑

j=1

cj · χJj
(x),where c2j = 1 and c2j−1 = 0. Hen
e its integral equals 0.Applying properties of this kind of integral it is possible to prove that integralof a regulated fun
tion f is an additive fun
tion of interval.Referen
es[1℄ S. Bana
h, On measures in independent �eld, Stud. Mat. 10 (1948), 159�177.[2℄ J. Dieudonné, Foundations of Modern Analysis, A
ademi
 Press, New York�London, 1969.[3℄ D. Fra¬ková, Regulated Fun
tions, Math. Bohem. 116 (1991), 20�59.[4℄ I. Kluvánek, Manus
ripts of the di�erential and integral 
al
ulus.[5℄ B. Königsberger, Analysis I, Springer Verlag, Berlin�Heidelberg�New York, 2001.[6℄ V.V. Mityushev, S.V. Rogosin, Constru
tive methods for boundary value problemsfor analyti
 fun
tions. Progress in analysis, 2, 769�777, World S
i. Publ., RiverEdge, NJ, 2003.



[56℄ Ján Gun£aga[7℄ W.F. Pfe�er, Integrals and Measures, Mar
el Dekker, New York�Basel, 1977.[8℄ S. Saks, Theory of the Integral, Dover Publi
ations, New York, 1964.[9℄ �. Tka£ik, Spojitost' a limity tro
hu inak, Zbornik Konferen
ie Setkání KatederMatematiky �eské a Slovenské Republiky p°ipravují
í budou
í u£itele, Ústí nadLabem, 2004, 85�89. Department of Mathemati
sPedagogi
al Fa
ultyCatholi
 University in RuºomberokNámestie Andreja Hlinku 56034 01 RuºomberokSlovakiaE-mail: gun
aga�fedu.ku.skRe
eived: 16 February 2009; �nal version: 2 July 2009;available online: 13 O
tober 2009.


