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Ján Gun£agaRegulated funtions and integrabilityAbstrat. Properties of funtions de�ned on a bounded losed interval, weakerthan ontinuity, have been onsidered by many mathematiians. Funtionshaving both sides limits at eah point are alled regulated and were on-sidered by J. Dieudonné [2℄, D. Fra¬ková [3℄ and others (see for exampleS. Banah [1℄, S. Saks [8℄). The main lass of funtions we deal with on-sists of piee-wise onstant ones. These funtions play a fundamental rolein the integration theory whih had been developed by Igor Kluvanek (see�. Tkaik [9℄). We present an outline of this theory.1. Regulated funtionsEverybody familiar with basi alulus remembers properties of ontinuousfuntions de�ned on a bounded losed interval. Some of those properties anbe extended to suitably disontinuous funtions, namely to funtions having theright and the left limits at eah point; suh funtions are alled regulated. We shalldeal with a speial lass of regulated funtions onsisting of piee-wise onstantfuntions.From now on, I will denote a losed bounded interval [a, b] of real numbers.All onsidered funtions will be bounded and de�ned in the interval I.A limit of a funtion is meant to be proper, i.e., di�erent from +∞ or −∞.Definition 1A funtion f : I → R is alled regulated on I if f has the left-sided limit at everypoint of the interval I exept the point a and f has the right-sided limit at everypoint of the interval I exept the point b.The idea of regulated funtions an be spread out to funtions de�ned in a sub-set of the interval I, namely to a set E, suh that eah point from the interval Iis left-sided and right-sided aumulation point of the set E. Nevertheless we arenot onerned to suh approah.AMS (2000) Subjet Classi�ation: 26A15, 26A39.This artile is supported by grant KEGA 3/7068/09.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[44℄ Ján Gun£agaIn this de�nition we do not require that the right-sided limit and the left-sidedlimit of the funtion at a point are equal. The piture below shows an example ofa regulated funtion on I.
Figure 1Important lass of regulated funtions onsists of piee-wise onstant ones.Definition 2A funtion f : I → R is said to be a step funtion on I whenever there exist:a positive integer n, a sequene of points (c1, . . . , cn) suh that

a = c0 < c1 < . . . < cj−1 < cj < . . . < cn = band the funtion f is onstant on eah interval (cj−1, cj), j = 1, 2, . . . , n.An example of a step funtion is shown in Figure 2.It follows from the de�nition that if f is regulated on an interval I, then it isalso regulated in eah subinterval J (J ⊆ I).

Figure 2Although the next theorem is known (see [2℄ for example) we shall presentan elementary proof of it.This theorem states that a regulated funtion an be aproximated with arbi-trary auray by a step funtion.



Regulated funtions and integrability [45℄Theorem 1Let f : I → R be a regulated funtion and let ε be a positive number. Then thereexists a step funtion g suh that
|f(x) − g(x)| < εin eah point x of the interval I.If the funtion f is ontinuous on the interval I, then we an hoose the funtion

g to be right-ontinuous at eah point of the interval [a, b) or to be left-ontinuousat eah point of the interval (a, b].Proof. Let Z be the set of all numbers z from the interval I = [a, b] for whihthere exists a step funtion gz suh that
|f(x) − gz(x)| < ε (1)for every x ∈ [a, z]. If the funtion f is ontinuous, then the step funtion gz isassumed to be right-ontinuous at every point of the interval [a, z). Our aim is toshow that b ∈ Z. If it is so we take gb for g.We shall do that by showing that the supremum of the set Z belongs to Zand that it is equal to b. The set Z has a supremum beause it is not empty (thenumber a surely belongs to it) and bounded from above (no element of the set Zis greater than b). Then, let s = supZ.1. We prove that s ∈ Z.If s = a, then s ∈ Z. So now assume that a < s. Then the funtion f has a leftlimit k at s and for a positive number ε there exists a number c < s suh that
|f(x) − k| < ε (2)for every x ∈ (c, s). Sine c < s, there exists a number z ∈ Z suh that c < z.Let gz be a step funtion suh that (1) holds for every x ∈ [a, z] and, if thefuntion f is ontinuous in [a, b], let gz be left-ontinuous at every point of theinterval [a, z). De�ne the funtion gs by letting gs(s) = f(s), provided s belongs tothe domain of f , further gs(x) = k for every x ∈ [z, s) and, �nally, gs(x) = gz(x) forevery x ∈ [a, z]. Then gs is a step funtion suh that (1) holds for every x ∈ [a, s]and if the funtion f happens to be ontinuous in [a, b], then gs is right-ontinuousat every point of the interval [a, s). Hene, s ∈ Z.2. We prove that s = b.Assume to the ontrary that s < b.Sine s < b, the funtion f has a right-sided limit k at s and there existsa number d > s suh that (2) holds for every x ∈ (s, d). As s ∈ Z, there existsa step funtion gs suh that (1) holds for every x ∈ [a, s] and gs is left-ontinuousat every point of the interval [a, s) in ase when f is ontinuous in [a, b]. Let zbe a number suh that s < z < d. Let gz(x) = gs(x) for every x ∈ [a, s); let

gz(s) = f(s); and let gz(x) = k for every x ∈ (s, z). Then gz is a step funtionsuh that (1) holds for every x ∈ [a, z] and gz is right-ontinuous at every point ofthe interval [a, z) if the funtion f is ontinuous in [a, b]. Hene z ∈ Z, whih isa ontradition sine s < z and s = supZ.



[46℄ Ján Gun£agaSimilar arguments an be used for the ase, when we want the funtion g to beleft-ontinuous, simply apply the previous argument to the funtion f(−x), when
x ∈ [−b,−a].2. ExamplesExample 1During the �rst 19 weeks of the �nanial year, the wage of an employee was 186Euro weekly. Than he was promoted and had 203,50 Euro weekly. A month beforethe end of the �nanial year, due to general salaries and wages inrease, his wagewas inreased to 211,30 Euro weekly. This last month represents 4,4 working weeks(four full weeks and two working days, eah representing 0,2 of a working week).Indiate how the weekly wage depends on time.If we want to introdue a funtion indiating how the weekly wage of theemployee depended on time we represent the year by the interval [0, 52], taking aweek for a unit of time. The funtion f representing the dependene of the wageon time an then be de�ned in the following manner:

f(t) =











186 for t ∈ [0, 19],

203, 50 for t ∈
(

19, 47 3
5

)

,

211, 30 for t ∈
[

47 3
5 , 52

]

.If χA(t) is a harateristi funtion of the set A, then we have
f(t) = 186 · χ[0,19](t) + 203, 50 · χ(19,47 3

5
)(t) + 211, 30 · χ[47 3

5
,52](t)for every t ∈ [0, 52].Now we an ask what was the average (mean) wage of that employee duringthe year or what was his total inome from wages in that year? Clearly, his totalinome was

186 · 19 + 203, 50 · (47, 6 − 19) + 211, 30 · (52 − 47, 6) = 10283, 82Euro. His average wage was
10283, 82

52
= 197, 76Euro per week (rounded to whole ents). In this example it is easy to see that thefuntion f is a step funtion and it does not matter, if we use open or boundedintervals for alulating of the total inome.Here we de�ned c1 = 186; c2 = 203, 50; c3 = 211, 30; J1 = [0, 19], J2 =

[19, 47 3
5 ], J3 = [47 3

5 , 52]. If the number b − a = λ(J) is the length of the interval
J = [a, b], then the total inome has the form

c1λ(J1) + c2λ(J2) + c3λ(J3) =

3
∑

j=1

cjλ(Jj).This number is also the area of the set S = {(t, y) : t ∈ [0, 52], 0 ≤ y ≤ f(t)}.



Regulated funtions and integrability [47℄Therefore, it is possible to express the step funtion by the formula
f(x) =

n
∑

j=1

cjχJj
(x)for every x in an interval I, where n is a positive integer, cj are arbitrary numbersand Jj some bounded intervals (⋃n

j=1 Jj = I) for every j = 1, 2, 3, . . . , n. In eahase, the number
n
∑

j=1

cjλ(Jj)is alled the integral of the funtion f .Example 2Now, we try to alulate the area of the set
S = {(x, y) : x ∈ I, 0 ≤ y ≤ f(x)},where f is some ontinuous and non-negative funtion in the (ompat) interval I.If the funtion f is not a step funtion in the interval I, then the set S is notequal to the union of �nite number of retangles. Nevertheless, with the exeptionof some points on the boundary, whih may be disregarded when alulating thearea, this set an be overed by an in�nite sequene of non-overlapping retanglesas illustrated in Figure 3. The sum of the areas of these retangles is equal to thearea of S.

Figure 3That is, there exist intervals Jj ⊂ I and numbers cj , j = 1, 2, 3, . . . , suh that
f(x) =

∞
∑

j=1

cjχJj
(x) (3)for every x ∈ I and the area of set S is equal to the number

∞
∑

j=1

cjλ(Jj). (4)The lass of funtions to whih the proedure an be applied is muh larger thanin the ase when cj ≥ 0 for every j = 1, 2, 3, . . . . In partiular, we now may



[48℄ Ján Gun£agaonsider funtions with both positive and negative values. Consequently, we analso alulate the integral (4) of a funtion f when it has an interpretation di�erentfrom that of the area of a planar �gure. Of ourse, if so desired, the integral ofa funtion in an interval I an always be interpreted �geometrially� as a di�ereneof the areas of the sets
S+ = {(x, y) : x ∈ I, 0 ≤ y ≤ f(x)} and S− = {(x, y) : x ∈ I, f(x) ≤ y ≤ 0}.3. Definition of the integralTo obtain a workable de�nition of integral for a su�iently large lass of fun-tions, it su�es to require the existene of the sum (4) and to note that this sumis then independent of the partiular hoie of the numbers cj and intervals Jj ,
j = 1, 2, 3, . . . , used in the representation (3) of the funtion f .Definition 3A funtion f is said to be integrable in the interval I whenever there exist numbers
cj and bounded intervals Jj ⊂ I, j = 1, 2, 3, . . . , suh that

∞
∑

j=1

|cj |λ(Jj) < ∞ (5)and the equality
f(x) =

∞
∑

j=1

cjχJj
(x)holds for every x ∈ I suh that

∞
∑

j=1

|cj |χJj
(x) < ∞. (6)Now we shall introdue the notions of a virtually primitive funtion. We shalluse the term a ondition P is ful�lled nearly everywhere. It means that the set ofpoints for whih the ondition P is not ful�lled is at most ountable.Definition 4A funtion F is said to be virtually primitive to a funtion f in an interval I, ifthe funtion F is ontinuous in the interval I and F ′(x) = f(x) nearly everywherein I.In this de�nition we do not require I to be a ompat interval, it an be aswell an unbounded interval.We shall prove that if a funtion f is integrable in the interval I, then the sum(4) is the same for every hoie of the numbers cj and intervals Jj , j = 1, 2, 3, . . . ,satisfying the ondition (5), suh that (3) holds for every x ∈ I for whih theinequality (6) does hold.The next three theorems, whih are tehnial ones, are useful in the proof thatthe de�nition of the Kluvanek integral is orret.



Regulated funtions and integrability [49℄Theorem 2Let n be a positive integer, cj non-negative numbers, Jj bounded subintervals of
I, j = 1, 2, 3, . . . , n, dk non-negative numbers and Kk bounded intervals, k =
1, 2, 3, . . . , suh that

n
∑

j=1

cjχJj
(x) ≤

∞
∑

k=1

dkχKk
(x) (7)for every x ∈ (−∞,∞). Then

n
∑

j=1

cjλ(Jj) ≤

∞
∑

k=1

dkλ(Kk). (8)Proof. It follows from the assumptions that a is a number not greater thanthe left end-point and b is a number not less than the right end-point of eahof the intervals Jj , j = 1, 2, 3, . . . , n. Let Fj be a funtion virtually primitive in
(−∞,∞) to the funtion cjχJj

suh that Fj(a) = 0, j = 1, 2, 3, . . . , n, and Gk thefuntion virtually primitive to dkχKk
suh that Gk(a) = 0, k = 1, 2, 3, . . . . Sine

cjλ (Jj) = Fj(b), j = 1, 2, 3, . . . , n, if we prove that
n
∑

j=1

Fj(b) ≤

∞
∑

k=1

Gk(b),then (8) will follow.Suppose to the ontrary that
∞
∑

k=1

Gk(b) <

n
∑

j=1

Fj(b). (9)First note that 0 ≤ Gk(x) ≤ Gk(b) for every x ∈ [a, b] and every k = 1, 2, 3, . . . .Hene, by (9), the sequene of funtions {Gk}
∞

n=1 is uniformly onvergent in theinterval [a, b]. Let
F (x) =

n
∑

j=1

Fj(x) and G(x) =
∞
∑

k=1

Gk(x)for every x ∈ [a, b]. The funtions Fj(x), j = 1, 2, 3, . . . , n , and Gk(x), k =
1, 2, 3, . . . , are ontinuous in the interval [a, b]. Therefore, the funtions F (x) and
G(x) are also ontinuous in the interval [a, b] and, of ourse, F (a) = G(a) = 0.Let

k =
F (b) − G(b)

2(b − a)
and q =

F (b) − G(b)

2
.By (9), k > 0 and q > 0. If t ∈ (0, k), let

ht(x) = F (x) − G(x) − t(x − a) − qfor every x ∈ [a, b]. Then, for every t ∈ (0, k), ht is a funtion ontinuous in theinterval [a, b] suh that ht(a) < 0 and ht(b) > 0. Let ξ(t) be its maximal root inthe interval (a, b). That is ht(ξ(t)) = 0 and ht(y) > 0 for every y ∈ (ξ(t), b).



[50℄ Ján Gun£agaThe funtion ξ(t), t ∈ (0, k), is (stritly) inreasing, beause if 0 < t < s < k,then
hs(ξ(t)) = hs(ξ(t)) − ht(ξ(t)) = (t − s)(ξ(t) − a) < 0and, hene, the largest root, ξ(s), of the funtion hs is greater than ξ(t). So, thisfuntion is injetive. Sine its domain, (0, k), is not a ountable set, the set ofits values {ξ(t) : t ∈ (0, k)} is not ountable either. But the set of end-points ofall intervals Jj , j = 1, 2, 3, . . . , n, and Kk, k = 1, 2, 3, . . . , is ountable. So, thereis a number t ∈ (0, k) suh that ξ(t) is not an end-point of any of intervals Jj ,

j = 1, 2, 3, . . . , n, and Kk, k = 1, 2, 3, . . . . Let t be suh a number and x = ξ(t),the orresponding point of the interval (a, b). Then ht(x) = 0 and ht(y) > 0 forevery y ∈ (x, b). That is,
F (x) − G(x) = t(x − a) − q and F (y) − G(y) > t(y − a) − qfor every y ∈ (x, b). Consequently,

F (y) − F (x)

y − x
−

G(y) − G(x)

y − x
> t (10)for every y ∈ (x, b].On the other hand, sine x is not an end-point of any of the intervals Jj and

Kk, eah funtion Fj and Gk is di�erentiable at x and F ′

j(x) = cjχJj
(x) for

j = 1, 2, 3, . . . , n and G′

k(x) = dkχKk
(x) for k = 1, 2, 3, . . . . So, by (7),

F ′(x) =
n
∑

j=1

F ′

j(x) ≤
∞
∑

k=1

G′

k(x).Sine t > 0, there exists a positive integer m suh that
F ′(x) ≤

∞
∑

k=1

G′

k(x) <

m
∑

k=1

G′

k(x) + t.Therefore,
lim

y→x+

(

F (y) − F (x)

y − x
−

m
∑

k=1

Gk(y) − Gk(x)

y − x

)

< t.From the properties of limits we have, that there exists a point y in the interval
[x, b] suh that

F (y) − F (x)

y − x
−

m
∑

k=1

Gk(y) − Gk(x)

y − x
< t. (11)Now, Gk(y)−Gk(x) > 0 for every k = m+1, m+2, . . . , beause the funtions Gkare non-dereasing. Hene,

G(y) − G(x)

y − x
=

∞
∑

k=1

Gk(y) − Gk(x)

y − x
≥

m
∑

k=1

Gk(y) − Gk(x)

y − x
.So, (11) ontradits (10).



Regulated funtions and integrability [51℄Theorem 3Let cj and dj be non-negative numbers and let Jj and Kj be subintervals of I,
j = 1, 2, 3, . . . , suh that

∞
∑

j=1

cjλ(Jj) < ∞,

∞
∑

j=1

djλ(Kj) < ∞and
∞
∑

j=1

cjχJj
(x) =

∞
∑

j=1

djχKj
(x) (12)for every x for whih

∞
∑

j=1

cjχJj
(x) < ∞ and ∞

∑

j=1

djχKj
(x) < ∞.Then

∞
∑

j=1

cjλ(Jj) =

∞
∑

j=1

djλ(Kj). (13)Proof. Let ε be an arbitrary positive number. Let n be a positive integer suhthat
∞
∑

j=n+1

cjλ(Jj) <
ε

2
.Then

n
∑

j=1

cjχJj
(x) ≤

∞
∑

j=1

djχKj
(x) +

∞
∑

j=n+1

cjχJj
(x)for every x ∈ (−∞,∞) with no exeption.By Theorem 2,

n
∑

j=1

cjλ(Jj) ≤

∞
∑

j=1

djλ(Kj) +

∞
∑

j=n+1

cjλ(Jj) <

∞
∑

j=1

djλ(Kj) +
ε

2
.Hene,

∞
∑

j=1

cjλ(Jj) =

n
∑

j=1

cjλ(Jj) +

∞
∑

j=n+1

cjλ(Jj)

<

∞
∑

j=1

djλ(Kj) +
ε

2
+

∞
∑

j=n+1

cjλ(Jj)

<

∞
∑

j=1

djλ(Kj) + ε.



[52℄ Ján Gun£agaBeause the inequality between the �rst and the last term holds for everypositive ε, we have
∞
∑

j=1

cjλ(Jj) ≤

∞
∑

j=1

djλ(Kj).The reverse inequality an be proved by a symmetri argument. Hene (13) holds.Reall that nonnegative x+ and nonpositive x− parts of a number x are de�nedby
x+ =

{

x if x ≥ 0,

0 if x < 0
and x− =

{

−x if x < 0,

0 if x ≥ 0.Then: x+ ≥ 0, x− ≥ 0, x = x+ −x− and |x| = x+ +x− for any real number x.Theorem 4Let cj and dj be real numbers and let Jj and Kj , j = 1, 2, . . . , be subintervals of Isuh that
∞
∑

j=1

|cj |λ(Jj) < ∞,

∞
∑

j=1

|dj |λ(Kj) < ∞. (14)If
∞
∑

j=1

cjχJj
(x) =

∞
∑

j=1

djχKj
(x)for every x ∈ I for whih

∞
∑

j=1

|cj |χJj
(x) < ∞ and ∞

∑

j=1

|dj |χKj
(x) < ∞,then

∞
∑

j=1

cjλ(Jj) =

∞
∑

j=1

djλ(Kj).Proof. The onditions (14) imply:
∞
∑

j=1

c+
j λ(Jj) < ∞,

∞
∑

j=1

c−j λ(Jj) < ∞,

∞
∑

j=1

d+
j λ(Kj) < ∞,

∞
∑

j=1

d−j λ(Jj) < ∞.From ondition
∞
∑

j=1

cjχJj
(x) =

∞
∑

j=1

djχKj
(x)we have

∞
∑

j=1

c+
j χJj

(x) −

∞
∑

j=1

c−j χJj
(x) =

∞
∑

j=1

d+
j χKj

(x) −

∞
∑

j=1

d−j χKj
(x).



Regulated funtions and integrability [53℄That is
∞
∑

j=1

c+
j χJj

(x) +

∞
∑

j=1

d−j χKj
(x) =

∞
∑

j=1

d+
j χKj

(x) +

∞
∑

j=1

c−j χJj
(x)for every x suh that both sides represent a real number (not ∞). By Theorem 3

∞
∑

j=1

c+
j λ(Jj) +

∞
∑

j=1

d−j λ(Kj) =

∞
∑

j=1

d+
j λ(Kj) +

∞
∑

j=1

c−j λ(Jj),

∞
∑

j=1

c+
j λ(Jj) −

∞
∑

j=1

c−j λ(Jj) =
∞
∑

j=1

d+
j λ(Kj) −

∞
∑

j=1

d−j λ(Kj)and
∞
∑

j=1

cjλ(Jj) =

∞
∑

j=1

djλ(Kj).Now we are able to proeed with the de�nition of integral:Definition 5Let f be a funtion integrable in the interval I. Let cj be numbers and let Jj ⊂ Ibe intervals, j = 1, 2, 3, . . . , satisfying the ondition
∞
∑

j=1

|cj |λ(Jj) < ∞suh that the equality
f(x) =

∞
∑

j=1

cjχJj
(x)holds for every x ∈ I satisfying the ondition

∞
∑

j=1

|cj |χJj
(x) < ∞.Then the number

∞
∑

j=1

cjλ(Jj)is alled the integral of f in the interval I; it will be denoted by ∫
I
f(x) dx.Clearly, for every onstant funtion f(x) = β in the interval [a, b] we have

b
∫

a

f(x) dx = β(b − a).



[54℄ Ján Gun£aga4. Integration of regulated funtionsThe next theorem shows how to integrate regulated funtions.Theorem 5Let f be a regulated funtion in the interval [a, b] (a < b). Then f is integrable inthis interval and
b
∫

a

f(x) dx = F (b) − F (a),where F is any virtually primitive funtion to f in the interval [a, b].Proof. Let {fn(x)}
∞

n=1 be a uniformly onvergent sequene of step funtionsin the interval [a, b] suh that
f(x) =

∞
∑

n=1

fn(x)for every x ∈ [a, b]. This sequene exists from the theory of regulated and piee-wise onstant funtions (see [5℄). The funtions fn(x) are bounded. Let
βn = sup{|fn(x)| : x ∈ I}for every n = 1, 2, 3, . . . .It follows from the uniform onvergene of the sequene {fn(x)}

∞

n=1 that
∞
∑

n=1

βn < ∞. (15)For every n = 1, 2, 3, . . . we have
b
∫

a

|fn(x)| dx ≤

b
∫

a

βn dx = βn(b − a).From (15) we have ∑∞

n=1

∫ b

a
|fn(x)| dx < ∞. The funtion f is integrable in theinterval [a, b] and

b
∫

a

f(x) dx =

∞
∑

n=1

b
∫

a

fn(x) dx. (16)Let Fn be a funtion virtually primitive to the funtion fn in the interval [a, b]suh that Fn(a) = 0 for n = 1, 2, 3, . . . . The sum
F (x) =

∞
∑

n=1

Fn(x)exists for every x ∈ [a, b] and funtion F de�ned in this way is virtually primitive



Regulated funtions and integrability [55℄to f in [a, b]. Thus
b
∫

a

fn(x) dx = Fn(b) − Fn(a)holds for every n = 1, 2, 3, . . . . Hene by (16)
b
∫

a

fn(x) dx =

∞
∑

n=1

(Fn(b) − Fn(a)) = F (b) − F (a).Sine the di�erene of any two funtions virtually primitive to f in [a, b] is onstant,the last equality holds for any funtion F virtually primitive to f in [a, b].5. ConlusionsOur aim was to provide an introdution to the theory of integral developed byProfessor Igor Kluvanek during his stay at Flinders University in Adelaide (Aus-tralia). In his approah regulated funtions play an important role (see I. Klu-vánek [4℄).The de�nition of integral given in this artile applies an idea of Arhimedes.The most e�etive method for the alulation of integrals is the one whih is basedon di�erential alulus (see V.V. Mityushev, S.V. Rogosin [6℄ and W.F. Pfe�er [7℄).As everybody knows Dirihlet funtion (harateristi funtion of the set ofrational numbers) is not integrable in Riemann sense. It is possible to show, thatthis funtion is integrable in the sense of I. Kluvanek and the value of this integralis zero. In fat, let Q ∩ [a, b] = {qj : j ∈ N}. Let further J2j = {qj} and let J2j−1be any subintervals of [0, 1]. Hene the Dirihlet funtion D: [0, 1] → R an berepresented in the form
D(x) =

∞
∑

j=1

cj · χJj
(x),where c2j = 1 and c2j−1 = 0. Hene its integral equals 0.Applying properties of this kind of integral it is possible to prove that integralof a regulated funtion f is an additive funtion of interval.Referenes[1℄ S. Banah, On measures in independent �eld, Stud. Mat. 10 (1948), 159�177.[2℄ J. Dieudonné, Foundations of Modern Analysis, Aademi Press, New York�London, 1969.[3℄ D. Fra¬ková, Regulated Funtions, Math. Bohem. 116 (1991), 20�59.[4℄ I. Kluvánek, Manusripts of the di�erential and integral alulus.[5℄ B. Königsberger, Analysis I, Springer Verlag, Berlin�Heidelberg�New York, 2001.[6℄ V.V. Mityushev, S.V. Rogosin, Construtive methods for boundary value problemsfor analyti funtions. Progress in analysis, 2, 769�777, World Si. Publ., RiverEdge, NJ, 2003.
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