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Nonlocal Robin problem in a plane domain with
a boundary corner point

Abstract. We investigate the behavior of weak solutions to the nonlocal Robin
problem for linear elliptic divergence second order equations in a neighbor-
hood of the boundary corner point. We find an exponent of the solution
decreasing rate under the minimal assumptions on the problem coefficients.

1. Introduction

Our article is devoted to the linear elliptic divergence second order equations
with the nonlocal Robin boundary condition in a plane bounded domain with
a boundary corner point. The nonlocal condition means that the values of the
unknown function u on the lateral side of a domain are connected with the values
of u inside a domain. This problem appears often in different fields of physics and
engineering. For example, nonlocal elliptic boundary value problems have impor-
tant applications to the theory of diffusion processes, in the theory of turbulence
etc. Various problems in this field have been studied by many mathematicians. We
refer for the history of this problem and the extensive citation to [4, 11]. Questions
of the solvability to nonlocal elliptic value boundary problems were considered by
Skubachevskii [11]. In the same place there were obtained a priori estimates of
solutions in the Sobolev spaces: both weighted and unweighted. All results in
[11] relate to equations with infinite—differentiable coefficients. Gurevich [4] con-
sidered asymptotics of solutions for nonlocal elliptic problems for equations with
constant coeflicients in plane angles.

The aim of our article is the type |u(z)| = O(]x|) estimate of the weak solu-
tion modulus for our problem near an angular boundary point. A principal new
feature of our work is the establishing of the weak solution decrease rate exponent
under the consideration of the minimal smoothness required on the coefficients of
the problem. Moreover, we derive global and local estimates for weighted and un-
weighted Dirichlet integrals applying different methods from those in [4, 11] that
allows us to obtain more detailed and exact estimates of these integrals than pre-
viously known. We investigate the behavior of weak solutions for the considered
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problem in a neighborhood of the boundary corner point by integro—differential
inequalities and Kondratiev’s ring methods developed in [1]. For this purpose we
use the Friedrichs—Wirtinger type inequality which is adapted to the our problem.
All obtained results are new and distinguishes our work from cited above.

Setting of nonlocal problem. Let G C R? be a bounded domain with boundary
0G =T, UT_ being a smooth curve everywhere except at the origin O € 9G,
where near the point O curves I'y are lateral sides of an angle with the measure
wo € [0,27) and the vertex at O. Let Xg = G N {z2 = 0}, where O € 3.

We will use the following notations:

e S': the unit circle in R? centered at O;

e (r,w): the polar coordinates of x = (z1, z2) € R? with pole O: x; = rcosw,
To = rsinw;

wo .

23 —00 < wp < oo} with vertex O;

e C: the angle {z1 > rcos

wo .

e OC: the lateral sides of C: 1 = 7 cos %3, xg = *rsin %;

e : an arc obtained by intersecting the angle C with S*: Q =Cn S';

e Gt ={(rw); 0<a<r<bweNNG: aring domain in R?;

eI, ={(rw); 0<a<r<bw==2L}NIG: the lateral sides of G%;
o Gi=G\G; Taxr =T4 \ T, d>0;

¢ O, =Gin{lz| =0} 0<o<d;

e meas G: the Lebesgue measure of the set G.
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We shall consider an elliptic equation with nonlocal boundary condition con-
necting the values of the unknown function u on the curve I';. with its values of u
on the X:

Llu] = %(a”(m)uw) + b (@)U, + c(x)u = f(x), z € G,
_ Ou u(z) b B '
3+[u]=$+ﬂ+w+m (v(2)) = g(=), rely; (L)
_ Ou u(@) _ :
B,[u]:$+ﬂ,w_h(:r), rel_;
here:
° % = a¥(z) cos(ﬁ,:vi)a%j and 7 denotes the unit vector outwards with

respect to G normal to dG \ O (summation over repeated indices from 1 to
2 is understood);

e 7 is a diffeomorphism mapping of ' onto ¥j; we assume that there exists
d > 0 such that in the neighborhood I‘g . of the point O the mapping 7 is
the rotation by the angle —<, that is 7(I‘§+) =xg

REMARK 1.1
We observe that

u(v(2))lra, = u(r,0),  0<r<d

In fact, y(x) = y(x1,22) = y(rcos %, rsin %) = (r,0), because of in the neigh-
borhood I‘ng of the point O the mapping 7 is the rotation by the angle —<.

We use also standard function spaces: C*(G) with the norm |ulx g, Lebesgue
space L,(G), p > 1 with the norm ||u, g, the Sobolev space WP (G) with the

norm |ull, .. = (/4 Z\km:o | DB|P dx)% We define the weighted Sobolev space:

Vr(G) for integer k > 0 and real a as the closure of C§°(G) with respect to the
norm

1
k P
”u”V;’Q(G) = </ Z Ta+p(|5\7k)|D5u|p da:) .

G 181=0

We write W#(G) for W*2(G) and I?VZ(G) for Vi, (G).
Let us recall some well known formulae related to polar coordinates (r,w)
centered at the point O:

e dr = rdrdw,
o dQ, = pdw,
e (s denotes the length element on 0G,

o IVul = (32 + E(32)"
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1 9u 1 9?
o Du=GH 1%+ Lo

C = C(...), ¢ = ¢(...) denote constants depending only on the quantities
appearing in parentheses. In what follows, the same letters C, ¢ will (generally)
be used to denote different constants depending on the same set of arguments.

Without loss of generality we can assume that there exists d > 0 such that Gg
is an angle with the vertex at O and the measure wg € (0,27), thus

Foi = {(r,i%)‘ T = :I:cot% “xo; T € (O,d)}.
By means of the direct calculation we obtain
LEMMA 1.2

. LW - -
cos(n,x1)|ng = —sin 70; @ cos(vz,gci)h(a)ai =0; xcos(it, x;)|o, = o

DEFINITION 1.3
A function u(z) is called a weak solution of problem (L) provided that u(x) €

OGN ﬁ/(l)(G) and satisfies the integral identity

/ {09 (@)t 1, — V(@ 1) — clo)ulo)n(o) d

+ [ (322 Zuan o) ds+ﬂ/ o

ry

=/g<><>ds+/ ds—/f

ry
for all functions n(z) € C°(G) N I?V(lJ Q).

LEMMA 1.4 o
Let u(z) be a weak solution of (L). For any function n(z) € C°(G) N W(G) the
equality

[ @, + (@) = V@, = cwpula)nta)} do

= /aij(a:)ux].n(x) cos(r, x;) dS2,

2

+ / (g(x) R guw(x)))n(a:) s (IT)ioc
re,

* / (h(x) - B- U(;C))W(I) ds
r?

holds for almost every o € (0,d).
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Proof. Let x,(z) be the characteristic function of the set G§. We consider the
integral identity (/1) replacing n(x) by n(z)x,(z). As the result we obtain

[ @+ (@) = V@, = clopula)nta)} do
ae

= — [ @i et [ (o) -5 = Lu @) )t ds
G§ L
+ / (h(x)—ﬂ,u(rx))n(x)ds.
ré_

Because of formula (7’) of subsection 3 §1 chapter 3 in [2]
2
g — “5(0 — )
Xo; = ——0(e—7)

where d(g¢ — r) is the Dirac distribution lumped on the circle r = p, we get (see
Example 4 of subsection 3 §1 chapter 3 [2])

— [ @@ ey, do = [ @, nw o0 - 1) do

€h €h
= /aijuwjn(x) cos(r, z;) dS,.
Q,
Thus the required statement follows.
We will make the following assumptions:

(a) the condition of the uniform ellipticity:

vg® <aV(2)&& < pg®,  VzeG, VEER?
v, ;o = const >0 and a(0) = o7,

where (5{ 1s the Kronecker symbol;
(b) a¥(z) € CO(Q), bi(x) € Lp(Q), c(x) € Lz (G) N La(G); Vp > 7, Vi > 2; for
them the inequalities

1

( 22: |a¥ () —aij(y)|2)2 < A(lz - yl);

ol SoW@R) +loPlete)] < Alel)

hold for x,y € G, where A(r) is a monotonically increasing function, con-
tinuous at 0, with A(0) = 0;
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(c) e(x) <0 inG:b>0, By > Fo >0 and By > max{0; Lo — p; Lo

5 ) 4U )
4bVw0 _ 2b} :

(d) f(z) € Lz(G) N La2(G), g(z) € La(I'y), h(z) € La(I'-) and there exist
numbers fo >0, go >0, hg >0, s > 2 — % such that

[f@)] < foll*™2, lg(@)] < gola™",  [A(x)] < hola]*™;

(e) Mo = max, ¢ |u(x)| is known.

Our main result is the following theorem. Let

)\_\/ (1+—(2+\/m)) (1.1)

where 9 is the smallest positive eigenvalue of problem (EV P) (see Subsection 2.1).

THEOREM 1.5
Let u be a weak solution of problem (L), satisfying the assumptions (a) — (e) with

A(r) Dini-continuous at zero. Then there are d € (0,1), where e is the Euler

‘e
number, and a constant C' > 0 depending only on v, i, p, A, || Z?:l |bi(a:)|2||LE(G),
wo, b, B+, B—, Mo, fo, ho, go, Bo, s, measG, meas';, meas'_ and on the

1
quantity [ @ dr such that for all x € G

o] s>
x| VI, if s > —,
Vi
Ak 1 Ak

lu(z)| < C |x|>’%1n<?|), =7 (1.2)

where

By b W HwB o q_1+_(2+,/—4+zwom) (1.3)

20+ 264+

To prove the main theorem (see Section 6) one ought to derive the following
statements:

- the local estimate of the maximum modulus (see Section 3),
- the global estimate of the weighted Dirichlet integral (see Section 4),

- the local estimate of the weighted Dirichlet integral (see Section 5).
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2. Preliminaries

2.1. Auxiliary inequalities

In what follows we need some statements and inequalities.
wop Wwo

The eigenvalue problem. Let Q = (=%, 5*). We consider the following eigen-
value problem:

" (W) + 9(w) =0, weQ,
(%) +M( ;) =0 (BVP)
—' (=) +B-v( - )—o

with 84 > 0, which consist of the determination of all values ¥ (eigenvalues) for
which (E'V P) has nonzero weak solutions (eigenfunctions).

DEFINITION 2.1

Function 1 is called a weak solution of problem (EV P) provided that ¢» € W1 ()N
CY(2) and satisfies the integral identity

wo

2

%) =0

[ @ @) - v do + 820 (R

“ (=l

w|€
w|€

(2.1)

for all n(w) € W1(Q) N C(Q).

REMARK 2.2
We observe that ¢ = 0 is not an eigenvalue of (EV P). In fact, setting in (2.1)
n =1 and ¢ = 0 we have

Jwepdsssufo(2)] +s-o(- )| =0 = vw =0
Q

since B4+ > 0.

Now, let us introduce the following functionals on W1(Q) N C%(Q)

FWJ]:/WJ( N2 dw + B4 1/)( )—l—ﬂ 1/)2( 0;0)
Q
:/wz(w)dw
Q

= [ @R -0t do+ s () + 502 (- ).
Q
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We introduce also corresponding bilinear forms

Fivan = [ @ @) o+ 5o (R)a(R) + v - 2)n( - L),

Q
Glip,m] = / D)) do.

We define the set K = {1 € WH(Q)NC® ()| G[¢)] = 1}. Since K C W1 (Q)NC(Q),
F[¢] is bounded from below for ¢ € K. We denote by ¢ the greatest lower bound
of F[¢] for this family:

9= JEE{FW]

We formulate the following statement:

THEOREM 2.3
Let Q C S be an arc. Then there exist ¥ > 0 and a function ) € K such that

Flp,n] —9G[b,n] =0 for arbitrary n € W) N C°(Q).
In particular Fy] = 9.

Proof. The proof is similar to Theorem 2.18 [1].

Now from the variational principle we obtain the Friedrichs—Wirtinger
type inequality:

THEOREM 2.4
Let ¥ be the smallest positive eigenvalue of problem (EV P) (it exists according to

Theorem 2.3). Let Q C S* and assume that ¢p € W1(Q) N C°(Q) satisfies in the
weak sense boundary conditions from (EV P). Then

o [ [ (2 assmon() +50(-2).
Q Q

Because of (1.1) and the definition of ¢ by (1.3), the Friedrichs-Wirtinger
inequality will be written in the following form

[ bl [G wsna() (-2} e
Q Q

for all ¥(w) € WH(Q) N C%(Q) satisfying boundary conditions from (EV P) in the
weak sense.
We formulate the classical Hardy inequality (see Theorem 330 [5]).
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PRrROPOSITION 2.5
Let v € C°l0,d] N W1(0,d), d > 0 with v(0) = 0.Then

d

d
O/ra_3v2(r) dr < ﬁ/ro‘_l(%)zdr (2.3)

0

for a < 2, provided that the integral on the right hand side is finite.

Proof. Tt is the corollary of the classical Hardy inequality (see e.g. §2.1 [1]).

Now we use the Hardy inequality and then we get:

PROPOSITION 2.6 (THE HARDY—FRIEDRICHS—WIRTINGER INEQUALITY)
Let u e CO(GH) NWL_,(GE), a <2. Then

a— 1 a—
/r Y2 (x) de < T w { /r 2|\ Vul|* dx
T+_

G¢ a G¢

(2.4)
+ B+ / re3u?(x)ds + B | 73U (2) ds}.

rg. rd_

Proof. Multiplying inequality (2.2) by r*~2 and integrating over r € (0,d) we
obtain

1 /0u\?
/T“74u2(:17) dx < %{ /T“72r—2(%) dx
G G (2.5)
+ 04 / r*3u(x)ds + B | o3 (x) ds}.
rd, rd

Hence (2.4) follows for a = 2. Now, let o« < 2. We shall show that «(0) = 0.
In fact, from u(0) = u(x) — (u(z) — w(0)) using the Cauchy inequality we have
21u(0)]? < fu(2)[*+|u(z) —u(0)[*. Multiplying this inequality by r®~*, integrating
over G¢ and using v(x) = u(z) — u(0) we obtain

1
§|u(0)|2/r°‘_4 dx < /ra_4u2(:v) d:v+/ro‘_4|v(x)|2dac < oo (2.6)
G§ G§ G§

(the first integral from the right is finite by (2.5) and the second is finite as well
in virtue of Proposition 2.5). Since

d
/1"0‘*4 dr = meas ) / r* 3 dr = 0
0

G§
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because of a — 2 < 0, the assumption u(0) # 0 contradicts (2.6). Then u(0) = 0.
Now using Hardy inequality (2.3) we obtain

/ro‘74u2(x) dr < ﬁ/ro‘2(%)2da@. (2.7)

G§ G§
Adding inequality (2.5) and (2.7) and using the formula [Vu|? = (2%)2 + & |5%|2,
we get the desired (2.4).

LEMMA 2.7 _
Let u(p,w) € C°(Q) and Vu(p,w) € Lg(Q) a.e. 0 € (0,d). Assume that

U(g)_0/8|vu|2dx+ﬂ / d +p- / ds<oo (2.8)

for 0 € (0,d). Then
ou oV4q., -,
- < 8V2
/Q“ar o< 55 Ul
Q
where q is defined by (1.3).

T=0

Proof. Writing U(p) in polar coordinates,

/ oui2 1)0u / u?(r, L) i u?(r, —42)
:/r/(’—’ ’ )dwdr—l—[ﬁ/i?dr—l—ﬂ /772dr
or 2 0w r r
0 Q 0 0
and differentiating with respect to ¢ we obtain
Oou|2  1|0u? u?(o, %) u(0, — %)
U'e)= | (5| +-|52] )| _ d 20 g D072 (g9
0= [ (o3| +3l5] )] oo =045 202 )
Q
Moreover, by Cauchy’s inequality, we have
Ju < € + 1 (8u)
U < = — 2 (==
Por = 2" T 2" \or
for all e > 0. Thus, choosing ¢ = %, by Frledrlchstirtinger inequality (2.2), we
obtain
ou
— d
/QuaT r=p .
Q
< do+ B (0. 5) + B / 5
—2A2{/}aww“+6+“ o) Th-w{e- arrg

=500 Gl oI5,

_ 0V
= WU (0)-

2 wo 2 _ wo
dw + B - (i; 2) +p 2 (Q’Q 2)}
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We also need in the sequel well known inequalities (see e.g. (6.23), (6.24)
Chapter I [6] or Lemma 6.36 [8])

/vds < C’/(|v| + |Vvl) dx, Yo(r) € WHY(@), VT C 0G,

r G
/U2 ds < / (5|VU|2 + %CQUQ) dz, Yo(z) € WH(G), V6 > 0. (2.10)
oG G

2.2. The Cauchy problem for differential inequality

THEOREM 2.8
Let U(p) be monotonically increasing, nonnegative differentiable function defined
on [0,d] and satisfying the problem

{U’(Q)—P(Q)U(9)+Q(9) >0, 0<o<d, (cP)

U(d) S U07

where P(p), Q(p) are nonnegative continuous functions defined on [0,d], and Uy
s a constant. Then

d d -
U(o) < Upexp ( - /’P(T) dT) + / Q(7) exp (— /’P(U) do) dr. (2.11)

Proof. For the proof see §1.10 (Theorem 1.57) [1].

3. Local estimate at the boundary

Here we derive the local boundedness (near the boundary corner point) of a
weak solution of problem (L).

THEOREM 3.1
Let u(z) be a weak solution of problem (L) and assumptions (a) — (¢) be satisfied.
Suppose, in addition, that g(z) € Leo(T'+), h(x) € Loo(I'~). Then the inequality

sup |u(z)|
Gg*

_¢
(1—5)%

holds for any p >n > 2, > € (0,1) and ¢ € (0,d), where C is a positive constant
depending only on p, v, p, || 2521 |bl(x)|2||Lg(G) and G.

IN

_ _2
{0 lulla.cp + 0O D1 g ez + o(lgllocrs, + IPllocrg )}

Proof. We apply the Moser iteration method. We consider the integral identity
(IT) and make the coordinate transformation @ = pa’. Let G’ be the image of
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G, l";r be the image of T';, I be the image of I'_, then we have dz = p?dz’
ds = pds’. In addition, we denote

o(a') = u(ex'), n(z’) = ner'), F(a') = &*f(or"),
G(+') = oglex'), H(z') = oh(oz'). 31)
Then from (II) we get
[ty = 0o, (') = eyl ') da
J
+ / (Svta!) + et 1y
I
/g (') ds" + /H(:C')n(x’) ds’ —/f(:v'
r- el
for all n(z’) € C°(G") N 171/(1)(G’). We define quantity m by
m=m() = (15,3 +190ers, + 1Ml ) (3.2)
and we set
(") = |v(a")] + m. (3.3)
We observe that
F)(!) = - |F @) - ma(e!) = - IFEIEE) - @) - 7(@)
= FE)| P @) — FE)] - ) o)
< LIFE)] P, (3.4)
M) Ble') < )] 7 ()
1

G(@)p(2) < —|G(a")] - 7°(2')

in the same way. As the test function in the integral identity (IT)" we choose
n(z') = ¢3(|2'|)v(z’), where ((]2]) € C§°([0,1]) is nonnegative function to be
further specified. By the chain and product rules n(z) is a valid test function in
(IT)" and also 1,7 = var C*(|2']) +2¢(|2'[)¢er v(2'), s0 that by substitution into (I7)’
with regard to c(ga: ) <0in G and v < |v| < v, we obtain

2/( .
[ ahar + p, [ EEDc e as
G e,
v(x’) 2 , 1)2({5/) o /
o [ e +on [ EE e a

Toy g



Nonlocal Robin problem in a plane domain with a boundary corner point [17]

SQ/W@ﬁwﬂﬂfx%wwdﬂ+2/MWmﬁ@wmﬂﬁKWﬁMﬁ

G} G}
+/m><x%aw+/g (2')C (') ds
F}F
+/f@WWKWMMf
&

By the elliptic conditions and with regard to (3.4), hence it follows

v2(z’
[ovreenar + s, [ @) 214/)) ds

]
é rh,
s [ L@ s+ o / as
ri,
/(wa Ymewwwf (35)
Gl
1
b [196]- [V o + (G, [ 760 d
e ri
1 1
b Hlory [ PN + o [ O )
o Gj

We shall estimate the third integral on the left hand side inequality (3.5). Be-

/u)o

cause of v|p1 = v(r’, L) and, by Remark 1.1, v(y(z’ L = v(r’,0), using the
ri, y r} g

representation v(r’,0) = v(r’, 42) f02 BU(T ) duw we obtam

[ Eowneas

Il
o _

U2(T,’ %) 20,0 / U(r/7w_20) 20,0 < Tav(rlvw) ) /
——22C 0 dr' — | —2C() ——dw | dr'.
/ /

r
0

Next, by the Cauchy inequality, we have
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<2
/ /2
e
E T |22 (1! /o r 2 /ﬂ /
_2/|VU|C(|x|)d:v +25/ 7 /v (r, 2)dwdr
G} 0

_“o
2

e ) L (3.6)

m‘g

AN

v2(z")

€ w
3 / V0|23 (|2']) da’ + 2—2 7 (|2']) ds’, Ve > 0.
G rL,

IN

Choosing in inequality (3.6) € = ¥, from (3.5) we have

1
3 [1VoPe (e o
Gl

20 v2 (2!
+(ﬂ++b—b—yo)/ @) 21201y s’ + 6 |fc,|)<2(lx’l>ds’

2 ]
Loy To-
2 3
</ g(;w(w) Volw( ) () de’ (3.7)

0

1
w2 [ 190 (90 ) ' + Gy, [ TG )
Gl

1
I

Ml [ P@IE DS+ [ 176 do
&

ri_

Thus, by the assumption (c) for 54, from (3.7) it follows that

1
3 [ IV ds'
G§

< /Q(ilbi(gfc’)F)éIV’vlﬁ(:v’)CQ(lw’l)dw’

0

+2p [ [90] V()¢ (') 38)
Gs
1 / / / 1 —! / / /
b0y, [ PN S+ My [ P ds
r! ri_

+ o [IF@R ()
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We estimate every term by the Cauchy inequality for any € > 0:
2u| V[V CIC (2" )a(") = 2(IV'v] - ¢(J2])) (wo (=) V'C])
2
< el Vo (') + 0@ V¢

(Zw ') ) Voo )2 (')
= (') (a3 Z e ) e

< LR () (Zw o) + SV ),

For the estimating integrals over the boundaries on the right in (3.8) we apply
inequality (2.10). Thus we get

L / V0P ¢ () da’
< _/|va| (o' da’ 42 /|vc|“ ) d
+2 / ( ) ) 062 s (3.9)
hEl / F (2[5 (2) 3 (12’ de’
i

# o (160ry + lry,) [ (B9GP + 5w (12 ) o

Gs
Ve, 0 > 0.
From relations
V(0P <2(CIVTP? +2(@)V'CP), VTP =V (3.10)
it follows the inequality
V' (CO)* < 2[V'u*¢? + 20% ()| V¢, (3.11)

Now, by (3.9)—(3.11), choosing ¢ = % in (3.9) and, by virtue of (3.2), we find that

2 [ [9op (el a
Gs
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6 § 2-2 ! g . i N2 520\ 2 (]! /
< — [ VPP @a) da' + — >0 (ex)? |7 ()¢ (fa)) da
e i=1

Gl

—|—25V/|V’v|2C2(|x/|)dx’—|—25V/52(:17/)|V/C|2 dx’

G Gy
+ 2[R ar + o [ |F@R e, 5o
G} Go

Now we choose § = %, then by (3.10), the last inequality means

2
[k ar < 2 / VIR
14

Go

2 (ZZIU o) )G o

+ /52(:6')|V'C|2dx’ + 12800/52(95’)C2(|x’|)d:v'

Go

&3
8
o [P () do'

The above inequality we can rewrite as the following

/|V' 2¢2(1'))

e / (V¢ + (/)PP () d! (3.12)

Gs
2 /
w0 [ (2L Wi+ B oy as
G[l) i=1

where constants C7, Cs depend only on ¢, i, v. The desired iteration process can
now be developed from (3.12). By the Sobolev imbedding theorem (see §2 ch. II
[7]) we have

1601, < €7 [(V/EP + ) + A Vo) ae', >2, (33)
Go

where constant C* depends only on n and the domain G. Using the Holder
inequality for integrals
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[ (@ e + 250 e ar
G (3.14)

3 F(a')
<[eE e+ B o, g p>
i=1 3:Go
and from (3.12)—(3.14) we get
1671%s, 3
<C [V + ()P (3.15)
Go
22 ione o [F@)] =112 =
el Swenr s TR it g pe2

By the interpolation inequality for L,-norms
16Tl 22, g1 < ellCVll 22, gy + ™7 [CTllagys P >70>2, Ve >0,
_ p—n (ﬁ) o
c= — )
p p
and, by virtue of definition (3.2), from (3.16) it follows that

1601 22,y < VT3 1€+ [V CTl2,6

2 3
+ 04<H92 > b (ox")? + u) (3.16)
i=1 5.G§
< (cllcmll ;. 63 + T Tlagy) P>, Ve >0,
Choosing
2 _1
= L/—<‘ * Y b (ea")” + V) 2
2vCy i=1 Reh

from (3.16) we obtain

IOl 25 < O+ [VCDBlgy,  2=p>i>2,  (317)

where C' depends only on cq, 1, v, p, diam G, || 23:1 0*(2)[?|| 2.~ This inequality
can now be iterated to yield the desired estimate.

For all »r € (0,1) we define sets G’(j) = G(’;Jr(l_”)rj, j=0,1,2.... It is easy
to verify that G = G, C ... C G{;;,) C G C ... C G, = G§. Now we
consider the sequence of cut-off function (;(z’) € C*°(GY;)) such that

0<¢(2')<1lin G'(j) and ¢(z')=1in G/(j+1)7
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G(a')=0  for |2/ > s+ 27 (1 — x),
2J+1 ) .
V¢ < . for se+ 2797 1 = 50) < |2/| < 2+ 27 (1 — x).
—
We also define the number sequence t; = 2(%)% 7=0,1,2.... Now we rewrite
inequality (3.17) replacing ((|2'|) by {;(z’); then, we obtain

_ 27+2
7 25 ¢

< (C o
1-— %”v”27G<1)
get

(3.18)
Putting w = |6|(%)j, by (3.18) and the definition on the number sequence ¢;, we

G+1) T

ﬁ27~2 ( TL:Z )j
n n
||, / = w% dz’
ti+1:G

Gt
. n—2yj
(efz) el
2z
- (%) ) 4%%””0@)
After iteration, we find that

_ C 22;’;0% >
H’UHtj+1,G’(j+1) < {T} -4

Ji= =
> P ey (319)
Notice that the series E;io ]tﬁ is convergent by the d’Alembert ratio test, and
. J
the series E;io % = % as a geometric series. Therefore from (3.19) we get
_ < C
iy [P

—— 1o .
G T (1= 203 I H2,G},
Consequently, letting j — oo, we have

_ C _
sup [(2')] < ————|[7]
' €GY (1 — %)2

2,G1-
Hence, because of definition of function T(z’) by (3.3) and definition of number m
by (3.2), we get:
sup_[v(a)] < L(HUH s+ I1F e + 1Glloory, + 1 Hlloor )
m'ecli)g > = %>% 2,G} LG} oo, T8, oo,Iy

Returning to the variables x and u we obtain the required estimate (3.1).
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4. Global integral estimate
In this section we obtain the global estimate for the weighted Dirichlet integral.

THEOREM 4.1
Let u(x) be a weak solution of problem (L). Let assumptions (a) — (c), (e) be
satisfied. Suppose, in addition, that g(z) € Lo(T'4), h(z) € Lo(T'2). Then the

inequality
2 2
/|Vu|2d:v—|—/u (;E) dx—i—/u—(x)ds
r r
G

G oG

gC{ /f%:v)dw—i—/g%x)ds—i—/hQ(:v)ds}
G

s r_
holds, where constant C > 0 depends only on b, B4+, wo, Bo, p, v, My, G,
2 i
1> 5=1 10 (x)PHLg(G)-

Proof. Setting in (IT) n(x) = u(z) and using the classical Holder inequality,
by assumptions (a), (c¢), we get

2 u?(z) u(x) u(z)
v [ |Vul®dz Br——= +b——u(y(x)))ds+ p- | —=ds
feuocs (0 s

,
G Iy

> 16 (@) 2 ul | Vul da (4.2)

i=1

n / lullg(z)| ds + / jul [1(2)] ds + G[ ] £ ()] d.

T, r_

Now, by assumptions (b), (¢), the Cauchy inequality and the Holder inequality for
/

integrals with ¢ = %, ¢ pf2, p > 2, we have:

2
> b (@) ul|Vu] dx
i=1

=G/|Vu|<

v 1
< — 2d J—
_2/|Vu| :v+2y

G

2
> Ibi(w)|2|u|> dzx
i=1
2

/Z b (x)]?u? dx
i=1

G

2 P
v 2 1 iz . 2
<2 [1vu dx+2y</(§;|b P dx> ey
G I

s o
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Next, we apply the inequality

HUH%LP(G) <[ VulZ, @) + (0,0, lullZ, 6 p>2,V>0
p—2

(see for example (2.19) §2, chapter IT in [7]); hence it follows that

2

> I (@) 2| Vul dz

& \i=1
v 1<
<? 2do+ o | > ') 4
< [Ivldos oo | S @], (43)
G i=1 2
X /((5|Vu|2 + ¢(8,p, G)u?(x)) du, Ve >0, V6 > 0.
G
We choose 6 = a . As a result from (4.2)—(4.3) we obtain

2[5, 167 (@) 2L p (o)
3

%/RMPMH1/0ﬂ2¥Q+b() (1(x))) ds + B- /
G

<c/ m+/wm|@+/wm|@+/wu|m

where C' = const(p, v, | 7_, [b'(2)[?||1, (), G). Further, by the Cauchy inequal-
2

ity, in virtue of the assumption (¢), we obtain

/Wung s = [ (VE) (o) s

1 2 1
syﬂ/“ﬁ)d+z%/r%@@;

ulip@)lds = [ ({/Z Sl ) ds
/ F/ (
50 /rg2(:v) ds;

/MW@WMS5/MFM+§/UFM-
G

G G

(4.4)

< B




Nonlocal Robin problem in a plane domain with a boundary corner point [25]

Hence and from (4.4) we have

/|VU|2d:c+ m/ 2()d+b/ ()( )ds + 5/

F* F* (4.5)

<C/ dw+2—ﬂo/ ()ds+2—ﬂ()/rh2 )ds + = /f2

Now we write I'y = I'f, UTqy. At first, we estimate b [1., u(f)u(w(ac)) ds. Be-
0+
cause of u|Fg+ = u(r, %) and by Remark 1.1 u(y(x ))|Fg+ = u(r,0), using the

representation u(r,0) = u(r, ) — f02 W dw, we obtain:

d
0 )u(r, 0
b [ Mgy =y [ LR, (1.6)
r r
re, 0
fues), , fun)( T
:b/“ - dr_b/w’ 2 </ ”(T’“’)dw>dr
r r Ow
0 0 0
Next, by the Cauchy inequality, we have
d o %"a
b/u(T’T) </ u(rw) dw) dr
r Ow
0 0
1 wo\ || Ou(r,w)
< —
_b/r2 u(r )H Ow ’dx
G
ou(r,w)|12 1 57 wo
< — — .
b/r2<2’ ’ ot (“2) de (47)
G
d 3
2 wo
Sb_g/|Vu|2dx+2—bE// wir )dwdr
Gg 0 -
b b
_—5/|v 2dz + ;O/U(x)ds, Ve >0
eh ro,

By the assumption (e) the integral over I'y; we estimate as below:
r
b / Mu(”y(m)) ds < b%Mg.
r d
Fd+
Thus, from the assumption (e) and (4.5)—(4.7) we get

(Z—— /|v |2dx+( ﬁ++b—bﬂ)
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C(Mo,bdG)Jr—/ ()d8+—/rh2 )ds + = /f2

260 250
Iy
Ve > 0.
If we choose € = 7, then, in virtue of assumption (c) for 31, we obtain
/|Vu|2d +/ w(z) ds < c{ /f2 d:v—i—/ %(x)ds + /h2(:c)ds}.

Iy r_

Finally, by Hardy—Friedrichs—Wirtinger inequality (2.4) with o = 2, we get the
desired estimate (4.1).

5. Local integral weighted estimates

THEOREM 5.1

Let u(z) be a weak solution of problem (L) and X be as in (1.1). Let assumptions
(a) — (e) be satisfied with A(r) being Dini-continuous at zero. Then there are
de (0 E) and a constant C > 0 depending only on s, A\, v, b, B4,d, G, My and

on fo == AW gr such that Vo € (0,d)

/(|V|2 d+ﬁ/ d+ﬁ/

Gg
1
< O(wofd + 5 (a3 + )+ 1718, + ngn%,m )
22k . Ak (5.1)
o va ) ZfS > —, '
Vi
22k 1 Ak
Qﬁlnz(_>7 ZfS:_u
0 v
Ak
25 ;
0°°, ifl<s<—,
Va

where k and q are defined by (1.3).

Proof. Setting n(z) = u(x) in (I1);pe, we obtain

/|Vu|2d:c+6/ d+6/
G

_, / u(x)? ds + / (0% (2) — a¥ (0))u(x)uy. cos(r,z:) A2,
Q r=e .
+ / u(z)g(z)ds —b / uix)u(v(x)) ds + / u(z)h(x)ds
rey v re.
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+ / {—(a"(x) — a”(0)ug, e, + b (@) u(x)us, + clx)u® () — u(z)f(x)} do.
ae

To estimate the integral b [L.. @u(w(m)) ds we behave similarly to (4.6)—(4.7).
o+
Then we get:

be 5 b buwy u?(x) u?(x)
(1 2)/|vu| dw+6+(1+ﬂ+ 2ﬂ+a)/ o ds + B ds
ae T2, re

dw + /(aij (z) — a”(0))u(z)uy, cos(r, z;) d, (5.2)

e, re.
+ /{—(aij(x) — a"(0)) g, g, + ' (2)u(@)ug, + c(@)u?(z) — u(z)f(z)} de.
as

By assumption (c) 81+ > bi%—b. Therefore we can choose in (5.3) ¢ = 7%
Hence it follows that

b b b b by/1
0<1-2_1 “o _ 4 LOB*:]C (5.3)

=14+ — — — 14— —
2 B+ 2B+ 264+ 26+
(see (1.3)) and recalling (2.8) we obtain

kU (o)
< g/u(a:)% dQ) + /(aij () —a¥ (0))u(x)uy, cos(r, z;) d2,
Q e .
+ / u(x)g(x)ds + / u(z)h(z)ds (5.4)
oy re.
4 [ (= @) = a0, + B e, + (o)) = ) ()} d
Gg

Now, we shall derive an upper bound for the each integral from the right hand
side of (5.4). The first integral we estimate by Lemma 2.7; next, in virtue of
assumption (b) and the Cauchy inequality,

/(aij (z) —a" (0))u(x)uy; cos(r, z;) dQ, < 0A(0) / |u(z)||Vu| dw,
Q

Q,

/ {(a¥ (@) - ¥ (0))ug g, + b (@)us u(e) + @)’ (@)} do (5.5)
GQ
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< Alo) / {Ivup + “i(j’) b de.

Gg

Thus, from (5.4)—(5.5) it follows that

W(0) < B0/ (0) + (o) [ 1u(@)[Vul do

Q
+ / () g )] ds + / () |(z)] ds (5.6)
re, re
+A) [ ((7uP+ d:z:+/|u 17 @)] da.
Gt

Further, we derive an upper bound for each 1ntegra1 on the right hand side of
(5.6). At first, applying the Cauchy and Friedrichs—Wirtinger inequalities (see
(2.2)) with regard to (2.9), we have

Ao) / olu(x)||Vu] dw

Q

< 5 A [ (@9 + u(w)) do

Q

<30 [2[(G)+ 5 (G)_o
+—A(9)%{ /(g_u) dw+ﬁ+u2(g’%)+ﬁ ! ( “;0)} 7
Q
g%gA(@)(H%){ Sﬂ (3) é(%ﬂ -
LY u?(g,g—?)}

S C1 (b7 ﬁ-i—a wo, )\)QA(Q)UI(Q)

Next, using the Cauchy and Hardy-Friedrichs-Wirtinger (see (2.4) for a = 2)
inequalities, by (2.8), we obtain

At) [ (19l + 4 ) a

Gg

SC(b,ﬂ+,WOA)A(g){ /|V’LL|2
G§

}58)

< co(b, By, wo, M)A(0)U(0),
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and for all § > 0

[ laias = [ (2o (/5o ) as

0+

5 2 1
S%/uix) ds+m/rg2(x)ds;

re, re,

/|u )z |ds—/< % e >|)< T ih(e)] ) ds

(5.9)
2 .
2550 /rh (x) ds;
Ju@lirids < 3 / D s 5 / 21
Ge Ge
4 1
< Desb, B0, U (o) + 25/ P2 (a) do
GQ
in virtue of inequality (2.4). From (5.6)—(5.9) it follows
(k —ca(6 + A(0))) U(o)
< 201 4 s A@)U(0) (5.10)
1 2 42 1 1 2
—|—25{G/Qrf()dw+ﬂog/ ()ds—i-ﬂog/rh (x)ds}, v§ > 0.
But, by condition (d),
/r2f2(:v) de+— / rg*(z) als—i—i rh?(x)ds < (won—l—igz—i—ihQ) 0**
e 0 ﬁorg 2 © B B

Now we take into account that, by (5.3), 0 < k < 1 and therefore
k—ca(6+ Alo)) . 1—k+ca(d+ Al0)) + cs5A(p)

1+ c5A(p) B 1+ cs5.A(0)
k[l — cgd — 7. A(0)], V6 > 0.

Thus, from (5.10) we have differential inequality (C'P) of Subsection 2.2 with

Po) = — - [1 — c6 — c7. A(0)], Vo > 0;
(5.11)

1
(g hR)) 6 V>0,

= (wofg + By
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and, by (2.8) and Theorem 4.1,
Up=C+ B4 + ﬁ_){ fA(@)dz+ | ¢*(z)ds + [ h*(z) ds}.
G/ F‘{ F/

We shall consider three cases:
Ak
Choosing § = ¢°, Ve > 0,

20k
Plo) = NG - [1—ce0® — cr Alo)];
_ 2 2s—1—c
Qo) = 5 f( off + 5+ 1)) - o
Since P(o) = %\/’% - %, where K(p) satisfies the Dini condition at zero, we have
T d
2\k Sl
/73 —iln(f)+/@dsgln(§)f+/’C(T)dr
0 s T r
e 0
T 2)\k d IC( ) 20k
0\ Va T 0\ va
_ < (£ _ &
= exp< /73(0) da) < (7’) exp </ = dT) KO(T) ;
e 0

As well we have:

/dQ(T) exp (— /TP(U) da> dr

d
AK e 20k
< 270 (o + < +h2>)g”5/72 Bty
0
Q

= 2%5va
AK 45V
0 2 2 9 g2k
S (Of +h ) o T,
o (off 6 +08) Ty
sinces>%and we can chooseazs—%.

Now we apply Theorem 2.8: from (2.11), by virtue of the deduced inequalities

and with regard to (2.4) for a = 2, we obtain the required statement for s > %.
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_ 2k
2)8_\/6'

Taking in (5.11) any function 6(¢) > 0 instead of § > 0, we obtain problem
(CP) with

2Mk(1 — csd(e)  Alo).

P(o) = ;
(0) NG 5,
VI
Qo) = 5- f( o} + 5 (gh + 1)) -6 )"
We choose (o) = W‘ﬁ(@), 0 < o < d, where e is the Euler number. Then we
obtain ‘
T T d
20k d
—/P(U)dag——lnz—l—/iad—i-Cg/ﬂda
N oln(<) o
o 4 0
% (ML AW
:]Il(;) +ln(lnﬂ>+cg/7d0
T 0
d
22k Ip¢d
:>exp< /73 )S g)ﬁ- Z-exp(Cg/ﬂdo>,
T ln% o
0 0
0\23% . ed 7 A(T)
exp /73 S ) -ln — -exp 08/ dr |.
0 T
0

In this case we also have

/dQ(T) exp <— /P(a) da> dr

d
1 Ak d
(Wofo (90 + ho)) - 0*Vi exp (Cs / A dT) In %
0

- 25\/_

/5

< co (Wofg -

“|&
S—

é(gg + h%)) PV In® (%l).

Now we apply Theorem 2.8, and from (2.11), by virtue of the deduced inequal-
ities, we obtain

1 5 9 9dk o 1 1
— + A, )gﬁln -, O<o<d< —.
50(90 0) 0 o

Thus, we proved the required statement for s = %.

Ulp) < CIO(UO +wofg +
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Ak
Now, similar to case 1) with regard to (5.11) we have

20k(1—cgd) d 20k(1—cgd)
- 6 A o - 6
exp <— /P(U) dcr) < (g) Ve exp </ E' ) d7> =c (g) Ve ,
0

e

and

d

20k(1—cgd) d 20k(1—cgd)

7 A(r A

exp <— /’P(T) dT) < (g) Ve exp < / 7(_ ) d7-> =cp (g) Ve
0

4

In this case we also have

/dQ(T) exp (— /T’P(U) do) dr

A

d

1 2Xk(1—cgd) _ 2X\k(1—cgd)
(wofd + 5o lad +1)) 670" T x /725 S Tl

<

[N}
VA
S

4

1 1
< ci2 (wofg + V—OQ(Q) + V—Oh(z)) 0%,

if we choose 6 € (0, %(1 — s/\‘{j)).

We again apply Theorem 2.8 and from (2.11), by virtue of the deduced in-
equalities, we obtain
22k(1—c59) 1
Ulo) < 013{U09 Va4 (wof§ + %(QS + h(z))) '925}

1
< e1a(Uo + 3 + 508 + 1)) >

Thus, we proved the required statement of Theorem 5.1 for 0 < s < %.

6. The power modulus of continuity at the conical point for weak solu-
tions

Proof of Theorem 1.5. We define the function

Q% ifs>&
) \/a?
Ak 1 k
bo)=1{ o¥im (—) if 5 = 25
0 Vi
Ak
0°, fl<s< —
Va

for 0 < o < d.
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For the proof we apply theorem 3.1 about the local bound of the weak solution
modulus

sup [u(z)| < —&

—1 2(1-2)
sup _—(1_%)%{9 [ulls,c5+0* P11l g +0(11gllo.rg, +lblloors )}

Then, by Theorem 5.1, we obtain
%
_ u?(z
0 1||u||27G5 < (/ 7"(2 ) d;v) (6.1)
G§

< C([Ifll2,a + gl

or + hllar + Vo fo+ ﬁ(go + o)) ().

Further, by the assumption (d), we get

2(1-2
DN fllg.cs + ellglloore, + 1Blloc,rz )

< C(fo + \/%(90 + ho))¢(@),

for n < p < 2n, Vi > 2. From (3.1), (6.1)—(6.2) it follows that

oo 4l 4 Jo+ (a0 + ho) (o).

sup |u(z)| < C(||f||2,G + gl VBo

o/2
Gg/4

Putting |z| = 10 we obtain finally the desired estimate (1.2).
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