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A combinatorial proof of non-speciality of systems
with at most 9 imposed base points

Abstract. It is known that the Segre-Gimigliano-Harbourne-Hirschowitz
Conjecture holds for linear systems of curves with at most 9 imposed base
fat points. We give a nice proof based on a combinatorial method of showing
non-speciality of such systems. We will also prove, by the same method, that
systems L(km; ka2) and L(km + 1; ka2) are non-special.

1. Introduction

Let p1,...,p, € P2 = P?(K) be distinct points, where K is a field of character-
istic 0. The points p1,...,p, will be called imposed base points. Let mq,...,m,
be nonnegative integers. By L(d;mipi,...,m,p.) we denote the linear system
of plane curves of degree d with multiplicity at least m; at p;, j = 1,...,7.
The dimension of £(d; m1p1,..., mp,) is upper semicontinuous in the position of
imposed base points and reaches minimum for points in general position. This
minimum will be denoted by

dim £(d; mq, ..., m,).

We will also write £(d;mq,...,m,) for a system with imposed base points in
general position, and L(d;m;*,...,m ") for repeated multiplicities. Define the
virtual dimension of L(d;my,...,m;)
dld+3) = [m;+1
dim £(d; cmy) = —L — J
vaim ( yma, , ) 2 Z < 92 )
Jj=1
and the expected dimension of L(d;my, ..., m;)

edim L(d;my, ..., m,) = max{vdim L(d;m1,...,m;), —1}.
By linear algebra one has

dim £(d;my, ..., m,) > edim L(d;mq, ..., m,)
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and L£(d;mq,...,m,) is said to be special if strict inequality holds for points in
general position, non-special otherwise.
For systems L = L(d;m1,...,m,), L' = L(d';m],...,m.) we have the inter-

section number denoted by L - L/,

L-L'=dd - mm).
j=1

DEFINITION 1
The system L = L(d;my,...,m,) satisfying

e dimL =edim L =0,

o self-intersection L? = L - L = —1,

e the only curve in L is irreducible,
will be called a —1-system.

A curve C C P? is said to be in the base locus of L(d;my,...,m,) if C is the
component of each curve in £(d;m1,...,m,). Observe that, by Bézout Theorem,
if L is nonempty and L- L' = —t < 0 for —1-system L’, then the curve C € L' is in
the base locus of L at least ¢ times, i.e., the equation of each curve in L is divisible
by ft, where f is the equation of C. Such C is said to be a multiple —1-curve in
the base locus, and it forces the system to be special:

I (by Lemma 2) (by Lemma 2)

dim dim(L — tL") > vdim(L — tL’) > vdim L,

thus, by nonemptiness of L, we have also

dim L > edim L.

LEMMA 2
Let L = L(d;mq,...,m;), let L' = L(d';m],...,m]) be a —1-system, let L—tL' =
L(d—d;my—ml,...;m,—mL). IfL-L' = -t <0, then
dim(L —tL") = dim L,
22—t

vdim(L — tL') = vdim L +

The proof of the Lemma is postponed to the next section. The system with
multiple —1-curve in the base locus will be called —1-special. We have seen that
every —1-special system is special. The following conjecture due to Harbourne
[13], Gimigliano [10] and Hirschowitz [15] states the following.

CONJECTURE 3
A system L(d;mq, ..., m,) with imposed base points in general position is special
if and only if it is —1-special.

In [5] it is shown that the above Conjecture is equivalent to the conjecture
posed by Segre [18].
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CONJECTURE 4
If a system L = L(d;mq,...,m,) with imposed base points in general position is
special, then every curve in L is non-reduced.

We will refer to either one of the above conjectures as to Segre-Harbourne-
Gimigliano—Hirschowitz (SHGH for short) Conjecture. From now on we will as-
sume that imposed base points are always in general position.

The SHGH Conjecture can be reformulated using standard systems. A system
L(d;mq,...,m,) is called standard if mqy > mq > ... > m, and

d > m1 4+ mo + ms.

THEOREM 5
In order to show that the SHGH Conjecture holds for at most r points it suffices
to show that each standard system for at most r points is non-special.

For completeness, we will give a proof of this well-known Theorem in the next
section.

The fact that the SHGH Conjecture holds for » < 9 points has been shown by
various methods in [16], [10] and [12], but the first results appeared already in [2].
A nice idea is to use the following well-known fact.

PROPOSITION 6
Let d, my1, ma, ms be nonnegative integers. If d > mq1 + ms + m3, my > mo >

ms and the system E(d;ml,m§3,m§5) is non-special, then any standard system
L(d;m1,ma, M3, My, ..., Mg) is non-special.

For completeness, we will give a proof of this proposition in the next section.
In the paper we will prove that SHGH holds for » < 9 points using only
elementary facts based on linear algebra. In fact we must prove the following.

THEOREM 7

Let d, my, mo, ms be nonnegative integers. If d > mi +mo+ms and my > mg >

ma, then the system L(d;my, m3>, mX®) is non-special.

One of the main ingredients is the cutting diagram algorithm from [7]. Briefly,
it is proved that in order to show non-speciality of a given system it suffices to find
an appropriate finite set of points in N? enjoying some combinatorial properties.
To be precise, we must first define, for any finite D C N2, the system

E(D;mlv"'vmr)

of polynomials with support in D and with multiplicity at least m; at p;, j =
1,...,r. Formally, we identify N? with monomials in K[X,Y]

N? 3 (z,y) — X°YY € K[X,Y]
and put

L(d;my,...,m,)={f € K[X,Y]: supp(f) € D, mult, (f) >m;, j=1,...,k}.
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The set £L(D;my,...,m,) is a K-linear subspace of K[X,Y]. We say that conditions
in L(D;myq,...,m;.) are independent if

. " /m;+1
dlmKE(D;ml,...,mT)z#D—Zl< ]2 )
i=

The system L£(D;my,...,m,) is called empty if
dimg £(D;myq,...,m,) =0.

Observe that, by dehomogenizing and generality assumption, if conditions in
L(D;mq,...,m,) are independent for D = {(z,y) : x4+ y < d}, then
L(d;myq,...,m,) is non-special, similarly £(D;my,...,m,) is empty if and only if
L(d;mq,...,m,) is empty.

The cutting diagram algorithm is based on the following two theorems.

THEOREM 8 ([7], THEOREM 14)

Let D, D" C N? be finite, let my,...,m,,m},...,m’ be nonnegative integers. If
e DND =g,
e conditions in L(D;my,...,m,) are independent (resp. L(D;mq,...,m,) is
empty),
o conditions in L(D';m}, ..., m.) are independent (resp. L(D’;m},...,m.) is
empty),

there exists an affine function N?: f 3 (a,b) — qra+q2b+q3 € Q, q1,¢2,q3 €
Q such that f has strictly negative values on D and nonnegative values on
D',
then conditions in

L=LDuUD;my,...,mm.mi,....,m.)
are independent (resp. L is empty).

THEOREM 9 ([7], PROPOSITION 13)
Let D C N? be finite, let m; be a nonnegative integer. Then conditions in L(D;m1)
are independent if and only if D, considered as a set of points in Q?, does not lie
on a curve of degree my — 1. If #D = (mj;l) and conditions in L(D;mq) are
independent, then L(D;my) is empty.

The proofs are technical but use only simple linear algebra.

THEOREM 10 , ,
Let k, m be nonnegative integers. Then systems L(km;m**") and L(km+1;m>*")
are non-special.
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It is known that the above theorem holds. More generally, homogeneous sys-
tems with the square number of imposed base points are always non-special, see
[8]. Such systems, i.e., homogeneous with the number of imposed base points
satisfying some property have been widely studied. For example, systems of the
form £(d; m**") have been considered in [9]; this consideration has been extended
to systems of the form £(d; mX4h9k) in [1]; systems with the number of imposed
base points being nearly a square have been considered in [4]; systems of the form
L(d; mlxg,mg, .o.ymy) for my > mge > ... > m, (so called quasiuniform) in [14],
and systems of the form £(d;m*") for r > 4m? in [17].

The proof of Theorem 10 using toric degenerations can be found in [3]. We will
give a simple combinatorial proof in a sequence of lemmas. Both proofs exploit
the natural dissection of a two-dimensional simplex into k2 simplexes:

but the idea behind is slightly different. In the degeneration approach one controls
the behaviour of the system “along” the intersection of two meeting regions (given
always by weak inequalities). In our approach it is better to completely separate
regions by defining them with strict inequalities.

LemMmA 11
Conditions in the system L(D;m>'®) are independent for

D={(v,y) eN*: 2 +y<dm+1};
conditions in the system L(D;m>*?%) are independent for
D={(z,y) eN*: z+y<5m+1};
thus systems L(4m + 1;m>'%) and L(5m + 1;m*?5) are non-special.

LEMMA 12
Systems L(4m; m>10), L(5m;m>23), L(6m;m>3¢) and L(6m~+1;m*35) are empty.

LEMMA 13 , )
Systems L(km;m>*") and L(km + 1;m>**") are empty for k > 7.

Proofs of lemmas are postponed to the next section.
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2. Proofs

Proof of Lemma 2. To prove that dim(L — tL’) = dim L observe that multi-
plication by the equation of C' € L’ in tth power induces an isomorphism between
L —tL’' and L. By a straightforward calculation one shows that

t2L12 N t(_3d/ 4 2221 m;)
2 2 '

vdim(L — tL') = vdim L — tL - L' +
Moreover,

L? —ovdim L' = =3d + »_ml,
j=1
which completes the proof.

Proof of Theorem 5. Let L = L(d;mq,...,m,). Counsider the following pro-
cedure:

Step 1. Sort multiplicities in non-increasing order.

Step 2. If kK = d—mq1—mo < 0, then take d «— d+k, m1 «— mqi+k, mao «—— mo+k
and go back to Step 1.

Step 3. If K =d —my; —mo —ms3 < 0, then take d «— d + k, m; «— m; + k for
j=1,2,3 and go back to Step 1.

We finish with a system L’. We will show that in each step the dimension
does not change. Indeed, if &k = d — m; — my is negative, then each curve in
L(d;m1,ma,ms,...) is reducible and contains the line passing through pi, po at
least —k times. In other words, we have the isomorphism

e: L(d —k;mq — k,me — kyms,...) — L(d;my, ma, ms, . ..)

given by multiplication by the equation of the line in kth power. In Step 3 the
result follows from applying the Cremona transformation based on py, p2, ps to
our system (see eg. [11, Section 3]). This transformation induces the isomorphism

o: L(d —k;my — k,ma — k,ms — kymy, . ..) — L(d;my, ma, ms, my, . ..)

(the proof of this fact using only linear algebra can be found in [6, proof of The-
orem 3]; we use the fact that the system passed Step 2, so d — my; — mg > 0).
By an easy computation one can show that the virtual dimension does not change
in Step 3, while in Step 2 it increases by ]“22—+k Thus for £k < —2 we obtain L
to be either empty or special. In the second case, we know that after some Cre-
mona transformations there exists a multiple line in the base locus. Again, by
easy computations we can show that Cremona transformation preserves the inter-
section number, hence the multiple line from the base locus will be mapped, by
the reversed process, into a multiple —1-curve in the base locus of L. Therefore L
is either —1-special or enjoys the same properties (dimension, virtual dimension,
emptiness, speciality...) as L', which is standard.
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Proof of Proposition 6. Assume, by hypothesis, that Ly = L(d;mq,...,mg)

is special. We will show that L1 = L(d; ml,m§3,m§5) is special. Let ¢ be the

difference between the number of conditions in L; and the number of conditions

in LQ,
9
m1+1 m2+1 m3—|—1 mJ—I—l
= () () () -2 (™
Since each condition can lower the dimension by at most one, we have
dim Ly > dim Ly — ¢ > edim Ly — ¢ > vdim Ly — ¢ = vdim L.
Since for d > my + mso + mg, the virtual dimension

(m1 + mo —|— mg)(ml + mo —|— ms —|— 3)

vdim L1 > >
. mq (m1 —|— 1) —|— 3m2(m2 + 1) + 5m3(m3 —|— 1)
2
= (m1 — mg) + mg(ml — mg) + mg(ml —+ mo — 2m3)
>0,

we have vdim L1 = edim L; and consequently
dim Ly > edim L.
Before proving Theorem 7 we must prepare some helpful systems with inde-

pendent conditions.

DEFINITION 14
Let m be a positive integer. Define an m-rectangle to be the set

1 1 1 1
2. _ - _ = _ =
{(x,y)eN.a 2<:v<a+m+2,b 2<y<b—|—m 2}

or the set

1 1 1 1
{(x,y)eNQ: a—3 <x<a+m—§, b—§<y<b+m+§}
for some nonnegative integers a, b. Define an m-triangle to be the set
1 1 1
{(x,y) eN?: T>a-g, y>a= g, x+y<2a+m—§}
for some nonnegative integer a. The examples are shown on Figure 1.

Figure 1. Example of 4-rectangles and 4-triangle

LEMMA 15
Let T be an m-triangle, let R be an m-rectangle. Then conditions in the systems
L(T;m) and L(R;m*?) are independent and these systems are empty.
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Proof. Observe that there exists parallel lines ¢1, .. ., {,, such that #(T'N¢;) =
j. The proof for £(T;m) is completed by Theorem 9 and Bézout Theorem.

To deal with £(R;m*?) observe that R can be divided into two pieces Ry, Ra,
such that Ry is an m-triangle, while Ry is a rotated m-triangle. By Theorem 8
the proof is completed.

Proof of Theorem 7. Let D = {(x,y) € N> : z+y < d}. We want to show that
conditions in £(D;my, my> m}°) are independent. Take the following cutting of

D into three pieces:

1
Di={(wy)€D: y>mz+ms+s},

1 1
Dgz{(x,y)ED: y<m2—|—m3—|—§ and (m3+2)y+x>m§+3m3—§},

Dy = {(x,y) €D: (m3+2)y+x<mi+3mz— %}
By Theorem 8 it is enough to show that conditions in systems L£(Di;mq),
L(Do; mQX?’), L(Dg;m§5) are independent. Observe that, by easy computations,
an m-triangle with vertices (0, ma +ms+1), (m1 —1,ma+mg+1) and (0, m1 +
mgo + mg3) is contained in D;. Similarly, observe that an mo-rectangle with ver-
tices (0,ms + 1), (ma,ms + 1), (ma, ms + ma), (0,m3 + mo) and an mo-triangle
with vertices (mo + 1,ms3), (2mz,m3), (ma + 1,m3 + ma — 1) are contained
in Dy. Moreover, these two shapes can be separated from each other by an
affine line. For D3, we take three shapes — an mgs-rectangle with vertices (0, 0),
(ms — 1,0), (ms — 1,ms), (0,ms3), another mgs-rectangle with vertices (ms,0),
(2ms3,0), (2ms,m3 — 1), (mgz,m3 — 1) and finally an mg-triangle with vertices
(2m3 +1,0), (3ms,0), (2ms+1,m3 —1). By Theorem 8 and Lemma 15 the proof
is completed.

Figure 2. Example of divisions for m; =6, ma =5, m3z =4
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Proof of Lemma 11. The proofs can be easily read off from Figures 3 and 4.
The pictures are drawn for m = 3, but can be easily rescaled. Less obvious cuttings
are presented, the details are left to the reader. By € we denote a sufficiently small
positive rational number.

the same cutting

as for £(3m;m*?)

Figure 3. Divisions for £(4m + 1;m>*16)
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Figure 4. Divisions for £(5m + 1;m*2%)

Proof of Lemma 12. Emptiness of £(6m;m>3%) would follow from emptiness
of L(6m +1;m>3%). Again, the proofs can be easily read off from Figures 5, 6 and
7. Observe that if R C N? is contained in some m-rectangle, then £(R;m*?) is

empty.



[88] Marcin Dumnicki

L)

L] L)

L] L]

L] L]

L] L]

L] L]

L] L]

L] L] L)

L] L] L] L)

_. ° leo_ o o y-tsic—:_s(_ZT*l)-Fm
L] L] L] L] L] L] L] L] L] L] L) -
L] L] L] L] L] L] L] L] L] L] L] L)

L] L] L] L] L] L] L] L] L] L] L] L] L)

Figure 5. Divisions for £(4m;m>16)

the same cutting

as for £(4m;m*1%)

Figure 6. Divisions for £(5m;m>*?2%)

the same cutting

as for £(4m;m>16)

Figure 7. Divisions for £(6m + 1;m>*36)

Proof of Lemma 13. Emptiness of £(km; kaQ) would follow from emptiness
of L(km + 1; ka2). The first cutting, into upper and bottom part, is given by
the line y = m — % Since k — 1 > 6, we use induction to the upper part, cutting
it exactly as £((k — 1)m + 1;m**=D%)_ The bottom part

B={(z,y) eN?: z+y<km+1, y<m}



A combinatorial proof of non-speciality of systems [89]

gives the system L£(B;m*(¢~1)). We will cover B from right to left with one
m-triangle and (k — 1) m-rectangles of hight m. This allows to cover (k — 1)(m +
1) + m = km + k — 1 lattice points (x,0) € B, while #{(z,0) € B} = km + 2.

Thus we can entirely cover B and the proof is completed.

REMARK 16

There is no theoretical obstruction to make similar proofs for systems of the form
L(km+ko; ka2) for fixed kg. In fact, for k satisfying k& > ko+2 the induction step
(emptiness of £(km + ko;m**") implies emptiness of £((k + 1)m + ko3 m**+D%))
will work. One can even hope that for k’s satisfying k < K + 1,

K = max{k: vdim L(km + ko;ka2) > 0 for some m},

it is always possible to prove non-speciality by the presented method.
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