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kiA 
ombinatorial proof of non-spe
iality of systemswith at most 9 imposed base pointsAbstra
t. It is known that the Segre�Gimigliano�Harbourne�Hirs
howitzConje
ture holds for linear systems of 
urves with at most 9 imposed basefat points. We give a ni
e proof based on a 
ombinatorial method of showingnon-spe
iality of su
h systems. We will also prove, by the same method, thatsystems L(km;m×k

2

) and L(km + 1; m×k
2

) are non-spe
ial.1. Introdu
tionLet p1, . . . , pr ∈ P2 = P2(K) be distin
t points, where K is a �eld of 
hara
ter-isti
 0. The points p1, . . . , pr will be 
alled imposed base points. Let m1, . . . , mrbe nonnegative integers. By L(d; m1p1, . . . , mrpr) we denote the linear systemof plane 
urves of degree d with multipli
ity at least mj at pj , j = 1, . . . , r.The dimension of L(d; m1p1, . . . , mrpr) is upper semi
ontinuous in the position ofimposed base points and rea
hes minimum for points in general position. Thisminimum will be denoted by
dimL(d; m1, . . . , mr).We will also write L(d; m1, . . . , mr) for a system with imposed base points ingeneral position, and L(d; m×s1

1 , . . . , m×sr
r ) for repeated multipli
ities. De�ne thevirtual dimension of L(d; m1, . . . , mr)

vdimL(d; m1, . . . , mr) =
d(d + 3)

2
−

r
∑

j=1

(

mj + 1

2

)and the expe
ted dimension of L(d; m1, . . . , mr)

edimL(d; m1, . . . , mr) = max{vdimL(d; m1, . . . , mr),−1}.By linear algebra one has
dimL(d; m1, . . . , mr) ≥ edimL(d; m1, . . . , mr)AMS (2000) Subje
t Classi�
ation: 14H50, 13P10.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.



[80℄ Mar
in Dumni
kiand L(d; m1, . . . , mr) is said to be spe
ial if stri
t inequality holds for points ingeneral position, non-spe
ial otherwise.For systems L = L(d; m1, . . . , mr), L′ = L(d′; m′
1, . . . , m

′
r) we have the inter-se
tion number denoted by L · L′,

L · L′ = dd′ −

r
∑

j=1

mjm
′

j .Definition 1The system L = L(d; m1, . . . , mr) satisfying
• dimL = edimL = 0,
• self-interse
tion L2 = L · L = −1,
• the only 
urve in L is irredu
ible,will be 
alled a −1-system.A 
urve C ⊂ P2 is said to be in the base lo
us of L(d; m1, . . . , mr) if C is the
omponent of ea
h 
urve in L(d; m1, . . . , mr). Observe that, by Bézout Theorem,if L is nonempty and L ·L′ = −t < 0 for −1-system L′, then the 
urve C ∈ L′ is inthe base lo
us of L at least t times, i.e., the equation of ea
h 
urve in L is divisibleby f t, where f is the equation of C. Su
h C is said to be a multiple −1-
urve inthe base lo
us, and it for
es the system to be spe
ial:

dimL
(by Lemma 2)

= dim(L− tL′) ≥ vdim(L− tL′)
(by Lemma 2)

> vdimL,thus, by nonemptiness of L, we have also
dimL > edim L.Lemma 2Let L = L(d; m1, . . . , mr), let L′ = L(d′; m′

1, . . . , m
′
r) be a −1-system, let L−tL′ =

L(d− d′; m1 −m′
1, . . . , mr −m′

r). If L · L′ = −t < 0, then
dim(L − tL′) = dimL,

vdim(L − tL′) = vdimL +
t2 − t

2
.The proof of the Lemma is postponed to the next se
tion. The system withmultiple −1-
urve in the base lo
us will be 
alled −1-spe
ial. We have seen thatevery −1-spe
ial system is spe
ial. The following 
onje
ture due to Harbourne[13℄, Gimigliano [10℄ and Hirs
howitz [15℄ states the following.Conje
ture 3A system L(d; m1, . . . , mr) with imposed base points in general position is spe
ialif and only if it is −1-spe
ial.In [5℄ it is shown that the above Conje
ture is equivalent to the 
onje
tureposed by Segre [18℄.



A 
ombinatorial proof of non-spe
iality of systems [81℄Conje
ture 4If a system L = L(d; m1, . . . , mr) with imposed base points in general position isspe
ial, then every 
urve in L is non-redu
ed.We will refer to either one of the above 
onje
tures as to Segre�Harbourne�Gimigliano�Hirs
howitz (SHGH for short) Conje
ture. From now on we will as-sume that imposed base points are always in general position.The SHGH Conje
ture 
an be reformulated using standard systems. A system
L(d; m1, . . . , mr) is 
alled standard if m1 ≥ m2 ≥ . . . ≥ mr and

d ≥ m1 + m2 + m3.Theorem 5In order to show that the SHGH Conje
ture holds for at most r points it su�
esto show that ea
h standard system for at most r points is non-spe
ial.For 
ompleteness, we will give a proof of this well-known Theorem in the nextse
tion.The fa
t that the SHGH Conje
ture holds for r ≤ 9 points has been shown byvarious methods in [16℄, [10℄ and [12℄, but the �rst results appeared already in [2℄.A ni
e idea is to use the following well-known fa
t.Proposition 6Let d, m1, m2, m3 be nonnegative integers. If d ≥ m1 + m2 + m3, m1 ≥ m2 ≥

m3 and the system L(d; m1, m
×3
2 , m×5

3 ) is non-spe
ial, then any standard system
L(d; m1, m2, m3, m4, . . . , m9) is non-spe
ial.For 
ompleteness, we will give a proof of this proposition in the next se
tion.In the paper we will prove that SHGH holds for r ≤ 9 points using onlyelementary fa
ts based on linear algebra. In fa
t we must prove the following.Theorem 7Let d, m1, m2, m3 be nonnegative integers. If d ≥ m1 +m2 +m3 and m1 ≥ m2 ≥

m3, then the system L(d; m1, m
×3
2 , m×5

3 ) is non-spe
ial.One of the main ingredients is the 
utting diagram algorithm from [7℄. Brie�y,it is proved that in order to show non-spe
iality of a given system it su�
es to �ndan appropriate �nite set of points in N2 enjoying some 
ombinatorial properties.To be pre
ise, we must �rst de�ne, for any �nite D ⊂ N2, the system
L(D; m1, . . . , mr)of polynomials with support in D and with multipli
ity at least mj at pj , j =

1, . . . , r. Formally, we identify N2 with monomials in K[X, Y ]

N2 ∋ (x, y) 7→ XxY y ∈ K[X, Y ]and put
L(d; m1, . . . , mr) = {f ∈ K[X, Y ] : supp(f) ∈ D, multpj

(f) ≥ mj , j = 1, . . . , k}.
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kiThe set L(D; m1, . . . , mr) is a K-linear subspa
e of K[X, Y ]. We say that 
onditionsin L(D; m1, . . . , mr) are independent if
dimK L(D; m1, . . . , mr) = #D −

r
∑

j=1

(

mj + 1

2

)

.The system L(D; m1, . . . , mr) is 
alled empty if
dimK L(D; m1, . . . , mr) = 0.Observe that, by dehomogenizing and generality assumption, if 
onditions in

L(D; m1, . . . , mr) are independent for D = {(x, y) : x + y ≤ d}, then
L(d; m1, . . . , mr) is non-spe
ial, similarly L(D; m1, . . . , mr) is empty if and only if
L(d; m1, . . . , mr) is empty.The 
utting diagram algorithm is based on the following two theorems.Theorem 8 ([7℄, Theorem 14)Let D, D′ ⊂ N2 be �nite, let m1, . . . , mr, m

′
1, . . . , m

′
s be nonnegative integers. If

• D ∩D′ = ∅,
• 
onditions in L(D; m1, . . . , mr) are independent (resp. L(D; m1, . . . , mr) isempty),
• 
onditions in L(D′; m′

1, . . . , m
′
s) are independent (resp. L(D′; m′

1, . . . , m
′
s) isempty),

• there exists an a�ne fun
tion N2: f ∋ (a, b) 7→ q1a+q2b+q3 ∈ Q, q1, q2, q3 ∈
Q su
h that f has stri
tly negative values on D and nonnegative values on
D′,then 
onditions in

L = L(D ∪D′; m1, . . . , mr, m
′

1, . . . , m
′

s)are independent (resp. L is empty).Theorem 9 ([7℄, Proposition 13)Let D ⊂ N2 be �nite, let m1 be a nonnegative integer. Then 
onditions in L(D; m1)are independent if and only if D, 
onsidered as a set of points in Q2, does not lieon a 
urve of degree m1 − 1. If #D =
(

mj+1
2

) and 
onditions in L(D; m1) areindependent, then L(D; m1) is empty.The proofs are te
hni
al but use only simple linear algebra.Theorem 10Let k, m be nonnegative integers. Then systems L(km; m×k2

) and L(km+1; m×k2

)are non-spe
ial.



A 
ombinatorial proof of non-spe
iality of systems [83℄It is known that the above theorem holds. More generally, homogeneous sys-tems with the square number of imposed base points are always non-spe
ial, see[8℄. Su
h systems, i.e., homogeneous with the number of imposed base pointssatisfying some property have been widely studied. For example, systems of theform L(d; m×4h

) have been 
onsidered in [9℄; this 
onsideration has been extendedto systems of the form L(d; m×4h9k

) in [1℄; systems with the number of imposedbase points being nearly a square have been 
onsidered in [4℄; systems of the form
L(d; m×9

1 , m2, . . . , mr) for m1 ≥ m2 ≥ . . . ≥ mr (so 
alled quasiuniform) in [14℄,and systems of the form L(d; m×r) for r ≥ 4m2 in [17℄.The proof of Theorem 10 using tori
 degenerations 
an be found in [3℄. We willgive a simple 
ombinatorial proof in a sequen
e of lemmas. Both proofs exploitthe natural disse
tion of a two-dimensional simplex into k2 simplexes:
but the idea behind is slightly di�erent. In the degeneration approa
h one 
ontrolsthe behaviour of the system �along� the interse
tion of two meeting regions (givenalways by weak inequalities). In our approa
h it is better to 
ompletely separateregions by de�ning them with stri
t inequalities.Lemma 11Conditions in the system L(D; m×16) are independent for

D = {(x, y) ∈ N2 : x + y ≤ 4m + 1};
onditions in the system L(D; m×25) are independent for
D = {(x, y) ∈ N2 : x + y ≤ 5m + 1};thus systems L(4m + 1; m×16) and L(5m + 1; m×25) are non-spe
ial.Lemma 12Systems L(4m; m×16), L(5m; m×25), L(6m; m×36) and L(6m+1; m×36) are empty.Lemma 13Systems L(km; m×k2

) and L(km + 1; m×k2

) are empty for k ≥ 7.Proofs of lemmas are postponed to the next se
tion.



[84℄ Mar
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ki2. ProofsProof of Lemma 2. To prove that dim(L − tL′) = dimL observe that multi-pli
ation by the equation of C ∈ L′ in tth power indu
es an isomorphism between
L− tL′ and L. By a straightforward 
al
ulation one shows that

vdim(L− tL′) = vdimL− tL · L′ +
t2L′2

2
+

t(−3d′ +
∑r

j=1 m′
j)

2
.Moreover,

L′2 − 2vdimL′ = −3d′ +

r
∑

j=1

m′

j ,whi
h 
ompletes the proof.Proof of Theorem 5. Let L = L(d; m1, . . . , mr). Consider the following pro-
edure:Step 1. Sort multipli
ities in non-in
reasing order.Step 2. If k = d−m1−m2 < 0, then take d←− d+k, m1 ←− m1+k, m2 ←− m2+kand go ba
k to Step 1.Step 3. If k = d −m1 −m2 −m3 < 0, then take d←− d + k, mj ←− mj + k for
j = 1, 2, 3 and go ba
k to Step 1.We �nish with a system L′. We will show that in ea
h step the dimensiondoes not 
hange. Indeed, if k = d − m1 − m2 is negative, then ea
h 
urve in

L(d; m1, m2, m3, . . .) is redu
ible and 
ontains the line passing through p1, p2 atleast −k times. In other words, we have the isomorphism
ϕ:L(d− k; m1 − k, m2 − k, m3, . . .)→ L(d; m1, m2, m3, . . .)given by multipli
ation by the equation of the line in kth power. In Step 3 theresult follows from applying the Cremona transformation based on p1, p2, p3 toour system (see eg. [11, Se
tion 3℄). This transformation indu
es the isomorphism

ϕ:L(d− k; m1 − k, m2 − k, m3 − k, m4, . . .)→ L(d; m1, m2, m3, m4, . . .)(the proof of this fa
t using only linear algebra 
an be found in [6, proof of The-orem 3℄; we use the fa
t that the system passed Step 2, so d − m1 − m2 ≥ 0).By an easy 
omputation one 
an show that the virtual dimension does not 
hangein Step 3, while in Step 2 it in
reases by k2+k
2 . Thus for k ≤ −2 we obtain Lto be either empty or spe
ial. In the se
ond 
ase, we know that after some Cre-mona transformations there exists a multiple line in the base lo
us. Again, byeasy 
omputations we 
an show that Cremona transformation preserves the inter-se
tion number, hen
e the multiple line from the base lo
us will be mapped, bythe reversed pro
ess, into a multiple −1-
urve in the base lo
us of L. Therefore Lis either −1-spe
ial or enjoys the same properties (dimension, virtual dimension,emptiness, spe
iality. . . ) as L′, whi
h is standard.



A 
ombinatorial proof of non-spe
iality of systems [85℄Proof of Proposition 6. Assume, by hypothesis, that L2 = L(d; m1, . . . , m9)is spe
ial. We will show that L1 = L(d; m1, m
×3
2 , m×5

3 ) is spe
ial. Let c be thedi�eren
e between the number of 
onditions in L1 and the number of 
onditionsin L2,
c =

(

m1 + 1

2

)

+ 3

(

m2 + 1

2

)

+ 5

(

m3 + 1

2

)

−
9

∑

j=1

(

mj + 1

2

)

.Sin
e ea
h 
ondition 
an lower the dimension by at most one, we have
dim L1 ≥ dimL2 − c > edim L2 − c ≥ vdimL2 − c = vdimL1.Sin
e for d ≥ m1 + m2 + m3, the virtual dimension
vdimL1 ≥

(m1 + m2 + m3)(m1 + m2 + m3 + 3)

2

−
m1(m1 + 1) + 3m2(m2 + 1) + 5m3(m3 + 1)

2
= (m1 −m3) + m2(m1 −m2) + m3(m1 + m2 − 2m3)

≥ 0,we have vdimL1 = edimL1 and 
onsequently
dimL1 > edim L1.Before proving Theorem 7 we must prepare some helpful systems with inde-pendent 
onditions.Definition 14Let m be a positive integer. De�ne an m-re
tangle to be the set

{

(x, y) ∈ N2 : a−
1

2
< x < a + m +

1

2
, b−

1

2
< y < b + m−

1

2

}or the set
{

(x, y) ∈ N2 : a−
1

2
< x < a + m−

1

2
, b−

1

2
< y < b + m +

1

2

}for some nonnegative integers a, b. De�ne an m-triangle to be the set
{

(x, y) ∈ N2 : x > a−
1

2
, y > a−

1

2
, x + y < 2a + m−

1

2

}for some nonnegative integer a. The examples are shown on Figure 1.
Figure 1. Example of 4-re
tangles and 4-triangleLemma 15Let T be an m-triangle, let R be an m-re
tangle. Then 
onditions in the systems

L(T ; m) and L(R; m×2) are independent and these systems are empty.
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in Dumni
kiProof. Observe that there exists parallel lines ℓ1, . . . , ℓm su
h that #(T ∩ℓj) =
j. The proof for L(T ; m) is 
ompleted by Theorem 9 and Bézout Theorem.To deal with L(R; m×2) observe that R 
an be divided into two pie
es R1, R2,su
h that R1 is an m-triangle, while R2 is a rotated m-triangle. By Theorem 8the proof is 
ompleted.Proof of Theorem 7. Let D = {(x, y) ∈ N2 : x+y ≤ d}. We want to show that
onditions in L(D; m1, m

×3
2 , m×5

3 ) are independent. Take the following 
utting of
D into three pie
es:
D1 =

{

(x, y) ∈ D : y > m2 + m3 +
1

2

}

,

D2 =
{

(x, y) ∈ D : y < m2 + m3 +
1

2
and (m3 + 2)y + x > m2

3 + 3m3 −
1

2

}

,

D3 =
{

(x, y) ∈ D : (m3 + 2)y + x < m2
3 + 3m3 −

1

2

}

.By Theorem 8 it is enough to show that 
onditions in systems L(D1; m1),
L(D2; m

×3
2 ), L(D3; m

×5
3 ) are independent. Observe that, by easy 
omputations,an m1-triangle with verti
es (0, m2 + m3 +1), (m1− 1, m2 + m3 +1) and (0, m1 +

m2 + m3) is 
ontained in D1. Similarly, observe that an m2-re
tangle with ver-ti
es (0, m3 + 1), (m2, m3 + 1), (m2, m3 + m2), (0, m3 + m2) and an m2-trianglewith verti
es (m2 + 1, m3), (2m2, m3), (m2 + 1, m3 + m2 − 1) are 
ontainedin D2. Moreover, these two shapes 
an be separated from ea
h other by ana�ne line. For D3, we take three shapes � an m3-re
tangle with verti
es (0, 0),
(m3 − 1, 0), (m3 − 1, m3), (0, m3), another m3-re
tangle with verti
es (m3, 0),
(2m3, 0), (2m3, m3 − 1), (m3, m3 − 1) and �nally an m3-triangle with verti
es
(2m3 + 1, 0), (3m3, 0), (2m3 + 1, m3− 1). By Theorem 8 and Lemma 15 the proofis 
ompleted.

y = m2 + m3 + 1

2

(m
3 + 2)y + x = m2

3 + 3m
3 − 1

2Figure 2. Example of divisions for m1 = 6, m2 = 5, m3 = 4



A 
ombinatorial proof of non-spe
iality of systems [87℄Proof of Lemma 11. The proofs 
an be easily read o� from Figures 3 and 4.The pi
tures are drawn for m = 3, but 
an be easily res
aled. Less obvious 
uttingsare presented, the details are left to the reader. By ε we denote a su�
iently smallpositive rational number.
y = m + 1

2

the same 
uttingas for L(3m; m×9)

Figure 3. Divisions for L(4m + 1; m×16)

y + εx = ε(2m − 1) + m

x
=

ε
y
−

ε
(2

m
+

2
)
+

m

x
=

ε
y
−

ε
(2

m
−

1
)
+

2
m

+
1

Figure 4. Divisions for L(5m + 1; m×25)Proof of Lemma 12. Emptiness of L(6m; m×36) would follow from emptinessof L(6m+1; m×36). Again, the proofs 
an be easily read o� from Figures 5, 6 and7. Observe that if R ⊂ N2 is 
ontained in some m-re
tangle, then L(R; m×2) isempty.
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y + εx = ε(2m − 1) + m

x
=

m
+

1 2

Figure 5. Divisions for L(4m; m×16)

y = m −
1

2

the same 
uttingas for L(4m; m×16)Figure 6. Divisions for L(5m; m×25)

y = 2m + 1

2

y + εx = ε(3m − 1) + m

the same 
uttingas for L(4m; m×16)

Figure 7. Divisions for L(6m + 1; m×36)Proof of Lemma 13. Emptiness of L(km; m×k2

) would follow from emptinessof L(km + 1; m×k2

). The �rst 
utting, into upper and bottom part, is given bythe line y = m− 1
2 . Sin
e k − 1 ≥ 6, we use indu
tion to the upper part, 
uttingit exa
tly as L((k − 1)m + 1; m×(k−1)2). The bottom part
B = {(x, y) ∈ N2 : x + y ≤ km + 1, y ≤ m}



A 
ombinatorial proof of non-spe
iality of systems [89℄gives the system L(B; m×(2k−1)). We will 
over B from right to left with one
m-triangle and (k− 1) m-re
tangles of hight m. This allows to 
over (k − 1)(m +
1) + m = km + k − 1 latti
e points (x, 0) ∈ B, while #{(x, 0) ∈ B} = km + 2.Thus we 
an entirely 
over B and the proof is 
ompleted.Remark 16There is no theoreti
al obstru
tion to make similar proofs for systems of the form
L(km+k0; m

×k2

) for �xed k0. In fa
t, for k satisfying k ≥ k0+2 the indu
tion step(emptiness of L(km + k0; m
×k2

) implies emptiness of L((k + 1)m + k0; m
×(k+1)2))will work. One 
an even hope that for k's satisfying k ≤ K + 1,

K = max{k : vdimL(km + k0; m
×k2

) ≥ 0 for some m},it is always possible to prove non-spe
iality by the presented method.Referen
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