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Marin DumnikiA ombinatorial proof of non-speiality of systemswith at most 9 imposed base pointsAbstrat. It is known that the Segre�Gimigliano�Harbourne�HirshowitzConjeture holds for linear systems of urves with at most 9 imposed basefat points. We give a nie proof based on a ombinatorial method of showingnon-speiality of suh systems. We will also prove, by the same method, thatsystems L(km;m×k

2

) and L(km + 1; m×k
2

) are non-speial.1. IntrodutionLet p1, . . . , pr ∈ P2 = P2(K) be distint points, where K is a �eld of harater-isti 0. The points p1, . . . , pr will be alled imposed base points. Let m1, . . . , mrbe nonnegative integers. By L(d; m1p1, . . . , mrpr) we denote the linear systemof plane urves of degree d with multipliity at least mj at pj , j = 1, . . . , r.The dimension of L(d; m1p1, . . . , mrpr) is upper semiontinuous in the position ofimposed base points and reahes minimum for points in general position. Thisminimum will be denoted by
dimL(d; m1, . . . , mr).We will also write L(d; m1, . . . , mr) for a system with imposed base points ingeneral position, and L(d; m×s1

1 , . . . , m×sr
r ) for repeated multipliities. De�ne thevirtual dimension of L(d; m1, . . . , mr)

vdimL(d; m1, . . . , mr) =
d(d + 3)

2
−

r
∑

j=1

(

mj + 1

2

)and the expeted dimension of L(d; m1, . . . , mr)

edimL(d; m1, . . . , mr) = max{vdimL(d; m1, . . . , mr),−1}.By linear algebra one has
dimL(d; m1, . . . , mr) ≥ edimL(d; m1, . . . , mr)AMS (2000) Subjet Classi�ation: 14H50, 13P10.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[80℄ Marin Dumnikiand L(d; m1, . . . , mr) is said to be speial if strit inequality holds for points ingeneral position, non-speial otherwise.For systems L = L(d; m1, . . . , mr), L′ = L(d′; m′
1, . . . , m

′
r) we have the inter-setion number denoted by L · L′,

L · L′ = dd′ −

r
∑

j=1

mjm
′

j .Definition 1The system L = L(d; m1, . . . , mr) satisfying
• dimL = edimL = 0,
• self-intersetion L2 = L · L = −1,
• the only urve in L is irreduible,will be alled a −1-system.A urve C ⊂ P2 is said to be in the base lous of L(d; m1, . . . , mr) if C is theomponent of eah urve in L(d; m1, . . . , mr). Observe that, by Bézout Theorem,if L is nonempty and L ·L′ = −t < 0 for −1-system L′, then the urve C ∈ L′ is inthe base lous of L at least t times, i.e., the equation of eah urve in L is divisibleby f t, where f is the equation of C. Suh C is said to be a multiple −1-urve inthe base lous, and it fores the system to be speial:

dimL
(by Lemma 2)

= dim(L− tL′) ≥ vdim(L− tL′)
(by Lemma 2)

> vdimL,thus, by nonemptiness of L, we have also
dimL > edim L.Lemma 2Let L = L(d; m1, . . . , mr), let L′ = L(d′; m′

1, . . . , m
′
r) be a −1-system, let L−tL′ =

L(d− d′; m1 −m′
1, . . . , mr −m′

r). If L · L′ = −t < 0, then
dim(L − tL′) = dimL,

vdim(L − tL′) = vdimL +
t2 − t

2
.The proof of the Lemma is postponed to the next setion. The system withmultiple −1-urve in the base lous will be alled −1-speial. We have seen thatevery −1-speial system is speial. The following onjeture due to Harbourne[13℄, Gimigliano [10℄ and Hirshowitz [15℄ states the following.Conjeture 3A system L(d; m1, . . . , mr) with imposed base points in general position is speialif and only if it is −1-speial.In [5℄ it is shown that the above Conjeture is equivalent to the onjetureposed by Segre [18℄.



A ombinatorial proof of non-speiality of systems [81℄Conjeture 4If a system L = L(d; m1, . . . , mr) with imposed base points in general position isspeial, then every urve in L is non-redued.We will refer to either one of the above onjetures as to Segre�Harbourne�Gimigliano�Hirshowitz (SHGH for short) Conjeture. From now on we will as-sume that imposed base points are always in general position.The SHGH Conjeture an be reformulated using standard systems. A system
L(d; m1, . . . , mr) is alled standard if m1 ≥ m2 ≥ . . . ≥ mr and

d ≥ m1 + m2 + m3.Theorem 5In order to show that the SHGH Conjeture holds for at most r points it su�esto show that eah standard system for at most r points is non-speial.For ompleteness, we will give a proof of this well-known Theorem in the nextsetion.The fat that the SHGH Conjeture holds for r ≤ 9 points has been shown byvarious methods in [16℄, [10℄ and [12℄, but the �rst results appeared already in [2℄.A nie idea is to use the following well-known fat.Proposition 6Let d, m1, m2, m3 be nonnegative integers. If d ≥ m1 + m2 + m3, m1 ≥ m2 ≥

m3 and the system L(d; m1, m
×3
2 , m×5

3 ) is non-speial, then any standard system
L(d; m1, m2, m3, m4, . . . , m9) is non-speial.For ompleteness, we will give a proof of this proposition in the next setion.In the paper we will prove that SHGH holds for r ≤ 9 points using onlyelementary fats based on linear algebra. In fat we must prove the following.Theorem 7Let d, m1, m2, m3 be nonnegative integers. If d ≥ m1 +m2 +m3 and m1 ≥ m2 ≥

m3, then the system L(d; m1, m
×3
2 , m×5

3 ) is non-speial.One of the main ingredients is the utting diagram algorithm from [7℄. Brie�y,it is proved that in order to show non-speiality of a given system it su�es to �ndan appropriate �nite set of points in N2 enjoying some ombinatorial properties.To be preise, we must �rst de�ne, for any �nite D ⊂ N2, the system
L(D; m1, . . . , mr)of polynomials with support in D and with multipliity at least mj at pj , j =

1, . . . , r. Formally, we identify N2 with monomials in K[X, Y ]

N2 ∋ (x, y) 7→ XxY y ∈ K[X, Y ]and put
L(d; m1, . . . , mr) = {f ∈ K[X, Y ] : supp(f) ∈ D, multpj

(f) ≥ mj , j = 1, . . . , k}.



[82℄ Marin DumnikiThe set L(D; m1, . . . , mr) is a K-linear subspae of K[X, Y ]. We say that onditionsin L(D; m1, . . . , mr) are independent if
dimK L(D; m1, . . . , mr) = #D −

r
∑

j=1

(

mj + 1

2

)

.The system L(D; m1, . . . , mr) is alled empty if
dimK L(D; m1, . . . , mr) = 0.Observe that, by dehomogenizing and generality assumption, if onditions in

L(D; m1, . . . , mr) are independent for D = {(x, y) : x + y ≤ d}, then
L(d; m1, . . . , mr) is non-speial, similarly L(D; m1, . . . , mr) is empty if and only if
L(d; m1, . . . , mr) is empty.The utting diagram algorithm is based on the following two theorems.Theorem 8 ([7℄, Theorem 14)Let D, D′ ⊂ N2 be �nite, let m1, . . . , mr, m

′
1, . . . , m

′
s be nonnegative integers. If

• D ∩D′ = ∅,
• onditions in L(D; m1, . . . , mr) are independent (resp. L(D; m1, . . . , mr) isempty),
• onditions in L(D′; m′

1, . . . , m
′
s) are independent (resp. L(D′; m′

1, . . . , m
′
s) isempty),

• there exists an a�ne funtion N2: f ∋ (a, b) 7→ q1a+q2b+q3 ∈ Q, q1, q2, q3 ∈
Q suh that f has stritly negative values on D and nonnegative values on
D′,then onditions in

L = L(D ∪D′; m1, . . . , mr, m
′

1, . . . , m
′

s)are independent (resp. L is empty).Theorem 9 ([7℄, Proposition 13)Let D ⊂ N2 be �nite, let m1 be a nonnegative integer. Then onditions in L(D; m1)are independent if and only if D, onsidered as a set of points in Q2, does not lieon a urve of degree m1 − 1. If #D =
(

mj+1
2

) and onditions in L(D; m1) areindependent, then L(D; m1) is empty.The proofs are tehnial but use only simple linear algebra.Theorem 10Let k, m be nonnegative integers. Then systems L(km; m×k2

) and L(km+1; m×k2

)are non-speial.



A ombinatorial proof of non-speiality of systems [83℄It is known that the above theorem holds. More generally, homogeneous sys-tems with the square number of imposed base points are always non-speial, see[8℄. Suh systems, i.e., homogeneous with the number of imposed base pointssatisfying some property have been widely studied. For example, systems of theform L(d; m×4h

) have been onsidered in [9℄; this onsideration has been extendedto systems of the form L(d; m×4h9k

) in [1℄; systems with the number of imposedbase points being nearly a square have been onsidered in [4℄; systems of the form
L(d; m×9

1 , m2, . . . , mr) for m1 ≥ m2 ≥ . . . ≥ mr (so alled quasiuniform) in [14℄,and systems of the form L(d; m×r) for r ≥ 4m2 in [17℄.The proof of Theorem 10 using tori degenerations an be found in [3℄. We willgive a simple ombinatorial proof in a sequene of lemmas. Both proofs exploitthe natural dissetion of a two-dimensional simplex into k2 simplexes:
but the idea behind is slightly di�erent. In the degeneration approah one ontrolsthe behaviour of the system �along� the intersetion of two meeting regions (givenalways by weak inequalities). In our approah it is better to ompletely separateregions by de�ning them with strit inequalities.Lemma 11Conditions in the system L(D; m×16) are independent for

D = {(x, y) ∈ N2 : x + y ≤ 4m + 1};onditions in the system L(D; m×25) are independent for
D = {(x, y) ∈ N2 : x + y ≤ 5m + 1};thus systems L(4m + 1; m×16) and L(5m + 1; m×25) are non-speial.Lemma 12Systems L(4m; m×16), L(5m; m×25), L(6m; m×36) and L(6m+1; m×36) are empty.Lemma 13Systems L(km; m×k2

) and L(km + 1; m×k2

) are empty for k ≥ 7.Proofs of lemmas are postponed to the next setion.



[84℄ Marin Dumniki2. ProofsProof of Lemma 2. To prove that dim(L − tL′) = dimL observe that multi-pliation by the equation of C ∈ L′ in tth power indues an isomorphism between
L− tL′ and L. By a straightforward alulation one shows that

vdim(L− tL′) = vdimL− tL · L′ +
t2L′2

2
+

t(−3d′ +
∑r

j=1 m′
j)

2
.Moreover,

L′2 − 2vdimL′ = −3d′ +

r
∑

j=1

m′

j ,whih ompletes the proof.Proof of Theorem 5. Let L = L(d; m1, . . . , mr). Consider the following pro-edure:Step 1. Sort multipliities in non-inreasing order.Step 2. If k = d−m1−m2 < 0, then take d←− d+k, m1 ←− m1+k, m2 ←− m2+kand go bak to Step 1.Step 3. If k = d −m1 −m2 −m3 < 0, then take d←− d + k, mj ←− mj + k for
j = 1, 2, 3 and go bak to Step 1.We �nish with a system L′. We will show that in eah step the dimensiondoes not hange. Indeed, if k = d − m1 − m2 is negative, then eah urve in

L(d; m1, m2, m3, . . .) is reduible and ontains the line passing through p1, p2 atleast −k times. In other words, we have the isomorphism
ϕ:L(d− k; m1 − k, m2 − k, m3, . . .)→ L(d; m1, m2, m3, . . .)given by multipliation by the equation of the line in kth power. In Step 3 theresult follows from applying the Cremona transformation based on p1, p2, p3 toour system (see eg. [11, Setion 3℄). This transformation indues the isomorphism

ϕ:L(d− k; m1 − k, m2 − k, m3 − k, m4, . . .)→ L(d; m1, m2, m3, m4, . . .)(the proof of this fat using only linear algebra an be found in [6, proof of The-orem 3℄; we use the fat that the system passed Step 2, so d − m1 − m2 ≥ 0).By an easy omputation one an show that the virtual dimension does not hangein Step 3, while in Step 2 it inreases by k2+k
2 . Thus for k ≤ −2 we obtain Lto be either empty or speial. In the seond ase, we know that after some Cre-mona transformations there exists a multiple line in the base lous. Again, byeasy omputations we an show that Cremona transformation preserves the inter-setion number, hene the multiple line from the base lous will be mapped, bythe reversed proess, into a multiple −1-urve in the base lous of L. Therefore Lis either −1-speial or enjoys the same properties (dimension, virtual dimension,emptiness, speiality. . . ) as L′, whih is standard.



A ombinatorial proof of non-speiality of systems [85℄Proof of Proposition 6. Assume, by hypothesis, that L2 = L(d; m1, . . . , m9)is speial. We will show that L1 = L(d; m1, m
×3
2 , m×5

3 ) is speial. Let c be thedi�erene between the number of onditions in L1 and the number of onditionsin L2,
c =

(

m1 + 1

2

)

+ 3

(

m2 + 1

2

)

+ 5

(

m3 + 1

2

)

−
9

∑

j=1

(

mj + 1

2

)

.Sine eah ondition an lower the dimension by at most one, we have
dim L1 ≥ dimL2 − c > edim L2 − c ≥ vdimL2 − c = vdimL1.Sine for d ≥ m1 + m2 + m3, the virtual dimension
vdimL1 ≥

(m1 + m2 + m3)(m1 + m2 + m3 + 3)

2

−
m1(m1 + 1) + 3m2(m2 + 1) + 5m3(m3 + 1)

2
= (m1 −m3) + m2(m1 −m2) + m3(m1 + m2 − 2m3)

≥ 0,we have vdimL1 = edimL1 and onsequently
dimL1 > edim L1.Before proving Theorem 7 we must prepare some helpful systems with inde-pendent onditions.Definition 14Let m be a positive integer. De�ne an m-retangle to be the set

{

(x, y) ∈ N2 : a−
1

2
< x < a + m +

1

2
, b−

1

2
< y < b + m−

1

2

}or the set
{

(x, y) ∈ N2 : a−
1

2
< x < a + m−

1

2
, b−

1

2
< y < b + m +

1

2

}for some nonnegative integers a, b. De�ne an m-triangle to be the set
{

(x, y) ∈ N2 : x > a−
1

2
, y > a−

1

2
, x + y < 2a + m−

1

2

}for some nonnegative integer a. The examples are shown on Figure 1.
Figure 1. Example of 4-retangles and 4-triangleLemma 15Let T be an m-triangle, let R be an m-retangle. Then onditions in the systems

L(T ; m) and L(R; m×2) are independent and these systems are empty.



[86℄ Marin DumnikiProof. Observe that there exists parallel lines ℓ1, . . . , ℓm suh that #(T ∩ℓj) =
j. The proof for L(T ; m) is ompleted by Theorem 9 and Bézout Theorem.To deal with L(R; m×2) observe that R an be divided into two piees R1, R2,suh that R1 is an m-triangle, while R2 is a rotated m-triangle. By Theorem 8the proof is ompleted.Proof of Theorem 7. Let D = {(x, y) ∈ N2 : x+y ≤ d}. We want to show thatonditions in L(D; m1, m

×3
2 , m×5

3 ) are independent. Take the following utting of
D into three piees:
D1 =

{

(x, y) ∈ D : y > m2 + m3 +
1

2

}

,

D2 =
{

(x, y) ∈ D : y < m2 + m3 +
1

2
and (m3 + 2)y + x > m2

3 + 3m3 −
1

2

}

,

D3 =
{

(x, y) ∈ D : (m3 + 2)y + x < m2
3 + 3m3 −

1

2

}

.By Theorem 8 it is enough to show that onditions in systems L(D1; m1),
L(D2; m

×3
2 ), L(D3; m

×5
3 ) are independent. Observe that, by easy omputations,an m1-triangle with verties (0, m2 + m3 +1), (m1− 1, m2 + m3 +1) and (0, m1 +

m2 + m3) is ontained in D1. Similarly, observe that an m2-retangle with ver-ties (0, m3 + 1), (m2, m3 + 1), (m2, m3 + m2), (0, m3 + m2) and an m2-trianglewith verties (m2 + 1, m3), (2m2, m3), (m2 + 1, m3 + m2 − 1) are ontainedin D2. Moreover, these two shapes an be separated from eah other by ana�ne line. For D3, we take three shapes � an m3-retangle with verties (0, 0),
(m3 − 1, 0), (m3 − 1, m3), (0, m3), another m3-retangle with verties (m3, 0),
(2m3, 0), (2m3, m3 − 1), (m3, m3 − 1) and �nally an m3-triangle with verties
(2m3 + 1, 0), (3m3, 0), (2m3 + 1, m3− 1). By Theorem 8 and Lemma 15 the proofis ompleted.

y = m2 + m3 + 1

2

(m
3 + 2)y + x = m2

3 + 3m
3 − 1

2Figure 2. Example of divisions for m1 = 6, m2 = 5, m3 = 4



A ombinatorial proof of non-speiality of systems [87℄Proof of Lemma 11. The proofs an be easily read o� from Figures 3 and 4.The pitures are drawn for m = 3, but an be easily resaled. Less obvious uttingsare presented, the details are left to the reader. By ε we denote a su�iently smallpositive rational number.
y = m + 1

2

the same uttingas for L(3m; m×9)

Figure 3. Divisions for L(4m + 1; m×16)

y + εx = ε(2m − 1) + m

x
=

ε
y
−

ε
(2

m
+

2
)
+

m

x
=

ε
y
−

ε
(2

m
−

1
)
+

2
m

+
1

Figure 4. Divisions for L(5m + 1; m×25)Proof of Lemma 12. Emptiness of L(6m; m×36) would follow from emptinessof L(6m+1; m×36). Again, the proofs an be easily read o� from Figures 5, 6 and7. Observe that if R ⊂ N2 is ontained in some m-retangle, then L(R; m×2) isempty.



[88℄ Marin Dumniki
y + εx = ε(2m − 1) + m

x
=

m
+

1 2

Figure 5. Divisions for L(4m; m×16)

y = m −
1

2

the same uttingas for L(4m; m×16)Figure 6. Divisions for L(5m; m×25)

y = 2m + 1

2

y + εx = ε(3m − 1) + m

the same uttingas for L(4m; m×16)

Figure 7. Divisions for L(6m + 1; m×36)Proof of Lemma 13. Emptiness of L(km; m×k2

) would follow from emptinessof L(km + 1; m×k2

). The �rst utting, into upper and bottom part, is given bythe line y = m− 1
2 . Sine k − 1 ≥ 6, we use indution to the upper part, uttingit exatly as L((k − 1)m + 1; m×(k−1)2). The bottom part
B = {(x, y) ∈ N2 : x + y ≤ km + 1, y ≤ m}



A ombinatorial proof of non-speiality of systems [89℄gives the system L(B; m×(2k−1)). We will over B from right to left with one
m-triangle and (k− 1) m-retangles of hight m. This allows to over (k − 1)(m +
1) + m = km + k − 1 lattie points (x, 0) ∈ B, while #{(x, 0) ∈ B} = km + 2.Thus we an entirely over B and the proof is ompleted.Remark 16There is no theoretial obstrution to make similar proofs for systems of the form
L(km+k0; m

×k2

) for �xed k0. In fat, for k satisfying k ≥ k0+2 the indution step(emptiness of L(km + k0; m
×k2

) implies emptiness of L((k + 1)m + k0; m
×(k+1)2))will work. One an even hope that for k's satisfying k ≤ K + 1,

K = max{k : vdimL(km + k0; m
×k2

) ≥ 0 for some m},it is always possible to prove non-speiality by the presented method.Referenes[1℄ A. Bukley, M. Zompatori, Linear systems of plane urves with a omposite num-ber of base points of equal multipliity, Trans. Amer. Math. So. 355 (2003), no. 2,539�549.[2℄ G. Castelnuovo, Rierhe generali sopra i sistemi lineari di urve piane, Mem.Aad. Si Torino, II 42 (1891).[3℄ C. Ciliberto, O. Dumitresu, R. Miranda, Degenerations of the Veronese and appli-ations, preprint, http://www.math.olostate.edu/�miranda/artiles.html (2009).[4℄ C. Ciliberto, R. Miranda, Nagata's onjeture for a square or nearly-square numberof points, Ri. Mat. 55 (2006), no. 1, 71�78.[5℄ C. Ciliberto, R. Miranda, The Segre and Harbourne-Hirshowitz Conjetures, in:Appliations of algebrai geometry to oding theory, physis and omputation(Eilat 2001), NATO Si. Ser. II Math. Phys. Chem. 36, Kluwer Aad. Publ.,Dordreht, 37�78 (2001).[6℄ M. Dumniki, An algorithm to bound the regularity and nonemptiness of linear sys-tems in Pn, J. Symb. Comp. 44 (2009), 1448�1462, arXiv:math.AG/0802.0925v1.[7℄ M. Dumniki, Cutting diagram method for systems of plane urves with basepoints, Ann. Polon. Math. 90 (2007), 131�143.[8℄ L. Evain, Computing limit linear series with in�nitesimal methods, Ann. Inst.Fourier (Grenoble) 57 (2007), no. 6, 1947-1974.[9℄ L. Evain, La fontion de Hilbert de la réunion de 4h gros points génériques de P
2de meme multipliité, J. Algebrai Geom. 8 (1999), no. 4, 787�796.[10℄ A. Gimigliano, On linear systems of plane urves, Thesis, Queen's University,Kingston (1987).[11℄ A. Gimigliano, Our thin knowledge of fat points, Queen's Papers in Pure andAppl. Math. 83, Queen's Univ., Kingston, ON, (1989).[12℄ B. Harbourne, Antianonial rational surfaes, Trans. Amer. Math. 349 (1997),1191�1208.
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