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A note on some iterative roots

Abstract. In this paper some orientation-preserving iterative roots of an
orientation-preserving homeomorphism F:S' — S' which possess periodic
points of order n are considered. Namely, iterative roots with periodic points
of order n. All orders of such roots are determined and their general con-
struction is given.

Let X be a nonempty set. A function g: X — X is called an iterative root of
a given function f: X — X if ¢"(x) = f(z) for x € X. The number m > 2 is
called the order of the iterative root and g™ denotes m-th iterate of g. Moreover,
we say that = € X is a periodic point of f of order n € N, n > 1 if

ff(z)=2 and fF)#azforke{l,...,n—1}.

If f(z) = x, then z is said to be a fized point of f. The set of all periodic (fixed)
points of f will be denoted by Per f (Fix f).

In [9] M.C. Zdun proved that every orientation-preserving homeomorphism
F:8' — 8! possessing periodic points of order n is a composition of two
orientation-preserving homeomorphisms T, G: S' — S!. Function G has no pe-
riodic points except fixed points and T is such that 7" = idg:. Using this result
he determined all continuous iterative roots with periodic points for homeomor-
phisms having fixed points.

In the present paper we apply Zdun’s theorem to the problem of finding some
continuous iterative roots for an orientation-preserving homeomorphism F: S! —
S! with periodic points of order n. Namely, we shall give conditions under which
continuous iterative roots with periodic points of order n exist and give the con-
struction of these roots.

Now, we recall some useful notations and definitions related to the mappings
of the circle. Let u,w € S' and u # w, then there exist t;,t5 € R such that
t1 <ts <t1+1and u=e? and w = 2™2 Pyt

W:: {e%it: te(tita)}, [uw ::(ijU{u,w}, [u,—wj::(Tu;))U{u}.
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These sets are called arcs.
For every homeomorphism F: S — S there exists a unique (up to translation
by an integer) homeomorphism f:R — R such that

F (627Tim) _ e?ﬂ'if(:c)
and
fla+1)= f() +k
for all z € R, where k € {—1,1}. We call F orientation-preserving if k = 1, which
is equivalent to the fact that f is increasing.
Moreover, for every continuous function G: I — J, where I = {?™¢ : t € [a, b]}

and J = {e?™* : ¢ € [c,d]} there exists a unique continuous function g: [a, b] —
[¢, d] such that

G (e2m7) = ¢2ria(e), v € [a,b].

In this case we also call g the lift of G and we say that G preserves orientation if
g is strictly increasing.
For any orientation-preserving homeomorphism F: S' — S, the limit

alF) = nl;n;o fT(JS) (mod 1), reR
always exists and does not depend on the choice of x and f. This number is
called the rotation number of F (see [3|). It is known that «a(F') is a rational
and positive number if and only if F' has a periodic point (see for example [3]).
If F: S* — S' is an orientation-preserving homeomorphism such that «(F) = £,
where ¢, n are positive integers with ¢ < n and ged(g,n) = 1, then Per F' contains
only periodic points of order n (see [7], [5]). Moreover, there exists a unique number
p €{1,...,n—1}, called the characteristic number of F, satisfying pg = 1 (mod n).

From now on put np :=n and char F' := p. The following result comes from [8].

LEMMA 1
If F: S' — S' is an orientation-preserving homeomorphism with Per F # 0, then
for every z € Per F,

chharF(Z) F(k+1) charF(Z)

Arg < Arg , k=0,....,np—2.
z

For fixed z € Per I we define the partition of S' onto the following arcs

Iy = In(z) == [chharF(z),F<k+1>charF(z)), Ee{0,...,np—1}. (1)
Let us note that

F[Ik] _ [chharFqu(Z)’F(kJrl)charFJrl(Z))

[Fk char F+q char F (Z) F(k—i—l) char F+q char F(Z))
3

:I(k+q)(modnp)u kE{O,...,nF—l},

where ¢ = npa(F).
We shall use the following property (see [9]).
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REMARK 1
Let n € N and p,q € {0,...,n — 1} satisfy pg = 1 (modn) and ged(g,n) = 1. The
mapping {0,...,n —1} 3 d — i4 := —dp (modn) € {0,...,n — 1} is a bijection.

Moreover, d + iqqg = 0 (mod n).

The next theorem also comes from [9] and it is a modification of the factoriza-
tion theorem (see [9], Theorems 5 and 9).

THEOREM 1

Let F:S' — S' be an orientation-preserving homeomorphism, z € Per F' and
let {la}taeqo,...np—1} be the family defined in (1). Then there ewists a unique
orientation-preserving homeomorphism T:S* — S having periodic points of order
ng and such that PerT = St and

{Td o (Fmr)itlo TI;j, ifig<k—1,

To (F"7) o Tﬁdd, ifig>k—1

F“}’;:-]np _ Ta(F)an o

ford, ke {0,1,...,np — 1}, j €N.

Let us stress that T is unique up to a periodic point of F. Moreover, F"F [I;] =
Ia, T1g] = I(g41) (moan) for d € {0,...,np — 1} and T"* = idg:. Such a function
T will be called a Babbage function of I (see [9]).

In view of the above theorem (see also [9], Corollary 6) for every orientation-
preserving homeomorphism F: S!' — S with () # Per F and for every zy € Per F
we have

T9(F"r(2)), z€ Iy(z0),
F(z) =
{Tq(z), S St \I()(Zo),

where ¢ = a(F)np and T is a Babbage function of F.
We start with the following

(2)

REMARK 2
Let n,m > 2 be integers and let ¢,¢’ € {1,...,n — 1} be such that ged(¢,n) =1
and mq’ = g (mod n), then ged(m,n) = 1.

Proof. 'To obtain a contradiction suppose that m = ka and n = kb for some
integers k > 1 and a,b > 1. This and the fact that mq¢’ = ¢ (modn) give kaq’ =
q + jkb for some j € Z. Therefore k(aq’ — jb) = ¢, which contradicts the fact that
ged(g,n) = 1.

REMARK 3

Let n,m > 2 be relatively prime integers and let ¢ € {1,...,n — 1} be such that
ged(g,n) = 1. There is a unique ¢’ € {1,...,n — 1} such that ged(¢’,n) = 1 and
mq’ = ¢ (modn).

Proof. The fact that ged(m,n) = 1 implies that the equation mx + ny = ¢
has integer solutions x,y. In particular, there is exactly one pair (¢, j), where
¢ €{0,...,n—1} and j € Z such that mq¢ + jn = q. Thus mq¢’ = ¢(modn).
Moreover, ¢’ # 0 as ged(g,n) = 1. In the same manner as in the proof of Remark 2
we can see that ged(¢’,n) = 1.
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From Remark 2 we can conclude that

COROLLARY 1
Let F: S — S be an orientation-preserving homeomorphism with § # Per F' and
let m > 2 be an integer. If equation

G™(z) = F(z), ze S (3)
has continuous and orientation-preserving solution such that ng = np, then
ged(m,np) = 1.

It appears that ged(m,np) = 1 is also a sufficient condition for the existence of
continuous and orientation-preserving solutions of (3) with ng = np. The proof
of this property and the description of the solution of (3) in the case Per F' = S1
can be found in [6]. Therefore, from now on assume that Per F' # S'. Before we
present some results let as recall that if (3) holds, then Per F' = Per G.

LEMMA 2
Let F,G:S' — S' be orientation-preserving homeomorphisms possessing periodic
points of order np = ng = n and satisfying equation (3) for an m > 2. Let

moreover zg € Per ' = PerG and Jj, := [GkCharG(zo),G(kH)CharG(zo)), k €
{0,...,n—1}. Then

(i) Jx = Ix(20) for k € {0,...,n — 1}, where the arcs I(z0) are defined by (1);
(i) (G"e)™ =F"r;

(iii) of T and V are Babbage functions of F and G, respectively, [x] stands for
an integer part of x € R and i/, := —d char G (modn) for d € {0,...,n—1},

then
‘/Il} :Ta(F)nonoGnﬁdoj‘tl d (4)
where
m[2] -1 d-o
Bq = [%]— , de{l,...,n—1}, i&gm—[%}n—l, (5)
-[2], de{l,....,n—1}, i, >m—[2]n—-1.

Proof Fix z9 € Per F and assume that (3) holds, nr = ng = n. Put
q == a(F)n, ¢ = a(G)n and b := [Z]. From the fact that ged(m,n) = 1
(see Corollary 1), we get

m=k+bn for some k € {1,...,n—1}. (6)

To prove (i) it suffices to show that G Par & (zq) = FharF(20) Equation (3) yields
ma(G) = a(F) (mod 1) (see [2]). Thus mq’ = g (modn), hence

mgq’ char F char G = g char F char G (mod n)
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and finally, in view of the definition of char F,
m char F' = char G (modn). (7)
From (7), (3) and since zg is a periodic point of G of order n we obtain
GeharG () = gmehar Py — pehar P,y

Note that (ii) is an immediate consequence of equation (3) and equality np =

ng.
Now we prove (iii). From Theorem 1, (6) and (i) we get

) Vido (GM)YloV 4, ifi, <k-—1,
r}d:GfI+bn:quo d ( )b ,(yd . .,d_
d Vo (GM) oV ifi,>k—-1

ford € {0,1,...,n—1}. Furthermore, observe that condition mq’ = ¢ (modn) and
(6) give k¢’ = ¢ (modn), which, in view of the fact that V is a Babbage function
of G of order n, implies V9% = V4. Therefore,

m
[1a

Vido (Gt oVTd it <k-—1,
_qu{ (&) |a ¢ (8)

Vo (GM)’ oV 4, ifif, >k—1

ford e {0,1,...,n—1}.
On the other hand, we may write (5), as follows

m—b—1, d=0,
Ba=1{ —b—1, de{l,....n—1}, i, <k—1,

—b, de{l,....,n—1}, i, >k—1.
Let d =0, then iy =0 <k —1 and b = m — [y — 1. Combining these with (8) we
obtain

1y = V7o (G, = Vo (Gl )" .
Let d € {1,...,n — 1}. Replacing b by =04 — 1 if i}, < k —1 (resp. by —fq if
i, >k —1) in (8) yields

m _ioVeo G o e
Ild Ild

Finally,
. Vq Vd o G*ﬂﬁd‘f*mn o ‘/"I—dd7 d — 07 9
=V ° VdoG—"ﬁdovl;d, de{l,...,n—1}. )
d
Equating (9) with (2) yields for d € {1,...,n — 1},
TG =VieVieG "oV 7 (10)

While, for d = 0, we get

T1o By — V1o Gy,
o [To
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which, in view of (ii), gives

T4 = Vi G . (11)
From (10) and (11) we have
T‘quZV’JOVdoG_"BdoV‘;dd, de{0,...,n—1}. (12)
Hence
Ty = VI VP 0 G o (00 e

As VP = VP modn) for p € N we obtain

CZ—“qu (mod n) = Vq [e) VP o G_”lﬁp (modn) o ‘/‘I_pp(modn)7 P c N (13)
Now let s recall that T(Ia] = I(d+q) (moam) for d € {0,...,n —1}. This, (11) and
(13) imply

T‘qu _ (Tq)il _ (Vq o V=14 o =nBa-1) (mod n) o V—(l_l)Q)
0 0

o (V‘I o VU=2)aG—nBeu—2) (modn) o Vf(l—z)q)
0o (VIoVIoG oV 1) o (V1oG ™)
ﬁq(l—l) (mod ’rl)+/8q(172) (mod 7l)+"'+;8q+,30)

)

1 —n(
=Vo G\Io
which gives

qu —7la g G"(ﬁq(zfl) (mod n)tBq(1—2) (modn)-‘r...-‘rﬁq-i-ﬁo)

[Zo [To (14)

forl € {1,...,n}. Now fixd € {1,...,n—1}. Since ged(q,n) = 1 there is a unique
l€{1,...,n} such that l¢g = d (modn). Hence by (13) we have
T — T4 — VoV o G Blamodn) o 1/l

[1a [T14 (mod n) 114 (mod n)

By substituting (14) twice to the above equation we obtain

Tq

‘] — Vq o (qu o Gn(ﬁq(lfl) (mod n)“rﬁq(le) (mod n)++ﬁq+50)) o anﬁlq (mod n)
d

° (G_n(ﬁq(lfl) (mod n) TBq(1—2) (mod n)+...+ﬁq+ﬁo) ° T—lq )

[T14 (mod n)

— V90T o G "Bia(modn) o T4

|Ilq (mod n) '

This and the fact that T is a Babbage homeomorphism of F' of order n, i.e.,
T'? = Tla(medn) — 7d_vield
Vi =T%0T%0 G"Pa o T ¢
[ 1a [a”

which in view of (11) completes the proof of (4).
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LEMMA 3
Let u,w € S, uw # w and I = [u,w|. For every integer m > 2 and every
orientation-preserving homeomorphism F:I — I with Fix F # 0 there ewist in-

finitely many orientation-preserving homeomorphisms G: I — I satisfying (3) and
such that Fix G # ().

Proof. Let a,b € R be such that a < b < a+ 1 and u = €*™® and w = >,
Then

r (627riac) _ e27rif(w)7 = [CL, b]
for a unique increasing homeomorphism f: [a, b] — [a, b]. Clearly, f possesses fixed

points. By Theorem 11.2.2 (see [4] ch.11), there exist infinitely many strictly
increasing continuous solutions of

9" (@) = f(z),  =€lab],
with Fix g # (. For every such function g:[a,b] — [a,b] define G: I — I by
G (e¥™7) = e?mi9(@) x € [a,b].
Then FixG # () and
G™ (2717 = 2™ (@) = 27if(@) = pr(e2miv), z € [a,b].

In the proof of the next theorem we will use the following result (see for example

[7])-

LEMMA 4

Suppose that F: S — S is an orientation-preserving homeomorphism, z € Per F,
{2, F(2),...,F"" Y2)} = {20, 21, -, 2np—1}, where 29 = 2,

Argz—d<Arg@<2w, de{0,...,np—2}
20 20

and F(20) = zq. Then a(F) = ;L.

THEOREM 2

Let F: S* — S be an orientation-preserving homeomorphism and let m > 2 be an
integer such that gcd(m,np) = 1. There exists an orientation-preserving homeo-
morphism G: S' — St satisfying (3) and such that ng = nr.

For every such an m and every zy € PerF, providing that I, = I4(z0) for
de€{0,...,np — 1} are defined by (1), the solution of (3) is of the form:

(e ) (H(2)), 2 €,

(\I/charF)q (2)7 2 e St \107
where ¢ € {1,...,np — 1} fulfils mq’ = q(modnp), ¢ :=npa(F), H: Iy — Iy is

an orientation-preserving homeomorphism such that Fix H # 0, H™ = F’" and
[To

G(z) == (15)

U(z):=TT0T%0 H* o T7%(2), z€ly, de{0,...,np — 1}, (16)
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where T:S' — St is a Babbage function of F and (34 for d € {0,...,nr — 1} are
defined by (5) with n = np and i, uniquely determined by (d +i,q') (modng) =0
forde {0,...,np —1}.

Proof. Fix zg € Per F and a mapping H:Iy — Iy such that Fix H # 0 and
H™ = F"}f (by Lemma 3 there are infinitely many such mappings). Observe that

U[Iy) =T T%0 HO[Ig] = T[14) = I(d+q) (modn): de{0,...,np—1}. (17)

Moreover, as a composition of orientation-preserving homeomorphisms, ¥, is an
orientation-preserving homeomorphism. Hence ¥: S' — S! and G are orientation-
preserving homeomorphisms.

Now we show that ng = np. Put z4 := FIhF(z0) for d € {1,...,np — 1}.
Thus by (1), (17) and since ¥ preserves the orientation we get

\If(zd) = Z(d+q) (mod np)s de {0,...,TLF—1}.

This, Lemma 1 and Lemma 4 yield a(¥) = ;I = «a(F) and, in consequence,
ny = np and char U = char F. Next note that H(z9) = zo and H(z1) = z1.
Therefore, by (15) and the definition of char F,

G(Zd) = \I/q, CharF(Zd) = Z(d+qq’ char F) (modnp) — #(d+q’) (modng)> (18)

ford € {0,...,np — 1}. As ged(¢’,nr) = 1 (see Remark 3) we get np = ng.
Our next goal is to prove that ¥"# =idg:i. From (17) and (16), in view of the
fact that TP = TP(mednr) for p € N, we obtain

\I/|nIF _ (Tq o Td-‘r("F—l)q o0 HP(+(np—1)a) (modnp) o T—d-‘r(”F—l)Q)
a

0...0 (Tq o T4 o HBd+a) modnp) o TﬁdJrq) o (Tq oT%o HP o T‘;d)
d

— T9 o THMF=1)a o FFBatnp—1)a) (modnp)t+Ba o T‘;d
d

for d € {0,...,np — 1}. Moreover, since ged(g,nr) = 1 we get
{d,(d+ q) (modnp),...,(d+ (np —1)q) (modng)} ={0,1,...,np — 1}.
We thus get

ViE =TT Do ghnpteth o d de{0,...,np—1}.  (19)

Putting b := [%] we have (6) with n = np. By Remark 3 and Remark 1 it
follows that the mapping {0,...,np —1} 3 d+— i), € {0,...,np —1} is a bijection.
Therefore, i/, < m —bng —1 = k — 1 holds true for exactly k arguments and one

of them is 0, as i, = 0 < k — 1. Hence in view of (5),
Bop—1+...+0o=mr—k)(=b)+(k—-1)(-b—-1)+m—-b—1=0.

This and (19) give U™ =idg:.
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What is left is to show that (3) holds. Put W<harf — V. By Theorem 1
homeomorphism V is a Babbage function of G. Since gchar F = 1 (modng) and
UnF =idg:1 we have ¥ = Wecharf — 14 Hence by (16),

Ve :quTdoHﬁdoz’l;dd, de{0,...,np —1}. (20)
Applying the similar reasoning as in the proof of (iii) of Lemma 2 we obtain
TG =VieVie H PioV 4 de{0,...,np—1}. (21)
Indeed, as TP = TP (modnr) for p € N from (20) we get
q — 74 P Bp (mod n -p
V\Ip(moan) =T%oT" o Hrlmednr) OT\Ip(moan)’ pe N. (22)
Thus
Vlllt(zJ _ T[q 5 ngfq(zfl) (mod n ) TBq(1—2) (moan)+~~~+Bq+BO),
which gives
T‘qu —yla g H_(Bq(lfl) (mod n ) TBq-2) (moan)+~~~+ﬁq+ﬁo) (23)
0 [To

for i € {1,...,np}. Now fix d € {1,...,np — 1}. Since ged(gq,nr) = 1 there is
a unique [ € {1,...,np} such that g = d (mod nr). Hence by (22) we have
Ve = V4 — T 6T o FBramednp) o T

|Id - ‘Ilq (mod np) ‘Ilq (modnp)-
By substituting (23) twice to the above equation we obtain

Vq

0= TY o (qu o H—(Bq(zfm (mod n ) TBq(1—2) (moan)-‘r...-i-ﬁq-i—ﬁo)) o Hﬁlq(mod np)
a

o (H(ﬁq(Lfl) (mod n ) TBq(1—2) (moan)+~~~+ﬁq+ﬁo) ° V—lq )

Ilq (mod np)

= T90 Vi o GBramodnp) o /74

Tig (modnp)”

This and the fact that V' is a Babbage homeomorphism of G of order np, i.e.,
Via = yla(modnr) — pd_vield (21).

Now observe that from (2) and (21), since H™ = Fﬁf and kq¢' = g (modnp),
we get

, Vd OH—ﬁd"l‘m o ‘/;d7 d — 0,
‘F‘Id:qu o d — —d‘d
Vio H ﬁdovud, de{l,...,np—1},

which in view of (15), (6) and Theorem 1 gives F' = G™.

We finish with the following observations

REMARK 4
If the assumptions of Theorem 2 are fulfilled, then

(i) from (18), Lemma 4, Lemma 1 it follows that a(G) = %,
(ii) by Lemma 3 there are infinitely many solutions of (3) with ng = np,

(iii) Lemma 2 and Theorem 2 imply that every orientation-preserving continuous
solution of (3) with ng = np is given by (15) and (16).
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