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The harmonic Dirichlet problem in a planar domain with smooth

cracks of an arbitrary shape is considered in case, when the solution is
not continuous at the ends of the cracks. The well-posed formulation of
the problem is given, theorems on existence and uniqueness of a classical
solution are proved, the integral representation for a solution is obtained.
With the help of the integral representation, the properties of the solution
are studied. It is proved that a weak solution of the Dirichlet problem in
question does not typically exist, though the classical solution exists.

bdcfe gXh\i`j0k0l0m`h\n j0g

Boundary value problems in planar domains with cracks are widely used
in physics and in mechanics, and not only in mechanics of solids, but in fluid
mechanics as well, where cracks (or cuts) model wings or screens in fluids.
Integral representation of a classical solution to the harmonic Dirichlet prob-
lem in a planar domain with cracks of an arbitrary shape has been obtained
by the method of integral equations in [5, 4, 3, 2, 6] in case when the solu-
tion is assumed to be continuous at the ends of the cracks. In the present
paper this problem is considered in case when the solution is not continuous
at the ends of the cracks. The well-posed formulation of the boundary value
problem is given, theorems on existence and uniqueness of a classical solu-
tion are proved, the integral representation for a classical solution is obtained.
Moreover, properties of the solution are studied with the help of this integral
representation. It appears that the classical solution to the Dirichlet problem
considered in the present paper exists, while the weak solution typically does
not exist, though both the cracks and the functions specified in the boundary
conditions are smooth enough. This result follows from the fact that the square
of the gradient of a classical solution basically is not itegrable near the ends
of the cracks, since singularities of the gradient are rather strong there. This
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result is very important for numerical analysis, when finite element and finite
difference methods are used to obtain numerical solution. To use difference
methods for numerical analysis one has to localize all strong singularities first
and next to use difference method in a domain excluding the neighbourhoods
of the singularities.
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By an open curve we mean a simple smooth non-closed arc of finite length
without self-intersections [8].

In a plane with Cartesian coordinates x = (x1, x2) ∈ R
2 we consider a

connected domain D bounded by simple closed curves Γ2
1, . . . ,Γ

2
N2

of class C2,λ,
λ ∈ (0, 1]. It is assumed that the curves Γ2

1, . . . ,Γ
2
N2

do not have common

points. We set Γ2 =
⋃N2

n=1 Γ2
n , therefore ∂D = Γ2. We will consider both the

case of an exterior domain D and the case of an interior domain D, when the
curve Γ2

1 encloses all others. In the domain D we consider disjoint open curves

Γ1
1, . . . ,Γ

1
N1

of class C2,λ. We set Γ1 =
⋃N1

n=1 Γ1
n , so Γ1 ⊂ D. We assume that

points of the curves Γ1, including endpoints, are interior points of the domain
D. In other words, it is assumed that the closed curves Γ2 and the open curves
Γ1 do not have any common points, moreover, endpoints of Γ1 do not belong
to Γ2. We set Γ = Γ1 ∪ Γ2.

We assume that each curve Γj
n is parametrized by the arc length s:

Γj
n = {x : x = x(s) = (x1(s), x2(s)), s ∈ [aj

n, b
j
n]}, n = 1, . . . , Nj , j = 1, 2,

so that a1
1 < b11 < . . . < a1

N1
< b1N1

< a2
1 < b21 < . . . < a2

N2
< b2N2

and the domain
D is placed to the right when the parameter s increases on Γ2

n . The points
x ∈ Γ and values of the parameter s are in one-to-one correspondence except
the points a2

n , b2n , which correspond to the same point x for n = 1, . . . , N2 .
Further on, the sets of the intervals

N1
⋃

n=1

[a1
n, b

1
n],

N2
⋃

n=1

[a2
n, b

2
n],

2
⋃

j=1

Nj
⋃

n=1

[aj
n, b

j
n]

on the Os-axis will be denoted by Γ1, Γ2 and Γ too.
For j = 0, 1 and r ∈ [0, 1] set

Cj,r(Γ2
n) = {F(s) : F(s) ∈ Cj,r[a2

n, b
2
n], F (m)(a2

n) = F (m)(b2n), m = 0, . . . , j}

and

Cj,r(Γ2) =

N2
⋂

n=1

Cj,r(Γ2
n).
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The tangent vector to Γ at the point x(s), in the direction of growth of the pa-
rameter of s, will be denoted by τx = (cosα(s), sinα(s)), while the normal vec-
tor coinciding with τx after counterclockwise rotation by the angle of π

2 , will be
denoted by nx = (sinα(s),− cosα(s)). According to the chosen parametriza-
tion cosα(s) = x′1(s), sinα(s) = x′2(s). Thus, nx is the interior normal to D
on Γ2. By X we denote the point set consisting of the endpoints of Γ1:

X =

N1
⋃

n=1

(x(a1
n) ∪ x(b1n)).

Let the plane be cut along Γ1. We consider Γ1 as a set of cracks (or cuts).
The side of the crack Γ1, which is situated on the left when the parameter s
increases, will be denoted by (Γ1)+, while the opposite side will be denoted by
(Γ1)−.

We say that the function u(x) belongs to the smoothness class K1, if

1. u ∈ C0(D \ Γ1 \X) ∩ C2(D \ Γ1), ∇u ∈ C0(D \ Γ1 \ Γ2 \X);

2. in the neighbourhood of any point x(d) ∈ X the equality

lim
r→+0

∫

∂S(d,r)

u(x)
∂u(x)

∂nx

dl = 0 (1)

holds, where the curvilinear integral of the first kind is taken over a circle
∂S(d, r) of radius r with the center in the point x(d), nx is a normal in
the point x ∈ ∂S(d, r), and d = a1

n or d = b1n , n = 1, . . . , N1 .

Remark 1

By C0(D \ Γ1 \X) we denote the class of functions continuous in D\Γ1, which
are continuously extendable to the sides of the cracks Γ1 \X from the left and
from the right, but their limit values on Γ1\X can be different from the left and
from the right, so that these functions may have a jump on Γ1 \X . To obtain
the definition of the class C0(D \ Γ1 \Γ2\X) we have to replace C0(D \ Γ1\X)
by C0(D \ Γ1 \ Γ2 \X) and D \ Γ1 by D \ Γ1 in the previous sentence.

Problem D1

Find a function u(x) from K1 , so that u(x) satisfies Laplace equation

ux1x1
(x) + ux2x2

(x) = 0, (2a)

in D \ Γ1 and satisfies the boundary conditions

u(x)
∣

∣

x(s)∈(Γ1)+
= F+(s), u(x)

∣

∣

x(s)∈(Γ1)−
= F−(s), u(x)

∣

∣

x(s)∈Γ2 = F (s). (2b)

If D is an exterior domain, then we add the following condition at infinity:

|u(x)| ≤ const, |x| =
√

x2
1 + x2

2 → ∞. (2c)
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All conditions of the Problem D1 must be satisfied in a classical sense. The
boundary conditions (2b) on Γ1 must be satisfied in the interior points of Γ1,
their validity at the ends of Γ1 is not required.

Theorem 1

If Γ ∈ C2,λ, λ ∈ (0, 1], then there is no more than one solution to the pro-
blem D1 .

It is enough to prove that the homogeneous Problem D1 admits the trivial
solution only. The proof will be given for an interior domain D. Let u0(x) be a
solution to the homogeneous Problem D1 with F+(s) ≡ F−(s) ≡ 0, F (s) ≡ 0.
Let S(d, ε) be a disc of small enough radius ε, with the center in the point x(d)
(d = a1

n or d = b1n , n = 1, ..., N1). Let Γ1
n,ε be a set consisting of such points

of the curve Γ1
n which do not belong to discs S(a1

n, ε) and S(b1n, ε). We choose
a number ε0 so small that the following conditions are satisfied:

1) for any 0 < ε ≤ ε0 the set of points Γ1
n,ε is a unique non-closed arc for

each n = 1, ..., N1;

2) the points belonging to Γ \ Γ1
n are placed outside the discs S(a1

n, ε0),
S(b1n, ε0) for any n = 1, ..., N1;

3) discs of radius ε0 with centers in different ends of Γ1 do not intersect.

Set

Γ1,ε =

N1
⋃

n=1

Γ1
n,ε, Sε =

N1
⋃

n=1

[S(a1
n, ε) ∪ S(b1n, ε)], Dε = D \ Γ1,ε \ Sε .

Since Γ2 ∈ C2,λ, u0(x) ∈ C0(D \ Γ1) (remind that u0(x) ∈ K1), and since
u0|Γ2 = 0 ∈ C2,λ(Γ2), and due to the theorem on regularity of solutions of
elliptic equations near the boundary [1], we obtain: u0(x) ∈ C1(D \ Γ1). Since
u0(x) ∈ K1 , we observe that u0(x) ∈ C1(Dε) for any ε ∈ (0, ε0]. By C1(Dε)
we mean C1(Dε ∪ Γ2 ∪ (Γ1,ε)+ ∪ (Γ1,ε)− ∪ ∂Sε). Since the boundary of the
domain Dε is piecewise smooth, we write down Green’s formula [10, p. 328] for
the function u0(x):

‖∇u0‖2
L2(Dε) =

∫

Γ1,ε

(u0)+
(

∂u0

∂nx

)+

ds−

∫

Γ1,ε

(u0)−
(

∂u0

∂nx

)−

ds

−

∫

Γ2

u0 ∂u
0

∂nx

ds+

∫

∂Sε

u0 ∂u
0

∂nx

dl.

The exterior (with respect to Dε) normal on ∂Sε at the point x ∈ ∂Sε is denoted
by nx . By the superscripts + and − we denote the limit values of functions
on (Γ1)+ and on (Γ1)−, respectively. Since u0(x) satisfies the homogeneous
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boundary condition (2b) on Γ, we observe that u0|Γ2 = 0 and (u0)±|Γ1,ε = 0
for any ε ∈ (0, ε0]. Therefore

‖∇u0‖2
L2(Dε) =

∫

∂Sε

u0 ∂u
0

∂nx

dl, ε ∈ (0, ε0].

Setting ε → +0, taking into account that u0(x) ∈ K1 and using the rela-
tionship (1), we obtain:

‖∇u0‖2
L2(D\Γ1) = lim

ε→+0
‖∇u0‖2

L2(Dε) = 0.

From the homogeneous boundary conditions (2b) we conclude that u0(x) ≡ 0
in D \ Γ1, where D is an interior domain. If D is an exterior domain, then
the proof is analogous, but we have to use the condition (2c) and the theorem
on behaviour of the gradient of a harmonic function at infinity [10, p. 373].
The maximum principle cannot be used for the proof of the theorem even in
the case of the interior domain D, since the solution to the problem may not
satisfy the boundary condition (2b) at the ends of the cracks, and it may not
be continuous at the ends of the cracks.

¨0cf©0ª0n «Xh\�0g0mX��jX����mX� �¬«0«0n mX�¬�¬«0j0� lXh\n j0g

Let us turn to solving the Problem D1 . Consider the double layer harmonic
potential with the density µ(s) specified at the open arcs Γ1:

w[µ](x) = −
1

2π

∫

Γ1

µ(σ)
∂

∂ny

ln |x− y(σ)| dσ. (3)

Theorem 2

Let Γ1 ∈ C1,λ, λ ∈ (0, 1]. Let S(d, ε) be a disc of a small enough radius ε with
the center in the point x(d) (d = a1

n or d = b1n, n = 1, ..., N1).

I. If µ(s) ∈ C0,λ(Γ1), then w[µ](x) ∈ C0(R2 \Γ1 \X) and for any x ∈S(d, ε),
such that x /∈ Γ1, the inequality holds: |w[µ](x)| ≤ const.

II. If µ(s) ∈ C1,λ(Γ1), then

1) ∇w[µ](x) ∈ C0(R2 \ Γ1 \X);

2) for any x ∈ S(d, ε), such that x /∈ Γ1, the formulae hold

∂w[µ](x)

∂x1
=

1

2π

∓µ(d)

|x− x(d)|
sinψ(x, x(d)) + Ω1(x),

sinψ(x, x(d)) =
x2 − x2(d)

|x− x(d)|
,
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∂w[µ](x)

∂x2
=

1

2π

±µ(d)

|x− x(d)|
cosψ(x, x(d)) + Ω2(x),

cosψ(x, x(d)) =
x1 − x1(d)

|x− x(d)|
,

|Ωj(x)| ≤ const · ln
1

|x− x(d)|
, j = 1, 2,

the upper sign in the formulae is taken if d = a1
n , while the lower

sign is taken if d = b1n;

3) for w[µ](x) the relationship holds

lim
ε→+0

∫

∂S(d,ε)

w[µ](x)
∂w[µ](x)

∂nx

dl = 0,

where the curvilinear integral of the first kind is taken over the circle
∂S(d, ε); in addition, nx = (− cosψ(x, x(d)),− sinψ(x, x(d))) is the
normal at x ∈ ∂S(d, ε), directed to the center of the circle;

4) |∇w[µ](x)| belongs to L2(S(d, ε)) for any small ε > 0 if and only if
µ(d) = 0.

Class C0(R2 \ Γ1 \X) is defined in the remark to the definition of the class
K1 (Remark 1), if we set D = R

2. The proof of the theorem is based on the
representation of a double layer potential in the form of the real part of the
Cauchy integral with the real density µ(σ):

w[µ](x) = −ReΦ(z), Φ(z) =
1

2πi

∫

Γ1

µ(σ)
dt

t − z
, z = x1 + ix2 ,

where t = t(σ) = (y1(σ) + iy2(σ)) ∈ Γ1. If µ(σ) ∈ C1,λ(Γ1), then for z /∈ Γ1:

dΦ(z)

dz
= −w′

x1
+ iw′

x2

= −
1

2πi

( N1
∑

n=1

{

µ(b1n)

t(b1n) − z
−

µ(a1
n)

t(a1
n) − z

}

−

∫

Γ1

e−iα(σ)µ′(σ)

t− z
dt

)

.

Points I, II.1) and II.2) of Theorem 2 follow from these formulae and from the
properties of Cauchy integrals, presented in [8]. Points II.3) and II.4) can be
proved by direct verification using points I, II.1) and II.2).

We will construct a solution to the Problem D1 in assumption that
F+(s), F−(s) ∈ C1,λ(Γ1), λ ∈ (0, 1], F (s) ∈ C0(Γ2). We will look for a so-
lution to the Problem D1 of the form

u(x) = −w[F+ − F−](x) + v(x), (4)
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where w[F+ − F−](x) is the double layer potential (3), in which

µ(σ) = F+(σ) − F−(σ).

The potential w[F+ −F−](x) satisfies the Laplace equation (2a) in D \Γ1 and
belongs to the class K1 according to Theorem 2. Limit values of the potential
w[F+ − F−](x) on (Γ1)± are given by the formula

w[F+ − F−](x)
∣

∣

x(s)∈(Γ1)±
= ∓

F+(s) − F−(s)

2
+ w[F+ − F−](x(s)),

where w[F+ − F−](x(s)) is the direct value of the potential on Γ1.

The function v(x) in (4) must be a solution to the following problem.

Problem D

Find a function v(x) ∈ C0(D)∩C2(D\Γ1), which satisfies the Laplace equation
(2a) in the domain D \ Γ1 and satisfies the boundary conditions

v(x)
∣

∣

x(s)∈Γ1 =
F+(s) + F−(s)

2
+ w[F+ − F−](x(s)) = f(s),

v(x)
∣

∣

x(s)∈Γ2 = F (s) + w[F+ − F−](x(s)) = f(s).

If x(s) ∈ Γ1, then w[F+ − F−](x(s)) is the direct value of the potential on Γ1.

If D is an exterior domain, then we add the following condition at infinity:

|v(x)| ≤ const, |x| =
√

x2
1 + x2

2 → ∞.

All conditions of the Problem D have to be satisfied in the classical sense.
Obviously, w[F+ − F−](x(s)) ∈ C0(Γ2). It follows from [7, Lemma 4(1)] that

w[F+ −F−](x(s)) ∈ C1, λ
4 (Γ1) (here by w[F+ −F−](x(s)) we mean the direct

value of the potential on Γ1). So, f(s) ∈ C1, λ
4 (Γ1) and f(s) ∈ C0(Γ2).

We will look for the function v(x) in the smoothness class K. We say that
the function v(x) belongs to the smoothness class K if

1. v(x) ∈ C0(D) ∩ C2(D \ Γ1), ∇v ∈ C0(D \ Γ1 \ Γ2 \X), where X is the
set consisting of the endpoints of Γ1;

2. in a neghbourhood of any point x(d) ∈ X the inequality

|∇v| ≤ C|x− x(d)|δ

holds for some constants C > 0, δ > −1, where x → x(d) and d = a1
n or

d = b1n , n = 1, . . . , N1 .
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The definition of the functional class C0(D \ Γ1 \ Γ2 \ X) is given in the
remark to the definition of the smoothness class K1 (Remark 1). Clearly,
K ⊂ K1.

It can be verified directly that if v(x) is a solution to the Problem D in the
class K, then the function (4) is a solution to the Problem D1 .

Theorem 3

Let Γ ∈ C2, λ
4 , f(s) ∈ C1, λ

4 (Γ1), λ ∈ (0, 1], f(s) ∈ C0(Γ2). Then the solution
to the Problem D in the smoothness class K exists and is unique.

Theorem 3 has been proved in the following papers: 1) in [5, 4], if D is
an interior domain; 2) in [3], if D is an exterior domain and Γ2 6= ∅; 3) in
[2, 6], if Γ2 = ∅ and so D = R

2 is an exterior domain. In all these papers,
the integral representations for the solution to the Problem D in the class K

are obtained in the form of potentials, densities of which are defined by the
uniquely solvable Fredholm integro-algebraic equations of the second kind and
index zero. Uniqueness of a solution to the Problem D is proved either by
the maximum principle or by the method of energy (integral) identities. In
the latter case we take into account that a solution to the problem belongs to
the class K. Note that the Problem D is a particular case of more general
boundary value problems studied in [4, 3, 2, 6].

Note that Theorem 3 holds if Γ ∈ C2,λ, F+(s), F−(s) ∈ C1,λ(Γ1), λ ∈ (0, 1],
F (s) ∈ C0(Γ2). From Theorems 2, 3 we obtain the solvability of the pro-
blem D1.

Theorem 4

Let Γ ∈ C2,λ, F+(s), F−(s) ∈ C1,λ(Γ1), λ ∈ (0, 1], F (s) ∈ C0(Γ2). Then a
solution to the Problem D1 exists and is given by the formula (4), where v(x)
is a unique solution to the Problem D in the class K, ensured by Theorem 3.

Remark 2

Let us check that the solution to the Problem D1 given by formula (4) satisfies
condition (1). Let d = a1

n or d = b1n (n = 1, ..., N1) and r be small enough.
Then substituting (4) in the integral in (1) we obtain

∫

∂S(d,r)

u(x)
∂u(x)

∂nx

dl =

∫

∂S(d,r)

w(x)
∂w(x)

∂nx

dl −

∫

∂S(d,r)

w(x)
∂v(x)

∂nx

dl

−

∫

∂S(d,r)

v(x)
∂w(x)

∂nx

dl +

∫

∂S(d,r)

v(x)
∂v(x)

∂nx

dl.

If r → 0, then the first term tends to zero by Theorem 2(II.3). As mentioned
above, v(x) ∈ K ⊂ K1 , therefore the condition (1) holds for the function v(x),
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so the fourth term tends to zero as r → 0. The second term tends to zero as
r → 0, since w(x) is bounded at the ends of Γ1 according to Theorem 2(I), and
since v(x) satisfies condition 2) in the definition of the class K. Noting that
v(x) is continuous at the ends of Γ1 due to the definition of the class K, and

using Theorem 2(II.2) for calculation of ∂w(x)
∂nx

in the third term, we deduce that
the third term tends to zero when r → 0 as well. Consequently, the equality
(1) holds for the solution to the Problem D1 constructed in Theorem 4.

Uniqueness of a solution to the Problem D1 follows from Theorem 1. The
solution to the Problem D1 found in Theorem 4 is, in fact, a classical solution.
Let us discuss, under which conditions this solution to the Problem D1 is not
a weak solution.

±"cf²"j0g0³\�0ª0n «Xh\�0g0mX��jX����´��0�¬µ/«0j0� lXh\n j0g

Let u(x) be a solution to the Problem D1 defined in Theorem 4 by the
formula (4). Consider the disc S(d, ε) with the center in the point x(d) ∈ X
and of radius ε > 0 (d = a1

n or d = b1n , n = 1, ..., N1). In doing so, ε is a fixed
positive number, which can be taken small enough. Since v(x) ∈ K, we have
v(x) ∈ L2(S(d, ε)) and |∇v(x)| ∈ L2(S(d, ε)) (this follows from the definition
of the smoothness class K). Let x ∈ S(d, ε) and x /∈ Γ1. It follows from (4)
that |∇w[µ](x)| ≤ |∇u(x)| + |∇v(x)|, whence

|∇w[µ](x)|2 ≤ |∇u(x)|2 + |∇v(x)|2 + 2|∇u(x)| · |∇v(x)|

≤ 2(|∇u(x)|2 + |∇v(x)|2).

Assume that |∇u(x)| belongs to L2(S(d, ε)); then, integrating this inequality
over S(d, ε), we obtain

‖∇w‖2
∣

∣

L2(S(d,ε))
≤ 2

(

‖∇u‖2
∣

∣

L2(S(d,ε))
+ ‖∇v‖2

∣

∣

L2(S(d,ε))

)

.

Consequently, if |∇u(x)| ∈ L2(S(d, ε)), then |∇w| ∈ L2(S(d, ε)). However, ac-
cording to Theorem 2, if F+(d) − F−(d) 6= 0, then |∇w| does not belong to
L2(S(d, ε)). Therefore, if F+(d) 6= F−(d), then our assumption that |∇u| ∈
L2(S(d, ε)) does not hold, i.e., |∇u| /∈ L2(S(d, ε)). Thus, if among num-
bers a1

1, ..., a
1
N1

, b11, ..., b
1
N1

there exists such a number d that F+(d) 6= F−(d),
then for some ε > 0 we have |∇u| /∈ L2(S(d, ε)) = L2(S(d, ε) \ Γ1), so
u /∈ W 1

2 (S(d, ε) \ Γ1), where W 1
2 is a Sobolev space of functions from L2 ,

which have generalized derivatives from L2 . We have proved the following
result.

Theorem 5

Let conditions of Theorem 4 be satisfied and assume that there exists a number
d ∈ {a1

1, .., a
1
N1
, b11, ..., b

1
N1

} such that F+(d) 6= F−(d). Then the solution to the
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Problem D1 , ensured by Theorem 4, does not belong to W 1
2 (S(d, ε) \ Γ1) for

some ε > 0, whence it follows that it does not belong to W 1
2,loc(D \ Γ1). Here

S(d, ε) is a disc of a radius ε with the center in the point x(d) ∈ X.

By W 1
2,loc(D \ Γ1) we denote the class of functions which belong to W 1

2 on

any bounded subdomain of D \ Γ1. If conditions of Theorem 5 hold, then the
unique solution to the Problem D1 , constructed in Theorem 4, does not belong
to W 1

2,loc(D \ Γ1), and so it is not a weak solution. We arrive to

Corollary

Let conditions of Theorem 5 be satisfied; then a weak solution to the Problem D1

in the class of functions W 1
2,loc(D \ Γ1) does not exist.

Remark 3

Even if the number d, mentioned in Theorem 5, does not exist, then the solution
u(x) to the Problem D1, ensured by Theorem 4, may not be a weak solution to
the Problem D1 . The Hadamard example of a non-existence of a weak solution
to the harmonic Dirichlet problem in a disc with continuous boundary data is
given in [9, § 12.5] (the classical solution exists in this example).

Clearly, L2(D \ Γ1) = L2(D), since Γ1 is a set of zero measure.
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