
FOLIA 70Annales Universitatis Paedagogiae CraoviensisStudia Mathematia VIII (2009)
Barbara Kol�ga�Kulpa, Tomasz Szostok and Szymon W¡sowizOn some equations stemming from quadrature rulesAbstrat. We deal with funtional equations of the type

F (y) − F (x) = (y − x)
n∑

k=1

fk ((1 − λk)x + λky) ,onneted to quadrature rules and, in partiular, we �nd the solutions of thefollowing funtional equation
f(x) − f(y) = (x − y)[g(x) + h(x + 2y) + h(2x + y) + g(y)].We also present a solution of the Stamate type equation

yf(x) − xf(y) = (x − y)[g(x) + h(x + 2y) + h(2x + y) + g(y)].All results are valid for funtions ating on integral domains.1. IntrodutionWe deal with some equations onneted to quadrature rules. Having a funtion
f : R → R we may approximate its integral using the following expression

F (y) − F (x) ≈ (y − x)

n∑

k=1

αkf((1 − λk)x + λky)(where F is a primitive funtion for f), whih is satis�ed exatly for polynomials ofertain degree. One of the simplest funtional equations onneted to quadraturerules is an equation stemming from Simpson's rule
F (y) − F (x) = (y − x)
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.Another example is given by the equation
F (y) − F (x) = (y − x)
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[20℄ Barbara Kol�ga�Kulpa, Tomasz Szostok and Szymon W¡sowizwhih is satis�ed by polynomials of degree not greater than 3. The generalizedversion of this equation
g(x) − f(y) = (x− y)[h(x) + k(sx+ ty) + k(tx+ sy) + h(y)] (1)was onsidered during the 44th ISFE held in Louisville, Kentuky, USA by P.K. Sa-hoo [7℄. The solution has been given in the lass of funtions f , g, h, k mapping

R into R and suh that g and f are twie di�erentiable, and k is four times di�er-entiable.On the other hand, M. Sablik [5℄ during the 7th Katowie�Debreen WinterSeminar on Funtional Equations and Inequalities presented the general solutionof this equation in the ase s, t ∈ Q without any regularity assumptions onerningthe funtions onsidered.We deal with a speial ase of (1) (with s = 1, t = 2) for funtions atingon integral domains. However, it is easy to observe that if we take x = y in (1),then we immediately obtain that f = g. Thus we shall �nd the solutions of thefollowing funtional equation
f(x) − f(y) = (x− y)[g(x) + h(x+ 2y) + h(2x+ y) + g(y)]. (2)Using the obtained result we will also present a solution of a similar Stamate typeequation
yf(x) − xf(y) = (x− y)[g(x) + h(2x+ y) + h(x+ 2y) + g(y)]. (3)In the proof of Lemma 1 below we use the lemma established by M. Sablik[6℄ and improved by I. Pawlikowska [3℄. First we need some notations. Let G,

H be Abelian groups and SA0(G,H) := H , SA1(G,H) := Hom(G,H) (i.e., thegroup of all homomorphisms from G into H), and for i ∈ N, i ≥ 2, let SAi(G,H)be the group of all i-additive and symmetri mappings from Gi into H . Fur-thermore, let P :=
{
(α, β) ∈ Hom(G,G)2 : α(G) ⊂ β(G)

}. Finally, for x ∈ G let
xi = (x, . . . , x

︸ ︷︷ ︸

i

), i ∈ N.Lemma 1Fix N ∈ N ∪ {0} and let I0, . . . , IN be �nite subsets of P. Suppose that H isuniquely divisible by N ! and let the funtions ϕi:G→ SAi(G,H) and ψi,(α,β):G→
SAi(G,H) ((α, β) ∈ Ii, i = 0, . . . , N ) satisfy
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.



On some equations stemming from quadrature rules [21℄Now we will state a simpli�ed version of this lemma. We take N = 1 and weonsider funtions ating on an integral domain P . Moreover, we onsider onlyhomomorphisms of the type x 7→ yx, where y ∈ P is �xed.Lemma 2Let P be an integral domain and let I0, I1 be �nite subsets of P 2 suh that for all
(a, b) ∈ Ii the ring P is divisible by b. Let ϕi, ψi,(α,β):P → P satisfy

ϕ1(x)y + ϕ0(x) =
∑

(a,b)∈I0

ψ0,(a,b)(ax+ by) + y
∑

(a,b)∈I1

ψ1,(a,b)(ax+ by)for all x, y ∈ P . Then ϕ1 is a polynomial funtion of order at most equal to
card(I0 ∪ I1) + card I1 − 1.In the above lemmas a polynomial funtion of order n means a solution of thefuntional equation ∆n+1

h f(x) = 0, where ∆n
h stands for the n-th iterate of thedi�erene operator ∆hf(x) = f(x+ h)− f(x). Observe that a ontinuous polyno-mial funtion of order n is a polynomial of degree at most n (see [2, Theorem 4,p. 398℄).It is also well known that if P is an integral domain uniquely divisible by n!and f :P → P is a polynomial funtion of order n, then

f(x) = c0 + c1(x) + . . .+ cn(x), x ∈ P,where c0 ∈ P is a onstant and
ci(x) = Ci(x, x, . . . , x), x ∈ Pfor some i-additive and symmetri funtion Ci:P

i → P .2. ResultsWe begin with the following lemma whih will be usefull in the proof of themain result. However, we state it a bit more generally.Lemma 3Let P be an integral domain and let f, fk:P → P , k = 0, . . . , n, be funtionssatisfying the equation
f(y) − f(x) = (y − x)

n∑

k=0

fk(akx+ bky), (4)where ak, bk ∈ P are given numbers suh that for every k ∈ {0, . . . , n} we have
ak 6= 0 or bk 6= 0.Let i ∈ {0, . . . , n} be �xed. If P is divisible by ai, bi and also by aibk − akbi,
k = 0, . . . , n; k 6= i, then the funtion

f̃(x) := (ai + bi)fi((ai + bi)x)is a polynomial funtion of degree at most 2n+ 1.



[22℄ Barbara Kol�ga�Kulpa, Tomasz Szostok and Szymon W¡sowizMoreover, if there exists k1 ∈ {0, 1, . . . , n} suh that ak1
= 0 or bk1

= 0,then funtion f̃ is a polynomial funtion of order at most 2n and if there exist
k1, k2 ∈ {0, . . . , n} suh that ak1

= bk2
= 0, then f̃ is a polynomial funtionof order at most 2n− 1.Proof. Fix an i ∈ {0, . . . , n}, put in (4) x − biy and x + aiy instead of x and

y, respetively, to obtain
f(x+ aiy) − f(x− biy)

= (ai + bi)y[f0((a0 + b0)x+ (aib0 − a0bi)y) + . . . (5)
+ fi((ai + bi)x) + . . .+ fn((an + bn)x+ (aibn − anbi)y)].There are two possibilities:1. ai, bi 6= 0,2. ai = 0 or bi = 0.Let us onsider the �rst ase. Then from (5) we obtain

y(ai + bi)fi((ai + bi)x) = f(x+ aiy) − f(x− biy)

− (ai + bi)y

n∑

k=0,k 6=i

fk((ak + bk)x + (aibk − akbi)y),whih means that
yf̃(x) = f(x+ aiy) − f(x− biy)

−(ai + bi)y

n∑

k=0,k 6=i

fk((ak + bk)x+ (aibk − akbi)y).
(6)Now we are in position to use Lemma 2 with

I0 = {(1,−bi), (1, ai)}and
I1 = {(ak + bk, aibk − akbi) : k = 0, . . . , n; k 6= i}.We learly obtain that f̃ is a polynomial funtion of order at most equal to

card(I0 ∪ I1) + card I1 − 1 ≤ (n+ 2) + n− 1 = 2n+ 1.Further, if for example ak1
= 0 for some k1 ∈ {0, . . . , n}, k1 6= i, then we havea summand

fk1
(bk1

x+ aibk1
y) = fk1

(bk1
(x+ aiy))on the right-hand side of (6). Thus we put f̃k1

(x) := fk1
(bk1

x) and (6) takes form
yf̃(x)

= f(x− biy) − f(x+ aiy)

− (ai + bi)y

[
n∑

k=0,k 6=i,k1

fk((ak + bk)x+ (aibk − akbi)y) + f̃k1
(x+ aiy)

]

.



On some equations stemming from quadrature rules [23℄Similarly as before we take
I0 = {(1,−bi), (1, ai)}and

I1 = {(ak + bk, aibk − akbi) : k = 0, . . . , n; k 6= i, k1} ∪ {(1, ai)}.In this ase we have I0 ∩ I1 = {(1, ai)}, i.e.,
card(I0 ∪ I1) + card I1 − 1 ≤ (n+ 1) + n− 1 = 2n.The proof in the ase ak1

= bk2
= 0 is similar.Now we onsider the ase ai = 0 or bi = 0. Let for example ai = 0, thenfrom (6) we have

y(bi)fi(bix) − f(x) = −f(x− biy) − biy

n∑

k=0,k 6=i

fk((ak + bk)x − akbiy),i.e.,
ybif̃(x) − f(x) = −f(x− biy) − biy

n∑

k=0,k 6=i

fk((ak + bk)x− akbiy).In this ase we take
I0 = {(1,−bi)}and

I1 = {(ak + bk,−akbi) : k = 0, . . . , n; k 6= i}.Thus similarly as before f̃ is a polynomial funtion of degree not greater than
card(I0 ∪ I1) + card I1 − 1 ≤ (n+ 1) + n− 1 = 2n.It is easy to see that if for some k2 ∈ {0, . . . , n}, bk2

= 0, then f̃ is a polynomialfuntion of order at most 2n− 1.Now we are in position to state the most important result of this paper.Namely, we give a general solution of (2) for funtions ating on integral domainssatisfying some assumptions.Theorem 1Let P be an integral domain with unit element 1I, uniquely divisible by 5! and suhthat for every n ∈ N we have n1I 6= 0. The funtions f, g, h:P → P satisfy theequation (2) if and only if there exist a, b, c, d, d̄, e ∈ P and an additive funtion
A:P → P suh that

f(x) = 18ax4 + 8bx3 + cx2 + 2dx+ e, x ∈ P,

g(x) = 9ax3 + 3bx2 + cx− 3A(x) + d− d̄, x ∈ P,

h(x) = ax3 + bx2 +A(x) + d̄, x ∈ P.



[24℄ Barbara Kol�ga�Kulpa, Tomasz Szostok and Szymon W¡sowizProof. Assume that f, g, h:P → P satisfy the equation (2). From Lemma 3we know that g and h are polynomial funtions of order at most 5. Therefore
g(x) = c0 + c1(x) + c2(x) + c3(x) + c4(x) + c5(x), x ∈ P (7)and
h(x) = d0 + d1(x) + d2(x) + d3(x) + d4(x) + d5(x), x ∈ P, (8)where ci, di:P → P are diagonalizations of some i-additive and symmetri fun-tions Ci, Di:P

i → P , respetively. Taking in (2) y = 0, we obtain the followingformula
f(x) = x[g(x) + h(x) + h(2x) + g(0)] + f(0), x ∈ P, (9)whih used in (2) gives us

x[g(x) + h(x) + h(2x) + g(0)] − y[g(y) + h(y) + h(2y) + g(0)]

= (x− y)[g(x) + h(x+ 2y) + h(2x+ y) + g(y)], x, y ∈ P.After some simple alulations we get
x[h(2x) + h(x) − h(x+ 2y) − h(2x+ y) − g0(y)]

= y[h(2y) + h(y) − h(x+ 2y) − h(2x+ y) − g0(x)], x, y ∈ P,
(10)where g0(x) := g(x) − g(0), x ∈ P .Further, putting 2x instead of y in (10), we have

h(5x) − h(4x) − h(2x) + h(x) = g0(2x) − 2g0(x), x 6= 0,whih is also satis�ed for x = 0, sine g0(0) = 0. Thus
h(5x) − h(4x) − h(2x) + h(x) = g0(2x) − 2g0(x), x ∈ P. (11)By (7) we obtain
g0(2x) − 2g0(x) = 2c2(x) + 6c3(x) + 14c4(x) + 30c5(x) (12)and similarly from (8) we have

h(5x) − h(4x) − h(2x) + h(x) = 6d2(x) + 54d3(x) + 354d4(x) + 2070d5(x). (13)Using (13) and (12) in (11) we may write
6d2(x) + 54d3(x) + 354d4(x) + 2070d5(x) = 2c2(x) + 6c3(x) + 14c4(x) + 30c5(x).Comparing the orresponding terms on both sides of this equality we get

c2(x) = 3d2(x),

c3(x) = 9d3(x),

7c4(x) = 177d4(x),

c5(x) = 69d5(x).



On some equations stemming from quadrature rules [25℄Using these equations in (7) we have
g(x) = c0 + c1(x) + 3d2(x) + 9d3(x) + c4(x) + 69d5(x), x ∈ P, (14)where

7c4(x) = 177d4(x), x ∈ P. (15)Substitute in (10) −x in plae of y. Then
h(2x) + h(−2x) − [h(x) + h(−x)] = g0(x) + g0(−x), x ∈ P.This, in view of (8) and (14), means that

6d2(x) + 30d4(x) = 6d2(x) + 2c4(x), x ∈ P,i.e,
c4(x) = 15d4(x), x ∈ Pand from (15) we have

d4(x) = 0, x ∈ P (16)and also c4 = 0.Now we shall show that d5(x) = 0 for all x ∈ P . To this end we put in (10) inplaes of x and y, respetively −x and 2x. Thus
−2h(4x) + 3h(3x) − 2h(2x) − h(−2x) − h(−x) + 3h(0) = −g0(2x) − 2g0(−x)for x ∈ P . Similarly as before, using (8), (14) and (16), we have

−18d2(x) − 54d3(x) − 1350d5(x) = −18d2(x) − 54d3(x) − 2070d5(x), x ∈ P,whih means that
d5(x) = 0, x ∈ P.Now formulas (14) and (8) take forms

g(x) = c0 + c1(x) + 3d2(x) + 9d3(x), x ∈ P (17)and
h(x) = d0 + d1(x) + d2(x) + d3(x), x ∈ P. (18)Using these equalities in (10), we get

x[−c1(y) − 3d1(y) + 5d2(x) − 3d2(y) − d2(x + 2y) − d2(2x+ y)

+ 9d3(x) − 9d3(y) − d3(x+ 2y) − d3(2x+ y)]

= y[−c1(x) − 3d1(x) + 5d2(y) − 3d2(x) − d2(x+ 2y) − d2(2x+ y)

+ 9d3(y) − 9d3(x) − d3(x+ 2y) − d3(2x+ y)].Now, sine the ring P is divisible by 3 and 2, the funtions di are diagonal-izations of symmetri and i-additive funtions Di:P
i → P , i.e., di(x) = Di(x

i),
x ∈ P . Using these forms of di in the above equation we obtain

2(x− y)[4D2(x, y) + 9D3(x, x, y) + 9D3(x, y, y)]

= y[c1(x) + 3d1(x) + 8d2(x) + 18d3(x)]

−x[c1(y) + 3d1(y) + 8d2(y) + 18d3(y)]

(19)



[26℄ Barbara Kol�ga�Kulpa, Tomasz Szostok and Szymon W¡sowizfor all x, y ∈ P . Put in (19) −y instead of y. Then for all x, y ∈ P we have
2(x+ y)[−4D2(x, y) − 9D3(x, x, y) + 9D3(x, y, y)]

= −y[c1(x) + 3d1(x) + 8d2(x) + 18d3(x)]

−x[−c1(y) − 3d1(y) + 8d2(y) − 18d3(y)].

(20)Adding the equations (19) and (20) we arrive at
9xD3(x, y, y) − y[4D2(x, y) + 9D3(x, x, y)] = −4xd2(y), x, y ∈ P,and, onsequently,

9xD3(x, y, y) − 9yD3(x, x, y) = 4yD2(x, y) − 4xd2(y), x, y ∈ P. (21)Interhanging in these equations x with y and using the symmetry of both D2 and
D3 we may write

9yD3(x, x, y) − 9xD3(x, y, y) = 4xD2(x, y) − 4yd2(x), x, y ∈ P. (22)Now, we add (21) and (22) to get
(x+ y)D2(x, y) = xd2(y) + yd2(x), x, y ∈ P.Put here x+ y in plae of x, then

(x+ 2y)D2(x+ y, y) = (x+ y)d2(y) + yd2(x+ y), x, y ∈ P,whih yields
xD2(x, y) = yd2(x), x, y ∈ P (23)and hanging the roles of x and y
yD2(x, y) = xd2(y), x, y ∈ P. (24)Now, we multiply (23) by y and (24) by x to obtain
xyD2(x, y) = y2d2(x), x, y ∈ Pand
xyD2(x, y) = x2d2(y), x, y ∈ P.Thus
y2d2(x) = x2d2(y), x, y ∈ P,whih after substituing y = 1I gives the formula

d2(x) = bx2, x ∈ P, (25)where b := d2(1I). Thus from (24) we obtain
D2(x, y) = bxy, x, y ∈ P. (26)



On some equations stemming from quadrature rules [27℄Using the formulas (25) and (26) in (21) we have
yD3(x, x, y) = xD3(x, y, y), x, y ∈ P. (27)Putting x+ y in plae of x (27), we get

yD3(x+ y, x+ y, y) = (x+ y)D3(x+ y, y, y),whih after some alulations gives
yD3(x, x, y) − (x − y)D3(x, y, y) = xd3(y), x, y ∈ P.We use here the ondition (27). Then
xD3(x, y, y) − (x − y)D3(x, y, y) = xd3(y), x, y ∈ P,i.e.,

yD3(x, y, y) = xd3(y), x, y ∈ P. (28)Clearly we also have
xD3(x, x, y) = yd3(x), x, y ∈ P. (29)Now, multiply the equation (28) by x and (29) by y2. Then we have
xyD3(x, y, y) = x2d3(y), x, y ∈ P (30)and

xy2D3(x, x, y) = y3d3(x). (31)On the other hand, we multiply (27) by y. We obtain
y2D3(x, x, y) = xyD3(x, y, y), x, y ∈ P. (32)Using (32) in (30) we arrive at
x2d3(y) = y2D3(x, x, y), x, y ∈ P,whih multiplied by x yields
x3d3(y) = xy2D3(x, x, y), x, y ∈ P. (33)Comparing the equation (31) and (33) we obtain

y3d3(x) = x3d3(y), x, y ∈ P,i.e.,
d3(x) = ax3, x ∈ P, (34)where a := d3(1I). Now equalities (28) and (29) take forms

D3(x, y, y) = axy2, x, y ∈ P (35)



[28℄ Barbara Kol�ga�Kulpa, Tomasz Szostok and Szymon W¡sowizand
D3(x, x, y) = ax2y, x, y ∈ P. (36)Using the formulas (25), (26), (34), (35) and (36) in (19) we have

y[c1(x) + 3d1(x)] = x[c1(y) + 3d1(y)], x, y ∈ P.Substituting here y = 1I we obtain
c1(x) + 3d1(x) = x[c1(1I) + 3d1(1I)], x ∈ P,whih means that

c1(x) = cx− 3d1(x), x ∈ P,where c := c1(1I) + 3d1(1I).Thus we have shown that the formulas (17) and (18) may be written in theform
g(x) = 9ax3 + 3bx2 + cx− 3d1(x) + c0, x ∈ Pand

h(x) = ax3 + bx2 + d1(x) + d0, x ∈ P,where d1 is a given additive funtion. Now it su�es to use the obtained expres-sions in (9), to get the desired formula for f .It is an easy alulation to show that these funtions f , g, h satisfy the equa-tion (2).With the aid of this theorem we may prove also a Stamate-kind result.Corollary 1Let P be an integral domain with unit element 1I, uniquely divisible by 5! andsuh that for every n ∈ N we have n1I 6= 0. Funtions f, g, h:P → P satisfy theequation (3) if and only if there exist a, ā, b, c, d, d̄ ∈ P and an additive funtion
A:P → P suh that

f(x) =

{
18ax3 + 8bx2 + cx+ 2d, x 6= 0

ā, x = 0
,

g(x) =

{
−9ax3 − 5bx2 − 3A(x) − d− d̄, x 6= 0

d− d̄− ā, x = 0
,

h(x) = ax3 + bx2 + A(x) + d̄, x ∈ P.Conversely, f, g, h:P → P given by the above equalities satisfy (2).Proof. First we write the equation (3) in the form
(y − x)f(y) − yf(y) + (y − x)f(x) + xf(x)

= (x− y)[g(x) + h(2x+ y) + h(x+ 2y) + g(y)]



On some equations stemming from quadrature rules [29℄and, onsequently,
xf(x) − yf(y) = (x− y)[g(x) + f(x) + h(2x+ y) + h(x + 2y) + g(y) + f(y)].Putting here k(t) := g(t) + f(t) and F (t) := tf(t) for all t ∈ P we obtain
F (x) − F (y) = (x− y)[k(x) + h(2x+ y) + h(x+ 2y) + k(y)], x, y ∈ P.Thus, using Theorem 1, we get

xf(x) = 18ax4 + 8bx3 + cx2 + 2dx+ e, x ∈ P, (37)
g(x) + f(x) = 9ax3 + 3bx2 + cx− 3A(x) + d− d̄, x ∈ P, (38)

h(x) = ax3 + bx2 +A(x) + d̄, x ∈ P.Now, from (37) it easily follows that e = 0 and furthermore
xf(x) = 18ax4 + 8bx3 + cx2 + 2dx,i.e.,

f(x) = 18ax3 + 8bx2 + cx+ 2d, x 6= 0,whih gives us
g(x) = −9ax3 − 5bx2 − 3A(x) − d− d̄, x 6= 0.Moreover, from (38) we get g(0) + f(0) = d− d̄, thus putting ā := f(0) we obtainthat g(0) = d− d̄− ā.On the other hand, it is easy to see that funtions given by the above formulaeyield a solution of the equation (3).AknowledgementThe authors are grateful to Professor Joanna Ger for her valuable remarksonerning the Corollary 1.Referenes[1℄ B. Kol�ga�Kulpa, T. Szostok, On some equations onneted to Hadamard in-equalities, Aequationes Math. 75 (2008), 119�129.[2℄ M. Kuzma, An Introdution to the Theory of Funtional Equations and In-equalities. Cauhy's Equation and Jensen's Inequality, Pa«stwowe WydawnitwoNaukowe (Polish Sienti� Publishers) and Uniwersytet �l¡ski, Warszawa�Kraków�Katowie, 1985.[3℄ I. Pawlikowska, Solutions of two funtional equations using a result of M. Sablik,Aequationes Math. 72 (2006), 177�190.[4℄ T. Riedel, P.K. Sahoo, Mean value theorems and funtional equations, World Si-enti�, Singapore�New Jersey�Lodon�Hong Kong, 1998.
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