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Abstract. We deal with functional equations of the type
Fly)—F(z) = (y—x) > fr (1= M)z + M),
k=1

connected to quadrature rules and, in particular, we find the solutions of the
following functional equation

f@) = fy) = (= y)lg() + h(z + 2y) + h(2x +y) + 9(y)].
We also present a solution of the Stamate type equation
yf (@) —zf(y) = (z —y)lg(x) + h(z + 2y) + h(2x +y) + 9(y)].

All results are valid for functions acting on integral domains.

1. Introduction

We deal with some equations connected to quadrature rules. Having a function
f:R — R we may approximate its integral using the following expression

F(y) - Fe) = (y — ) Y_arf((1 = Az + Ay)

k=1

(where F' is a primitive function for f), which is satisfied exactly for polynomials of
certain degree. One of the simplest functional equations connected to quadrature
rules is an equation stemming from Simpson’s rule

F) - F@) = (—a) [0 + 37 (Z52) + 500

Another example is given by the equation

F) - Fa) = =) |35+ 57 (T52) + 57 (52 ) + 0.
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which is satisfied by polynomials of degree not greater than 3. The generalized
version of this equation

9(z) = f(y) = (x — y)[h(z) + k(sz + ty) + k(tx + sy) + h(y)] (1)

was considered during the 44th ISFE held in Louisville, Kentucky, USA by P.K. Sa-
hoo [7]. The solution has been given in the class of functions f, g, h, kK mapping
R into R and such that g and f are twice differentiable, and & is four times differ-
entiable.

On the other hand, M. Sablik [5] during the 7th Katowice-Debrecen Winter
Seminar on Functional Equations and Inequalities presented the general solution
of this equation in the case s,t € Q without any regularity assumptions concerning
the functions considered.

We deal with a special case of (1) (with s = 1, ¢t = 2) for functions acting
on integral domains. However, it is easy to observe that if we take x = y in (1),
then we immediately obtain that f = g. Thus we shall find the solutions of the
following functional equation

f@) = fy) = (@ —y)lg(x) + h(z + 2y) + h(2z +y) + g(y)]. (2)

Using the obtained result we will also present a solution of a similar Stamate type
equation

yf(x) —xf(y) = (x —y)g(z) + h(2z +y) + h(z + 2y) + g(y)]. (3)

In the proof of Lemma 1 below we use the lemma established by M. Sablik
[6] and improved by I. Pawlikowska [3]. First we need some notations. Let G,
H be Abelian groups and SA°(G,H) := H, SAY(G, H) := Hom(G, H) (i.e., the
group of all homomorphisms from G into H), and for i € N, i > 2, let SAY(G, H)
be the group of all i-additive and symmetric mappings from G* into H. Fur-
thermore, let P := {(«, ) € Hom(G,G)? : «(G) C 3(G)}. Finally, for z € G let

2

2t = (z,...,7),i € N.
——

%

LEMMA 1

Fiz N € NU{0} and let Iy, ...,In be finite subsets of P. Suppose that H is
uniquely divisible by N! and let the functions ¢;: G — SA G, H) and Vi (a,8): G —
SA G, H) (o, ) € I, i = 0,...,N) satisfy

) + Z i(x Z Y Witas (@) + BW)Y)

=0 (a,B)€I;

for every xz,y € G. Then oy is a polynomial function of order at most k — 1,

where
N N
k= anrd( UIS>'
i=0 s=i
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Now we will state a simplified version of this lemma. We take N = 1 and we
consider functions acting on an integral domain P. Moreover, we consider only
homomorphisms of the type = — yx, where y € P is fixed.

LEMMA 2
Let P be an integral domain and let Iy, I; be finite subsets of P? such that for all
(a,b) € I; the ring P is divisible by b. Let ©;,v; (o,8): P — P satisfy

v1(x)y + wo(z) = Z Yo, (ap)(ax +by) +y Z V1, (a,p) (@ + bYy)
(a,b)€lo (a,b)ely

for all z,y € P. Then 1 is a polynomial function of order at most equal to
card(IpUI ) +cardI; — 1.

In the above lemmas a polynomial function of order n means a solution of the
functional equation A} f(z) = 0, where A7 stands for the n-th iterate of the
difference operator Ay, f(z) = f(x+ h) — f(x). Observe that a continuous polyno-
mial function of order n is a polynomial of degree at most n (see [2, Theorem 4,
p. 398]).

It is also well known that if P is an integral domain uniquely divisible by n!
and f: P — P is a polynomial function of order n, then

f@)=co+ci(z)+ ...+ cn(x), x € P,
where ¢y € P is a constant and
ci(z) = Ci(z,z, ..., x), reP

for some i-additive and symmetric function Cj: P — P.

2. Results

We begin with the following lemma which will be usefull in the proof of the
main result. However, we state it a bit more generally.

LEMMA 3
Let P be an integral domain and let f, fr: P — P, k = 0,...,n, be functions
satisfying the equation

n

Fly) = f@) = (y—2) Y frlarz + bry), (4)
k=0
where ax, by, € P are given numbers such that for every k € {0,...,n} we have

ar, # 0 or by # 0.
Let i € {0,...,n} be fivzed. If P is divisible by a;, b; and also by a;by — axb;,
k=0,...,n; k#1i, then the function

F(@) = (a; + b)) fi((a; + bi)z)

is a polynomial function of degree at most 2n + 1.
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Moreover, if there exists k1 € {0,1,...,n} such that a, = 0 or by, = 0,

then function f is a polynomial function of order at most 2n and if there ewist
ki,ke € {0,...,n} such that ap, = by, = 0, then [ is a polynomial function
of order at most 2n — 1,

Proof. Fix ani € {0,...,n}, put in (4) 2 — b;y and z + a;y instead of x and
y, respectively, to obtain

fla +aiy) — fx = biy)
= (a; + b;)y[fo((ao + bo)z + (aibo — aobi)y) + ... (5)
+ filla; + b)x) + ...+ ful(an + b))z + (aib, — anbi)y)].

There are two possibilities:

1. a;, bl 75 0,

2. ai:Oorbi:O.
Let us consider the first case. Then from (5) we obtain

y(a; +bi) fi((a; + bi)z) = f(z + aiy) — f(ﬂﬁ —biy)
(az + b Z fk ar + bk).%' + (azbk arb; ) )
k 0,k#i
which means that
yf(@) = f(x + aiy) — fz —biy)
—(a; + b))y Z fe((ak + b))z + (aibr — agbi)y). (6)
k=0,k#1
Now we are in position to use Lemma 2 with
IO = {(17 _bi)u (17 a/i)}
and
I = {(ag + bg,a;by —axb;) : k=0,...,n; k #£1i}.
We clearly obtain that f is a polynomial function of order at most equal to
card(IpUIL) +cardl; —1 < (n+2)+n—1=2n+1.

Further, if for example a;, = 0 for some k; € {0,...,n}, k; # i, then we have
a summand
fkl (bklx + a;by, y) = fkl (bkl (LL' + aly))
on the right-hand side of (6). Thus we put fi, (z) := fg, (by, ) and (6) takes form

yf(x)
= f(z = biy) — f(z + aiy)

— (ai +bi)y Z Fe(an + )z + (aibe — arbi)y) + fr, (z + aiy) |-
k=0, ki o1
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Similarly as before we take

Io = {(1,=bi), (1,0:)}
and
I = {(ax + bk, a;bp —arb;) : k=0,....,n; k#£i,k1} U{(1,a;)}.
In this case we have In NI = {(1,a;)}, i.e.,

card(IpUIL)+cardl; —1<(n+1)+n—1=2n.

The proof in the case ay, = by, = 0 is similar.
Now we consider the case a; = 0 or b; = 0. Let for example a; = 0, then
from (6) we have

y(bo) filbiz) = f(@) = = fle =biy) —biy Y frllar +bp)x — arbiy),

k=0,k#i
ie.,

ybif(x) = f@) = =fx=biy) —biy Y fel(an +be)z — arbyy).

k=0,k#i

In this case we take

Iy = {(17 _bi)}

and
I = {(ag + b, —agb;) : k=0,...,n; k#1i}.

Thus similarly as before f is a polynomial function of degree not greater than
card(IlpUI)+cardl; —1<(n+1)+n—1=2n.

It is easy to see that if for some ko € {0,...,n}, br, = 0, then fis a polynomial
function of order at most 2n — 1.

Now we are in position to state the most important result of this paper.
Namely, we give a general solution of (2) for functions acting on integral domains
satisfying some assumptions.

THEOREM 1

Let P be an integral domain with unit element 1, uniquely divisible by 5! and such
that for every n € N we have nll # 0. The functions f,g,h: P — P satisfy the
equation (2) if and only if there exist a,b,c,d,d,e € P and an additive function
A: P — P such that

f(z) = 18ax™® + 8ba® + ca® + 2dx + e, r e P,
g(x) = 9ax® 4 3bx® + cx — 3A(z) +d — d, x € P,
h(z) = az® + ba* + A(x) +d, x € P.
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Proof. Assume that f,g,h: P — P satisfy the equation (2). From Lemma 3
we know that ¢ and h are polynomial functions of order at most 5. Therefore
g(x) = co + c1(x) + ca(x) + cs(x) + ca(x) + c5(x), xeP (7)
and
h(z) = do + di(x) + do(x) + ds(x) + da(x) + d5(x), x € P, (8)

where ¢;,d;: P — P are diagonalizations of some i-additive and symmetric func-
tions C;, D;: P* — P, respectively. Taking in (2) y = 0, we obtain the following
formula

f(@) = z[g(z) + h(x) + h(2x) + g(0)] + f(0), zE€P, 9)
which used in (2) gives us
z[g(z) + h(z) + h(2x) + g(0)] — y[g(y) + h(y) + h(2y) + g(0)]
=(z—ylg(@)+hlz+2y) +h2z+y)+9(y)], z,yeP

After some simple calculations we get

z[h(2z) + h(z) — h(z +2y) — h(2z +y) — go(y)]

= ylh(@0) +hiy) ~h(r+29) ~ b2 +y) — o), wyer
where go(x) := g(z) — g(0), x € P.
Further, putting 2z instead of y in (10), we have
h(5z) — h(4x) — h(2x) + h(x) = go(2x) — 2g0(x), x #0,
which is also satisfied for = 0, since go(0) = 0. Thus
h(5x) — h(4z) — h(2z) + h(z) = go(2x) — 2g0(x), x € P. (11)
By (7) we obtain
90(2x) — 2g0(x) = 2c2(x) + 6c3(x) + 1deq(x) + 30cs5(x) (12)

and similarly from (8) we have

h(5z) — h(4z) — h(2z) + h(z) = 6dy(x) + bdds(z) + 354ds(x) + 2070d5(x). (13)
Using (13) and (12) in (11) we may write
6da () + 54ds(z) + 354dy(x) + 2070ds(x) = 2¢5(x) + 6cs(z) + Ldes(x) + 30c5(z).

Comparing the corresponding terms on both sides of this equality we get

ca(x) = 3da(x),

c3(z) = 9dz(x),
Teq(x) = 177dy(2),

cs(x) = 69ds(x)
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Using these equations in (7) we have
g(x) = co + c1(x) + 3da(x) + 9ds(x) + ca(x) 4+ 69d5(x), x € P, (14)
where
Tea(x) = 177dy(2), x € P. (15)
Substitute in (10) —z in place of y. Then
h(20) + h(=25) — [h(x) + h(=2)] = go(2) + go(—2),  w € P
This, in view of (8) and (14), means that
6da(x) + 30dy4 () = 6da(x) + 2¢4(z), x € P,
ie,
ca(z) = 15d4(z), reP
and from (15) we have
da(z) =0, reP (16)
and also ¢4 = 0.
Now we shall show that ds(z) = 0 for all € P. To this end we put in (10) in
places of = and y, respectively —z and 2z. Thus
—2h(4x) + 3h(3x) — 2h(22) — h(—2x) — h(—x) + 3h(0) = —go(2x) — 2g0(—2)
for x € P. Similarly as before, using (8), (14) and (16), we have
—18ds(z) — 54dz(x) — 1350ds5(x) = —18da(x) — 54ds(x) — 2070d5(z), z € P,
which means that
ds(z) =0, xz € P.
Now formulas (14) and (8) take forms
g(x) = co + c1(x) + 3da(z) + 9d3(x), xeP (17)
and
h(z) = do + di(x) + d2(z) + ds(x), x e P (18)
Using these equalities in (10), we get
x[—c1(y) — 3d1(y) + bda(z) — 3da(y) — do(z + 2y) — da(22 + y)
+ 9d3(x) — 9ds(y) — ds(z + 2y) — d3(2z + y)]
= y[—c1(z) — 3di(z) + 5d2(y) — 3da(z) — do(x + 2y) — d2 (22 +y)
+9d3(y) — 9d3(x) — ds(z + 2y) — d3(2z + y)].

Now, since the ring P is divisible by 3 and 2, the functions d; are diagonal-
izations of symmetric and i-additive functions D;: P* — P, i.e., d;(z) = D;(z%),
x € P. Using these forms of d; in the above equation we obtain

2(:E - y)[4D2($a?J) + 9D3(x7x7y) + 9D3(x7y7y)]
= ylc1(x) + 3di(z) + 8da(x) + 18d3(z)] (19)
—z[e1(y) + 3di(y) + 8da(y) + 18ds(y)]
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for all z,y € P. Put in (19) —y instead of y. Then for all z,y € P we have

2(‘T + y)[_4~D2("E7 y) - 9D3(£L‘, z, y) + 9D3(£L‘, Y, y)]
= —ylei(x) + 3dy(x) + 8da(x) + 18d3(x)) (20)
—z[—c1(y) — 3d1(y) + 8da(y) — 18d5(y)].

Adding the equations (19) and (20) we arrive at
92D3(x,y,y) — y[4Da(x,y) + 9Ds(x, x,y)] = —4wda(y), =y € P,
and, consequently,
92D3(x,y,y) — YyDs(x, x,y) = dyDa(x,y) — dada(y), x,y € P. (21)

Interchanging in these equations x with y and using the symmetry of both Dy and
D3 we may write

9yDs(x,z,y) — 9z Ds(x,y,y) = 4eDs(x,y) — dyda(x), x,y € P. (22)
Now, we add (21) and (22) to get
(x + y)Da(z,y) = xda(y) + yda(x), z,y € P.
Put here x + y in place of z, then
(z+2y)Da(x +y,y) = (¥ +y)do(y) + yda(z +y), z,y€P

which yields

wDy(x,y) = yda(x),  wy€eP (23)
and changing the roles of x and y

yDa(z,y) = zda(y), x,y € P. (24)
Now, we multiply (23) by y and (24) by « to obtain

zyDs(z,y) = y?da(z), x,y € P

and
xyDs(z,y) = 2°dy(y),  x,y € P.

Thus
y2d2(x) = x2d2(y)7 T,y € P7

which after substituing y = 1 gives the formula
do(z) = ba?, x € P, (25)
where b := da(1). Thus from (24) we obtain

Dz(fﬂ,y) = bl’y, T,y € P. (26)
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Using the formulas (25) and (26) in (21) we have
yDs(z,2,y) = xDs(x,y,y),  wyeP.
Putting = + y in place of x (27), we get
yDs(z +y, 2 +y,y) = (¢ +y)Ds(x +y, v, ),
which after some calculations gives
yDs(x,z,y) — (x —y)Ds(z,y,y) = xds(y),  z,y€P.

We use here the condition (27). Then

:ED3(:E7y7y)_(:E_y)D:‘}(:E?y?y)::Ed3(y)7 xayepu
ie.,
yDs(z,y,y) = xds(y),  =yeP.

Clearly we also have
ng(x,x,y) :ydg(fﬁ), l’ayGP-
Now, multiply the equation (28) by = and (29) by y?. Then we have

IyD3($7yay) = $2d3(y)7 T,y € P

and
w2y’ Ds(z, 2,y) = y’ds ().
On the other hand, we multiply (27) by y. We obtain

y*Ds(x,2,y) = 2yDs(z,y,y), @,y € P.
Using (32) in (30) we arrive at
x2ds(y) = y*Ds(z, z,y), x,y € P,
which multiplied by = yields
23ds(y) = zy*Ds(z, z,y), xz,y € P.
Comparing the equation (31) and (33) we obtain

yds(z) =2°ds(y), @,y €P
ie.,
ds3(r) = ax®, x € P,
where a := d3(1). Now equalities (28) and (29) take forms

D3(:E7y7y):a$y27 x,yEP

[27]

(33)
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and

Ds(z,z,y) = ax’y, x,y € P. (36)
Using the formulas (25), (26), (34), (35) and (36) in (19) we have

yler(@) +3di(2)] = z[ea(y) +3di(y)], = yeP.
Substituting here y = 1 we obtain
c1(z) + 3d1(z) = z[cr (1) + 3d1 (1)), x € P,

which means that

c1(x) = cx — 3dy(x), r € P,

where ¢ := ¢; (1) 4 3dy(1).
Thus we have shown that the formulas (17) and (18) may be written in the
form

g(x) = 9az® + 3bx® + cx — 3dy(x) + co, reP
and
h(z) = ax® + ba® + di (z) + do, x € P,
where d; is a given additive function. Now it suffices to use the obtained expres-
sions in (9), to get the desired formula for f.

It is an easy calculation to show that these functions f, g, h satisfy the equa-
tion (2).

With the aid of this theorem we may prove also a Stamate-kind result.

COROLLARY 1

Let P be an integral domain with unit element 1, uniquely divisible by 5! and
such that for every n € N we have nll # 0. Functions f,g,h: P — P satisfy the
equation (3) if and only if there exist a,a,b,c,d,d € P and an additive function
A: P — P such that

18az® + 8bx? + cx + 2d, x#0
flo) =4

b
a, z=0

—9ax® — 5ba? — 3A(z) — d — d, x#0
g(x) = o T
d—d—a, xr =

h(z) = az® + ba* + A(x) + d, xz € P.
Conversely, f,g,h: P — P given by the above equalities satisfy (2).

Proof. First we write the equation (3) in the form

(y—2)f(y) —yf(y) + (v — 2)f(z) + 2 f(z)
= (z —y)[g(x) + h(2x +y) + h(z + 2y) + g(y)]
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and, consequently,
wf(x) —yf(y) = (@ —y)lg(z) + f(x) + h(2z +y) + Az + 2y) + 9(y) + f(y)]-
Putting here k(t) := g(t) + f(t) and F(t) := tf() for all t € P we obtain
F(z) — F(y) = (x — y)[k(z) + h(2z + y) + h(z + 2y) + k(y)], z,y € P.

Thus, using Theorem 1, we get

zf(z) = 18ax* + 8ba® + cx? + 2dx + e, x € P, (37)
g(x) + f(x) = 9ax® + 3ba® + cx — 3A(z) +d — d, x € P, (38)
h(z) = az® + ba® + A(z) + d, x € P.

Now, from (37) it easily follows that e = 0 and furthermore

zf(z) = 18az" + 8ba® + cz® + 2du,
ie.,
f(z) = 18ax® + 8bx* + cx + 2d, x # 0,

which gives us
g(z) = —9az® — 5bx? — 3A(z) —d — d, z # 0.

Moreover, from (38) we get g(0) + f(0) = d — d, thus putting @ := f(0) we obtain
that ¢(0) =d — d — a.
On the other hand, it is easy to see that functions given by the above formulae

yield a solution of the equation (3).
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