Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica VIII (2009)

Barbara Koclegga-Kulpa, Tomasz Szostok and Szymon Wasowicz On some equations stemming from quadrature rules

Abstract. We deal with functional equations of the type

$$
F(y)-F(x)=(y-x) \sum_{k=1}^{n} f_{k}\left(\left(1-\lambda_{k}\right) x+\lambda_{k} y\right),
$$

connected to quadrature rules and, in particular, we find the solutions of the following functional equation

$$
f(x)-f(y)=(x-y)[g(x)+h(x+2 y)+h(2 x+y)+g(y)] .
$$

We also present a solution of the Stamate type equation

$$
y f(x)-x f(y)=(x-y)[g(x)+h(x+2 y)+h(2 x+y)+g(y)] .
$$

All results are valid for functions acting on integral domains.

1. Introduction

We deal with some equations connected to quadrature rules. Having a function $f: \mathbb{R} \rightarrow \mathbb{R}$ we may approximate its integral using the following expression

$$
F(y)-F(x) \approx(y-x) \sum_{k=1}^{n} \alpha_{k} f\left(\left(1-\lambda_{k}\right) x+\lambda_{k} y\right)
$$

(where F is a primitive function for f), which is satisfied exactly for polynomials of certain degree. One of the simplest functional equations connected to quadrature rules is an equation stemming from Simpson's rule

$$
F(y)-F(x)=(y-x)\left[\frac{1}{6} f(x)+\frac{2}{3} f\left(\frac{x+y}{2}\right)+\frac{1}{6} f(y)\right] .
$$

Another example is given by the equation

$$
F(y)-F(x)=(y-x)\left[\frac{1}{8} f(x)+\frac{3}{8} f\left(\frac{x+2 y}{3}\right)+\frac{3}{8} f\left(\frac{2 x+y}{3}\right)+\frac{1}{8} f(y)\right],
$$

which is satisfied by polynomials of degree not greater than 3 . The generalized version of this equation

$$
\begin{equation*}
g(x)-f(y)=(x-y)[h(x)+k(s x+t y)+k(t x+s y)+h(y)] \tag{1}
\end{equation*}
$$

was considered during the 44th ISFE held in Louisville, Kentucky, USA by P.K. Sahoo [7]. The solution has been given in the class of functions f, g, h, k mapping \mathbb{R} into \mathbb{R} and such that g and f are twice differentiable, and k is four times differentiable.

On the other hand, M. Sablik [5] during the 7th Katowice-Debrecen Winter Seminar on Functional Equations and Inequalities presented the general solution of this equation in the case $s, t \in \mathbb{Q}$ without any regularity assumptions concerning the functions considered.

We deal with a special case of (1) (with $s=1, t=2$) for functions acting on integral domains. However, it is easy to observe that if we take $x=y$ in (1), then we immediately obtain that $f=g$. Thus we shall find the solutions of the following functional equation

$$
\begin{equation*}
f(x)-f(y)=(x-y)[g(x)+h(x+2 y)+h(2 x+y)+g(y)] . \tag{2}
\end{equation*}
$$

Using the obtained result we will also present a solution of a similar Stamate type equation

$$
\begin{equation*}
y f(x)-x f(y)=(x-y)[g(x)+h(2 x+y)+h(x+2 y)+g(y)] . \tag{3}
\end{equation*}
$$

In the proof of Lemma 1 below we use the lemma established by M. Sablik [6] and improved by I. Pawlikowska [3]. First we need some notations. Let G, H be Abelian groups and $S A^{0}(G, H):=H, S A^{1}(G, H):=\operatorname{Hom}(G, H)$ (i.e., the group of all homomorphisms from G into H), and for $i \in \mathbb{N}, i \geq 2$, let $S A^{i}(G, H)$ be the group of all i-additive and symmetric mappings from G^{i} into H. Furthermore, let $\mathcal{P}:=\left\{(\alpha, \beta) \in \operatorname{Hom}(G, G)^{2}: \alpha(G) \subset \beta(G)\right\}$. Finally, for $x \in G$ let $x^{i}=(\underbrace{x, \ldots, x}_{i}), i \in \mathbb{N}$.

Lemma 1

Fix $N \in \mathbb{N} \cup\{0\}$ and let I_{0}, \ldots, I_{N} be finite subsets of \mathcal{P}. Suppose that H is uniquely divisible by N ! and let the functions $\varphi_{i}: G \rightarrow S A^{i}(G, H)$ and $\psi_{i,(\alpha, \beta)}: G \rightarrow$ $S A^{i}(G, H)\left((\alpha, \beta) \in I_{i}, i=0, \ldots, N\right)$ satisfy

$$
\varphi_{N}(x)\left(y^{N}\right)+\sum_{i=0}^{N-1} \varphi_{i}(x)\left(y^{i}\right)=\sum_{i=0}^{N} \sum_{(\alpha, \beta) \in I_{i}} \psi_{i,(\alpha, \beta)}(\alpha(x)+\beta(y))\left(y^{i}\right)
$$

for every $x, y \in G$. Then φ_{N} is a polynomial function of order at most $k-1$, where

$$
k=\sum_{i=0}^{N} \operatorname{card}\left(\bigcup_{s=i}^{N} I_{s}\right)
$$

Now we will state a simplified version of this lemma. We take $N=1$ and we consider functions acting on an integral domain P. Moreover, we consider only homomorphisms of the type $x \mapsto y x$, where $y \in P$ is fixed.

Lemma 2

Let P be an integral domain and let I_{0}, I_{1} be finite subsets of P^{2} such that for all $(a, b) \in I_{i}$ the ring P is divisible by b. Let $\varphi_{i}, \psi_{i,(\alpha, \beta)}: P \rightarrow P$ satisfy

$$
\varphi_{1}(x) y+\varphi_{0}(x)=\sum_{(a, b) \in I_{0}} \psi_{0,(a, b)}(a x+b y)+y \sum_{(a, b) \in I_{1}} \psi_{1,(a, b)}(a x+b y)
$$

for all $x, y \in P$. Then φ_{1} is a polynomial function of order at most equal to $\operatorname{card}\left(I_{0} \cup I_{1}\right)+\operatorname{card} I_{1}-1$.

In the above lemmas a polynomial function of order n means a solution of the functional equation $\Delta_{h}^{n+1} f(x)=0$, where Δ_{h}^{n} stands for the n-th iterate of the difference operator $\Delta_{h} f(x)=f(x+h)-f(x)$. Observe that a continuous polynomial function of order n is a polynomial of degree at most n (see [2, Theorem 4, p. 398]).

It is also well known that if P is an integral domain uniquely divisible by n ! and $f: P \rightarrow P$ is a polynomial function of order n, then

$$
f(x)=c_{0}+c_{1}(x)+\ldots+c_{n}(x), \quad x \in P
$$

where $c_{0} \in P$ is a constant and

$$
c_{i}(x)=C_{i}(x, x, \ldots, x), \quad x \in P
$$

for some i-additive and symmetric function $C_{i}: P^{i} \rightarrow P$.

2. Results

We begin with the following lemma which will be usefull in the proof of the main result. However, we state it a bit more generally.

Lemma 3

Let P be an integral domain and let $f, f_{k}: P \rightarrow P, k=0, \ldots, n$, be functions satisfying the equation

$$
\begin{equation*}
f(y)-f(x)=(y-x) \sum_{k=0}^{n} f_{k}\left(a_{k} x+b_{k} y\right) \tag{4}
\end{equation*}
$$

where $a_{k}, b_{k} \in P$ are given numbers such that for every $k \in\{0, \ldots, n\}$ we have $a_{k} \neq 0$ or $b_{k} \neq 0$.

Let $i \in\{0, \ldots, n\}$ be fixed. If P is divisible by a_{i}, b_{i} and also by $a_{i} b_{k}-a_{k} b_{i}$, $k=0, \ldots, n ; k \neq i$, then the function

$$
\tilde{f}(x):=\left(a_{i}+b_{i}\right) f_{i}\left(\left(a_{i}+b_{i}\right) x\right)
$$

is a polynomial function of degree at most $2 n+1$.

Moreover, if there exists $k_{1} \in\{0,1, \ldots, n\}$ such that $a_{k_{1}}=0$ or $b_{k_{1}}=0$, then function f is a polynomial function of order at most $2 n$ and if there exist $k_{1}, k_{2} \in\{0, \ldots, n\}$ such that $a_{k_{1}}=b_{k_{2}}=0$, then \tilde{f} is a polynomial function of order at most $2 n-1$.

Proof. Fix an $i \in\{0, \ldots, n\}$, put in (4) $x-b_{i} y$ and $x+a_{i} y$ instead of x and y, respectively, to obtain

$$
\begin{align*}
& f\left(x+a_{i} y\right)-f\left(x-b_{i} y\right) \\
& \quad=\left(a_{i}+b_{i}\right) y\left[f_{0}\left(\left(a_{0}+b_{0}\right) x+\left(a_{i} b_{0}-a_{0} b_{i}\right) y\right)+\ldots\right. \tag{5}\\
& \left.\quad+f_{i}\left(\left(a_{i}+b_{i}\right) x\right)+\ldots+f_{n}\left(\left(a_{n}+b_{n}\right) x+\left(a_{i} b_{n}-a_{n} b_{i}\right) y\right)\right]
\end{align*}
$$

There are two possibilities:

1. $a_{i}, b_{i} \neq 0$,
2. $a_{i}=0$ or $b_{i}=0$.

Let us consider the first case. Then from (5) we obtain

$$
\begin{aligned}
y\left(a_{i}+b_{i}\right) f_{i}\left(\left(a_{i}+b_{i}\right) x\right)= & f\left(x+a_{i} y\right)-f\left(x-b_{i} y\right) \\
& -\left(a_{i}+b_{i}\right) y \sum_{k=0, k \neq i}^{n} f_{k}\left(\left(a_{k}+b_{k}\right) x+\left(a_{i} b_{k}-a_{k} b_{i}\right) y\right),
\end{aligned}
$$

which means that

$$
\begin{align*}
y \tilde{f}(x)= & f\left(x+a_{i} y\right)-f\left(x-b_{i} y\right) \\
& -\left(a_{i}+b_{i}\right) y \sum_{k=0, k \neq i}^{n} f_{k}\left(\left(a_{k}+b_{k}\right) x+\left(a_{i} b_{k}-a_{k} b_{i}\right) y\right) . \tag{6}
\end{align*}
$$

Now we are in position to use Lemma 2 with

$$
I_{0}=\left\{\left(1,-b_{i}\right),\left(1, a_{i}\right)\right\}
$$

and

$$
I_{1}=\left\{\left(a_{k}+b_{k}, a_{i} b_{k}-a_{k} b_{i}\right): k=0, \ldots, n ; k \neq i\right\} .
$$

We clearly obtain that \tilde{f} is a polynomial function of order at most equal to

$$
\operatorname{card}\left(I_{0} \cup I_{1}\right)+\operatorname{card} I_{1}-1 \leq(n+2)+n-1=2 n+1
$$

Further, if for example $a_{k_{1}}=0$ for some $k_{1} \in\{0, \ldots, n\}, k_{1} \neq i$, then we have a summand

$$
f_{k_{1}}\left(b_{k_{1}} x+a_{i} b_{k_{1}} y\right)=f_{k_{1}}\left(b_{k_{1}}\left(x+a_{i} y\right)\right)
$$

on the right-hand side of (6). Thus we put $\tilde{f}_{k_{1}}(x):=f_{k_{1}}\left(b_{k_{1}} x\right)$ and (6) takes form

$$
\begin{aligned}
& y \tilde{f}(x) \\
& \quad=f\left(x-b_{i} y\right)-f\left(x+a_{i} y\right) \\
& \quad-\left(a_{i}+b_{i}\right) y\left[\sum_{k=0, k \neq i, k_{1}}^{n} f_{k}\left(\left(a_{k}+b_{k}\right) x+\left(a_{i} b_{k}-a_{k} b_{i}\right) y\right)+\tilde{f}_{k_{1}}\left(x+a_{i} y\right)\right] .
\end{aligned}
$$

Similarly as before we take

$$
I_{0}=\left\{\left(1,-b_{i}\right),\left(1, a_{i}\right)\right\}
$$

and

$$
I_{1}=\left\{\left(a_{k}+b_{k}, a_{i} b_{k}-a_{k} b_{i}\right): k=0, \ldots, n ; k \neq i, k_{1}\right\} \cup\left\{\left(1, a_{i}\right)\right\}
$$

In this case we have $I_{0} \cap I_{1}=\left\{\left(1, a_{i}\right)\right\}$, i.e.,

$$
\operatorname{card}\left(I_{0} \cup I_{1}\right)+\operatorname{card} I_{1}-1 \leq(n+1)+n-1=2 n
$$

The proof in the case $a_{k_{1}}=b_{k_{2}}=0$ is similar.
Now we consider the case $a_{i}=0$ or $b_{i}=0$. Let for example $a_{i}=0$, then from (6) we have

$$
y\left(b_{i}\right) f_{i}\left(b_{i} x\right)-f(x)=-f\left(x-b_{i} y\right)-b_{i} y \sum_{k=0, k \neq i}^{n} f_{k}\left(\left(a_{k}+b_{k}\right) x-a_{k} b_{i} y\right)
$$

i.e.,

$$
y b_{i} \tilde{f}(x)-f(x)=-f\left(x-b_{i} y\right)-b_{i} y \sum_{k=0, k \neq i}^{n} f_{k}\left(\left(a_{k}+b_{k}\right) x-a_{k} b_{i} y\right)
$$

In this case we take

$$
I_{0}=\left\{\left(1,-b_{i}\right)\right\}
$$

and

$$
I_{1}=\left\{\left(a_{k}+b_{k},-a_{k} b_{i}\right): k=0, \ldots, n ; k \neq i\right\}
$$

Thus similarly as before \tilde{f} is a polynomial function of degree not greater than

$$
\operatorname{card}\left(I_{0} \cup I_{1}\right)+\operatorname{card} I_{1}-1 \leq(n+1)+n-1=2 n
$$

It is easy to see that if for some $k_{2} \in\{0, \ldots, n\}, b_{k_{2}}=0$, then \tilde{f} is a polynomial function of order at most $2 n-1$.

Now we are in position to state the most important result of this paper. Namely, we give a general solution of (2) for functions acting on integral domains satisfying some assumptions.

Theorem 1

Let P be an integral domain with unit element $\mathbb{1}$, uniquely divisible by 5 ! and such that for every $n \in \mathbb{N}$ we have $n \mathbb{\|} \neq 0$. The functions $f, g, h: P \rightarrow P$ satisfy the equation (2) if and only if there exist $a, b, c, d, \bar{d}, e \in P$ and an additive function $A: P \rightarrow P$ such that

$$
\begin{array}{ll}
f(x)=18 a x^{4}+8 b x^{3}+c x^{2}+2 d x+e, & x \in P, \\
g(x)=9 a x^{3}+3 b x^{2}+c x-3 A(x)+d-\bar{d}, & x \in P, \\
h(x)=a x^{3}+b x^{2}+A(x)+\bar{d}, & x \in P .
\end{array}
$$

Proof. Assume that $f, g, h: P \rightarrow P$ satisfy the equation (2). From Lemma 3 we know that g and h are polynomial functions of order at most 5 . Therefore

$$
\begin{equation*}
g(x)=c_{0}+c_{1}(x)+c_{2}(x)+c_{3}(x)+c_{4}(x)+c_{5}(x), \quad x \in P \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
h(x)=d_{0}+d_{1}(x)+d_{2}(x)+d_{3}(x)+d_{4}(x)+d_{5}(x), \quad x \in P \tag{8}
\end{equation*}
$$

where $c_{i}, d_{i}: P \rightarrow P$ are diagonalizations of some i-additive and symmetric functions $C_{i}, D_{i}: P^{i} \rightarrow P$, respectively. Taking in (2) $y=0$, we obtain the following formula

$$
\begin{equation*}
f(x)=x[g(x)+h(x)+h(2 x)+g(0)]+f(0), \quad x \in P, \tag{9}
\end{equation*}
$$

which used in (2) gives us

$$
\begin{aligned}
& x[g(x)+h(x)+h(2 x)+g(0)]-y[g(y)+h(y)+h(2 y)+g(0)] \\
& \quad=(x-y)[g(x)+h(x+2 y)+h(2 x+y)+g(y)], \quad x, y \in P .
\end{aligned}
$$

After some simple calculations we get

$$
\begin{align*}
& x\left[h(2 x)+h(x)-h(x+2 y)-h(2 x+y)-g_{0}(y)\right] \\
& \quad=y\left[h(2 y)+h(y)-h(x+2 y)-h(2 x+y)-g_{0}(x)\right], \quad x, y \in P, \tag{10}
\end{align*}
$$

where $g_{0}(x):=g(x)-g(0), x \in P$.
Further, putting $2 x$ instead of y in (10), we have

$$
h(5 x)-h(4 x)-h(2 x)+h(x)=g_{0}(2 x)-2 g_{0}(x), \quad x \neq 0,
$$

which is also satisfied for $x=0$, since $g_{0}(0)=0$. Thus

$$
\begin{equation*}
h(5 x)-h(4 x)-h(2 x)+h(x)=g_{0}(2 x)-2 g_{0}(x), \quad x \in P . \tag{11}
\end{equation*}
$$

By (7) we obtain

$$
\begin{equation*}
g_{0}(2 x)-2 g_{0}(x)=2 c_{2}(x)+6 c_{3}(x)+14 c_{4}(x)+30 c_{5}(x) \tag{12}
\end{equation*}
$$

and similarly from (8) we have

$$
\begin{equation*}
h(5 x)-h(4 x)-h(2 x)+h(x)=6 d_{2}(x)+54 d_{3}(x)+354 d_{4}(x)+2070 d_{5}(x) . \tag{13}
\end{equation*}
$$

Using (13) and (12) in (11) we may write
$6 d_{2}(x)+54 d_{3}(x)+354 d_{4}(x)+2070 d_{5}(x)=2 c_{2}(x)+6 c_{3}(x)+14 c_{4}(x)+30 c_{5}(x)$.
Comparing the corresponding terms on both sides of this equality we get

$$
\begin{aligned}
c_{2}(x) & =3 d_{2}(x), \\
c_{3}(x) & =9 d_{3}(x), \\
7 c_{4}(x) & =177 d_{4}(x), \\
c_{5}(x) & =69 d_{5}(x) .
\end{aligned}
$$

Using these equations in (7) we have

$$
\begin{equation*}
g(x)=c_{0}+c_{1}(x)+3 d_{2}(x)+9 d_{3}(x)+c_{4}(x)+69 d_{5}(x), \quad x \in P \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
7 c_{4}(x)=177 d_{4}(x), \quad x \in P \tag{15}
\end{equation*}
$$

Substitute in (10) $-x$ in place of y. Then

$$
h(2 x)+h(-2 x)-[h(x)+h(-x)]=g_{0}(x)+g_{0}(-x), \quad x \in P .
$$

This, in view of (8) and (14), means that

$$
6 d_{2}(x)+30 d_{4}(x)=6 d_{2}(x)+2 c_{4}(x), \quad x \in P
$$

i.e,

$$
c_{4}(x)=15 d_{4}(x), \quad x \in P
$$

and from (15) we have

$$
\begin{equation*}
d_{4}(x)=0, \quad x \in P \tag{16}
\end{equation*}
$$

and also $c_{4}=0$.
Now we shall show that $d_{5}(x)=0$ for all $x \in P$. To this end we put in (10) in places of x and y, respectively $-x$ and $2 x$. Thus

$$
-2 h(4 x)+3 h(3 x)-2 h(2 x)-h(-2 x)-h(-x)+3 h(0)=-g_{0}(2 x)-2 g_{0}(-x)
$$

for $x \in P$. Similarly as before, using (8), (14) and (16), we have

$$
-18 d_{2}(x)-54 d_{3}(x)-1350 d_{5}(x)=-18 d_{2}(x)-54 d_{3}(x)-2070 d_{5}(x), \quad x \in P
$$

which means that

$$
d_{5}(x)=0, \quad x \in P .
$$

Now formulas (14) and (8) take forms

$$
\begin{equation*}
g(x)=c_{0}+c_{1}(x)+3 d_{2}(x)+9 d_{3}(x), \quad x \in P \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
h(x)=d_{0}+d_{1}(x)+d_{2}(x)+d_{3}(x), \quad x \in P . \tag{18}
\end{equation*}
$$

Using these equalities in (10), we get

$$
\begin{aligned}
x\left[-c_{1}(y)\right. & -3 d_{1}(y)+5 d_{2}(x)-3 d_{2}(y)-d_{2}(x+2 y)-d_{2}(2 x+y) \\
& \left.+9 d_{3}(x)-9 d_{3}(y)-d_{3}(x+2 y)-d_{3}(2 x+y)\right] \\
= & y\left[-c_{1}(x)-3 d_{1}(x)+5 d_{2}(y)-3 d_{2}(x)-d_{2}(x+2 y)-d_{2}(2 x+y)\right. \\
& \left.+9 d_{3}(y)-9 d_{3}(x)-d_{3}(x+2 y)-d_{3}(2 x+y)\right] .
\end{aligned}
$$

Now, since the ring P is divisible by 3 and 2 , the functions d_{i} are diagonalizations of symmetric and i-additive functions $D_{i}: P^{i} \rightarrow P$, i.e., $d_{i}(x)=D_{i}\left(x^{i}\right)$, $x \in P$. Using these forms of d_{i} in the above equation we obtain

$$
\begin{gather*}
2(x-y)\left[4 D_{2}(x, y)+9 D_{3}(x, x, y)+9 D_{3}(x, y, y)\right] \\
=y\left[c_{1}(x)+3 d_{1}(x)+8 d_{2}(x)+18 d_{3}(x)\right] \tag{19}\\
-x\left[c_{1}(y)+3 d_{1}(y)+8 d_{2}(y)+18 d_{3}(y)\right]
\end{gather*}
$$

for all $x, y \in P$. Put in (19) $-y$ instead of y. Then for all $x, y \in P$ we have

$$
\begin{gather*}
2(x+y)\left[-4 D_{2}(x, y)-9 D_{3}(x, x, y)+9 D_{3}(x, y, y)\right] \\
=-y\left[c_{1}(x)+3 d_{1}(x)+8 d_{2}(x)+18 d_{3}(x)\right] \tag{20}\\
\quad-x\left[-c_{1}(y)-3 d_{1}(y)+8 d_{2}(y)-18 d_{3}(y)\right]
\end{gather*}
$$

Adding the equations (19) and (20) we arrive at

$$
9 x D_{3}(x, y, y)-y\left[4 D_{2}(x, y)+9 D_{3}(x, x, y)\right]=-4 x d_{2}(y), \quad x, y \in P
$$

and, consequently,

$$
\begin{equation*}
9 x D_{3}(x, y, y)-9 y D_{3}(x, x, y)=4 y D_{2}(x, y)-4 x d_{2}(y), \quad x, y \in P \tag{21}
\end{equation*}
$$

Interchanging in these equations x with y and using the symmetry of both D_{2} and D_{3} we may write

$$
\begin{equation*}
9 y D_{3}(x, x, y)-9 x D_{3}(x, y, y)=4 x D_{2}(x, y)-4 y d_{2}(x), \quad x, y \in P \tag{22}
\end{equation*}
$$

Now, we add (21) and (22) to get

$$
(x+y) D_{2}(x, y)=x d_{2}(y)+y d_{2}(x), \quad x, y \in P
$$

Put here $x+y$ in place of x, then

$$
(x+2 y) D_{2}(x+y, y)=(x+y) d_{2}(y)+y d_{2}(x+y), \quad x, y \in P
$$

which yields

$$
\begin{equation*}
x D_{2}(x, y)=y d_{2}(x), \quad x, y \in P \tag{23}
\end{equation*}
$$

and changing the roles of x and y

$$
\begin{equation*}
y D_{2}(x, y)=x d_{2}(y), \quad x, y \in P \tag{24}
\end{equation*}
$$

Now, we multiply (23) by y and (24) by x to obtain

$$
x y D_{2}(x, y)=y^{2} d_{2}(x), \quad x, y \in P
$$

and

$$
x y D_{2}(x, y)=x^{2} d_{2}(y), \quad x, y \in P
$$

Thus

$$
y^{2} d_{2}(x)=x^{2} d_{2}(y), \quad x, y \in P
$$

which after substituing $y=\mathbb{\|}$ gives the formula

$$
\begin{equation*}
d_{2}(x)=b x^{2}, \quad x \in P \tag{25}
\end{equation*}
$$

where $b:=d_{2}(\mathbb{1})$. Thus from (24) we obtain

$$
\begin{equation*}
D_{2}(x, y)=b x y, \quad x, y \in P \tag{26}
\end{equation*}
$$

Using the formulas (25) and (26) in (21) we have

$$
\begin{equation*}
y D_{3}(x, x, y)=x D_{3}(x, y, y), \quad x, y \in P \tag{27}
\end{equation*}
$$

Putting $x+y$ in place of x (27), we get

$$
y D_{3}(x+y, x+y, y)=(x+y) D_{3}(x+y, y, y)
$$

which after some calculations gives

$$
y D_{3}(x, x, y)-(x-y) D_{3}(x, y, y)=x d_{3}(y), \quad x, y \in P
$$

We use here the condition (27). Then

$$
x D_{3}(x, y, y)-(x-y) D_{3}(x, y, y)=x d_{3}(y), \quad x, y \in P
$$

i.e.,

$$
\begin{equation*}
y D_{3}(x, y, y)=x d_{3}(y), \quad x, y \in P \tag{28}
\end{equation*}
$$

Clearly we also have

$$
\begin{equation*}
x D_{3}(x, x, y)=y d_{3}(x), \quad x, y \in P \tag{29}
\end{equation*}
$$

Now, multiply the equation (28) by x and (29) by y^{2}. Then we have

$$
\begin{equation*}
x y D_{3}(x, y, y)=x^{2} d_{3}(y), \quad x, y \in P \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
x y^{2} D_{3}(x, x, y)=y^{3} d_{3}(x) \tag{31}
\end{equation*}
$$

On the other hand, we multiply (27) by y. We obtain

$$
\begin{equation*}
y^{2} D_{3}(x, x, y)=x y D_{3}(x, y, y), \quad x, y \in P \tag{32}
\end{equation*}
$$

Using (32) in (30) we arrive at

$$
x^{2} d_{3}(y)=y^{2} D_{3}(x, x, y), \quad x, y \in P
$$

which multiplied by x yields

$$
\begin{equation*}
x^{3} d_{3}(y)=x y^{2} D_{3}(x, x, y), \quad x, y \in P \tag{33}
\end{equation*}
$$

Comparing the equation (31) and (33) we obtain

$$
y^{3} d_{3}(x)=x^{3} d_{3}(y), \quad x, y \in P
$$

i.e.,

$$
\begin{equation*}
d_{3}(x)=a x^{3}, \quad x \in P \tag{34}
\end{equation*}
$$

where $a:=d_{3}(\mathbb{1})$. Now equalities (28) and (29) take forms

$$
\begin{equation*}
D_{3}(x, y, y)=a x y^{2}, \quad x, y \in P \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{3}(x, x, y)=a x^{2} y, \quad x, y \in P . \tag{36}
\end{equation*}
$$

Using the formulas (25), (26), (34), (35) and (36) in (19) we have

$$
y\left[c_{1}(x)+3 d_{1}(x)\right]=x\left[c_{1}(y)+3 d_{1}(y)\right], \quad x, y \in P
$$

Substituting here $y=\mathbb{1}$ we obtain

$$
c_{1}(x)+3 d_{1}(x)=x\left[c_{1}(\mathbb{1})+3 d_{1}(\mathbb{1})\right], \quad x \in P,
$$

which means that

$$
c_{1}(x)=c x-3 d_{1}(x), \quad x \in P,
$$

where $c:=c_{1}(\mathbb{1})+3 d_{1}(\mathbb{1})$.
Thus we have shown that the formulas (17) and (18) may be written in the form

$$
g(x)=9 a x^{3}+3 b x^{2}+c x-3 d_{1}(x)+c_{0}, \quad x \in P
$$

and

$$
h(x)=a x^{3}+b x^{2}+d_{1}(x)+d_{0}, \quad x \in P,
$$

where d_{1} is a given additive function. Now it suffices to use the obtained expressions in (9), to get the desired formula for f.

It is an easy calculation to show that these functions f, g, h satisfy the equation (2).

With the aid of this theorem we may prove also a Stamate-kind result.

Corollary 1

Let P be an integral domain with unit element 11 , uniquely divisible by 5! and such that for every $n \in \mathbb{N}$ we have $n \mathbb{1} \neq 0$. Functions $f, g, h: P \rightarrow P$ satisfy the equation (3) if and only if there exist $a, \bar{a}, b, c, d, \bar{d} \in P$ and an additive function $A: P \rightarrow P$ such that

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{ll}
18 a x^{3}+8 b x^{2}+c x+2 d, & x \neq 0 \\
\bar{a}, & x=0
\end{array},\right. \\
& g(x)= \begin{cases}-9 a x^{3}-5 b x^{2}-3 A(x)-d-\bar{d}, & x \neq 0 \\
d-\bar{d}-\bar{a}, & x=0\end{cases} \\
& h(x)=a x^{3}+b x^{2}+A(x)+\bar{d}, \quad x \in P .
\end{aligned}
$$

Conversely, $f, g, h: P \rightarrow P$ given by the above equalities satisfy (2).
Proof. First we write the equation (3) in the form

$$
\begin{aligned}
& (y-x) f(y)-y f(y)+(y-x) f(x)+x f(x) \\
& \quad=(x-y)[g(x)+h(2 x+y)+h(x+2 y)+g(y)]
\end{aligned}
$$

and, consequently,

$$
x f(x)-y f(y)=(x-y)[g(x)+f(x)+h(2 x+y)+h(x+2 y)+g(y)+f(y)]
$$

Putting here $k(t):=g(t)+f(t)$ and $F(t):=t f(t)$ for all $t \in P$ we obtain

$$
F(x)-F(y)=(x-y)[k(x)+h(2 x+y)+h(x+2 y)+k(y)], \quad x, y \in P
$$

Thus, using Theorem 1, we get

$$
\begin{align*}
x f(x) & =18 a x^{4}+8 b x^{3}+c x^{2}+2 d x+e, & & x \in P \tag{37}\\
g(x)+f(x) & =9 a x^{3}+3 b x^{2}+c x-3 A(x)+d-\bar{d}, & & x \in P \tag{38}\\
h(x) & =a x^{3}+b x^{2}+A(x)+\bar{d}, & & x \in P
\end{align*}
$$

Now, from (37) it easily follows that $e=0$ and furthermore

$$
x f(x)=18 a x^{4}+8 b x^{3}+c x^{2}+2 d x
$$

i.e.,

$$
f(x)=18 a x^{3}+8 b x^{2}+c x+2 d, \quad x \neq 0
$$

which gives us

$$
g(x)=-9 a x^{3}-5 b x^{2}-3 A(x)-d-\bar{d}, \quad x \neq 0
$$

Moreover, from (38) we get $g(0)+f(0)=d-\bar{d}$, thus putting $\bar{a}:=f(0)$ we obtain that $g(0)=d-\bar{d}-\bar{a}$.

On the other hand, it is easy to see that functions given by the above formulae yield a solution of the equation (3).

Acknowledgement

The authors are grateful to Professor Joanna Ger for her valuable remarks concerning the Corollary 1.

References

[1] B. Koclęga-Kulpa, T. Szostok, On some equations connected to Hadamard inequalities, Aequationes Math. 75 (2008), 119-129.
[2] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Państwowe Wydawnictwo Naukowe (Polish Scientific Publishers) and Uniwersytet Śląski, Warszawa-Kraków-Katowice, 1985.
[3] I. Pawlikowska, Solutions of two functional equations using a result of M. Sablik, Aequationes Math. 72 (2006), 177-190.
[4] T. Riedel, P.K. Sahoo, Mean value theorems and functional equations, World Scientific, Singapore-New Jersey-Lodon-Hong Kong, 1998.
[5] M. Sablik, On a problem of P.K. Sahoo, (joint work with A. Lisak), in: Report of meeting. The Seventh Katowice-Debrecen Winter Seminar on Functional Equations and Inequalities, January 31-February 2, 2007, Będlewo, Poland, Ann. Math. Sil. 21 (2007), 70-71.
[6] M. Sablik, Taylor's theorem and functional equations, Aequationes Math. 60 (2000), 258-267.
[7] P.K. Sahoo, On a functional equation associated with the trapezoidal rule, in: Report of meeting. The Forty-fourth International Symposium on Functional Equations, May 14-20, 2006, Louisville, Kentucky, USA, Aequationes Math. 73 (2007), 185.

B. Koclęga-Kulpa, T. Szostok
Institute of Mathematics
Silesian University
Bankowa 14
PL-40-007 Katowice
Poland
E-mail: koclega@ux2.math.us.edu.pl
E-mail: szostok@ux2.math.us.edu.pl
Sz. Wasowicz
Department of Mathematics and Computer Science
University of Bielsko-Biała
Willowa 2,
PL-43-309 Bielsko-Biata
Poland
E-mail: swasowicz@ath.bielsko.pl

