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Optimal design problem for 2D composite materials with dif-

ferent circular inclusions is studied on the base of the potential method
combined with functional equation method. Exact geometric description
of the optimal distribution of the inclusions is determined.

fhgji k\l`mdn0o0p0qdl`r n0k

The article is devoted to the constructive analysis of mathematical models
arising at the study of optimal design of 2D composite materials (see e.g. [5]).

The optimal design problem in the considered case is the problem of the
determination of a distribution of circular inclusions in a matrix of homogeneous
material in such a way that the obtained inhomogeneous material possesses an
extremal (minimal or maximal) effective conductivity in a given direction.

Potential analysis is used in combination with the method of functional
equations (for wider description of the approach see [6] and [7]). Such approach
makes possible to discover general properties of composite materials on the base
of an explicit representation of the effective conductivity functional. Besides,
in certain special cases we have found an exact geometric description of an
optimal (in the above sense) distribution of inclusions.

The paper continues the authors’ study of behind optimal design problems
which were previously devoted to the case of 2D composite materials with
equal circular inclusions (see [5]). In particular, in [5] we studied the problem
of optimal design of 2D unbounded composite materials in the case of small
Bergmann parameter. The corresponding boundary conditions are simplified,
namely only their main parts are considered. Such model situation allows us
to give a complete geometric description of the optimal distribution of circular
inclusions of equal radius. It was shown that the solution of the simplified
boundary value problems gives the minimal or maximal value to the functional
of the effective conductivity if each inclusion touches at least one of others. For
small number of inclusions an exact description of the optimal distribution of
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inclusions is given and exact optimal value of the changing part of the functional
of the effective conductivity is calculated. Such model problem can be used
for an approximation of the optimal design problem with sufficiently small
concentration of inclusions ν.

Here we concern with the case of non-equal circular inclusions. We use
the same argument. It should be noted that the constructive approach applied
here differs from the recently studied models of optimal design based mainly
on the homogenization technique (see e.g. [2], [1]).

� gj���Mn0o0�0�

Let us consider 2D unbounded composite materials with circular inclusions
of different radii. Let the matrix of a composite be geometrically modelled by
an unbounded multiply connected circular domain, namely, an exterior of fi-
nite number of discs of different radii. These discs correspond to inclusions for
which the radii are given but the position on the complex plane are subject of
further determination. We suppose that the matrix is filled in by the homoge-
neous material of a constant (thermal) conductivity λm = 1, and the inclusions
are filled in by another material of a constant conductivity λi = λ. We sup-
pose additionally that the Bergmann parameter ρ = λ−1

λ+1 is sufficiently small
(|ρ| � 1). The composite material is placed into the steady (thermal) field. In
order to avoid indeterminancies, we consider only the case of positive Bergmann
parameter, i.e., the conductivity of inclusions is greater than the conductivity
of matrix.

The question is to determine the distribution of the inclusions for which the
considered inhomogeneous composite material possesses an extremal (minimal
or maximal) effective conductivity in a given direction (say in the direction
of the positive real line). In the case of a small Bergmann parameter we use
the same approach as in [5], namely, we simplify the boundary conditions by
considering only the main part of them (with respect to the power of ρ) and
then minimize or maximize the only changing part of the functional of the
effective conductivity. Such simplification gives us possibility to obtain an
analytic solution to the model problem. The later can be considered as an
approximation to the starting optimal design problem. The model problem is
studied by the reduction to a finite-dimensional extremal problem with centers
of inclusions as unknown variables.

We have to note that our approach does not depend on the type of the
considered physical field neither on the direction in which we determine the
effective conductivity.
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Let Dk := {z ∈ C : |z − ak| < rk}, k = 1, . . . , n, |aj − ak| ≥ rj + rk

and aj 6= ak, for k 6= j, be a finite number of disjoint discs and Lk := {z ∈
C : |z − ak| = rk} be their boundary circles. We consider an optimal design
problem in the potential case, i.e., there are thermal potentials uk in each disc
Dk , k = 1, . . . , n, as well as a potential u in the domain D = C \

⋃n

k=1 Dk .
We suppose that these potentials satisfy the ideal contact conditions on the
boundary of inclusions L =

⋃n

k=1 Lk . By introducing the complex potentials

ϕ(z) = u(z) + iv(z), z ∈ D,

ϕk(z) = uk(z) + ivk(z), z ∈ Dk, k = 1, . . . , n,
(1)

we arrive at the R-linear boundary value conditions on each circle Lk

ϕ(t) = ϕk(t) − ρϕk(t) + g(t), (2)

where g(z) is a given function representing an external thermal field. It is
well-known (see e.g. [6], [7]) that for a general domain problem, (2) does not
admit an analytic solution. In the case of a multiply connected circular domain
an analytic solution to the R-linear boundary value problem with constant
coefficients is obtained (see e.g. [7]) in the form of series with summations
depending on behind certain group of symmetries. Anyway, even in this case
we cannot use such representation in order to get an exact description of the
optimal distribution of (circular) inclusions. That is why certain simplification
of the problem is made.

Here we consider the case of unbounded composite materials with finite
number of circular inclusions and with conductivities of matrix and inclusions
close to each other (i.e., with small Bergmann parameter). Thus the concen-
tration ν is equal to 0 and the second term in the right hand-side of (2) is
sufficiently small. Thus we replace the starting optimal design problem by
model one. The later consists in optimization of the changing part of the
standard functional of the effective conductivity

λe

λm

= 1 +
2νρ

n

n
∑

k=1

∫

Lk

Re ϕ−
k (t) dy, t = x + iy, (3)

on the set of solutions to a simplified boundary value problem (which depend
on position of the inclusions in the composite).

Therefore, our model optimal design problem is considered in the form: to
find positions of the discs Dk , k = 1, . . . , n, such that the following functional
σ possesses an optimal value, namely
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σ :=

n
∑

k=1

∫

Lk

Re ϕ−
k (t) dy −→ min(max), (4)

under constrains (boundary conditions)

ϕ+(t) − ϕ−
k (t) = g(t), t ∈ L =

n
⋃

k=1

Lk , (5)

where t = x + iy.
It is known (see [3]) that the solution of the problem (5) can be represented

in the following form

ϕ±(z) =
1

2πi

∫

L

g(t) dt

t − z
, z ∈ D±, (6)

where each of the circles Lk is clock-wise oriented. Thus the extremal distri-
bution of domains Dk is determined by their centers and also by the values of
a given function g. The determination of the extremal value of the functional
(4) is in general rather complicated problem. The complete (and exact) solu-
tion is possible only in the case when the function g is explicitly given. Here
we confine ourself to the important for mechanics of composite materials case
g(z) = z. In this case, the integrals (6) are calculated explicitly and the general
solution to the problem (5) has the following form

ϕ(z) =



























−

n
∑

m=1

r2
m

z − am

, z ∈ D−,

ak −
n

∑

m6=k

r2
m

z − am

, z ∈ Dk .

(7)

We calculate the value of the functional (4) by using the mean value theo-
rem for harmonic functions (see [4])

σ =

∫

L

Re ϕ−(t) dy =
n

∑

k=1

∫

Lk

Re ϕ−(t) dy = π

n
∑

k=1

r2
kRe

(

ϕ−)′
(ak). (8)

Let us find the values
(

ϕ−
k

)′
(ak):

(

ϕ−
k

)′
(ak) =

∑

m6=k

r2
m

(z − am)
2

∣

∣

∣

∣

∣

z=ak

=
∑

m6=k

r2
m

(ak − am)
2 .

Substituting these values into (8), we get σ = Re µ, where
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µ = π

n
∑

k=1

∑

m6=k

r2
mr2

k

(ak − am)2
. (9)

Therefore, the analysis of the initial extremal problem is reduced now to the
study of the complex valued function µ of n complex variables a1, a2, . . . , an .
Since the value of the function µ is independent on the translation, we can fix
one of the points ak .

Lemma

Assume that the function σ = Re µ attains its maximum on the set of points

A := {a1, a2, . . . , an}. Then

1) µ(A) ∈ R;

2) each disc Dk is touched by at least one of other discs Dm , so that the

closure of the domain D+ is a connected set on the complex plane C.

Proof. 1) Let us represent the functional µ given by (9) in the form µ =
µ1 + iµ2. Denote by µ(A) the value of the functional µ corresponding to the
set of points A.

Consider the value of the function µ after rotation of the plane by a certain
angle θ, i.e., corresponding to the set of points A′ = {eiθa1, e

iθa2, . . . , e
iθan}:

µ(A′) = π

n
∑

k=1

∑

m6=k

r2
mr2

k

e2iθ (ak − am)2
= e−2iθ(µ1(A) + iµ2(A))

= µ1(A) cos 2θ + µ2(A) sin 2θ + i(µ2(A) cos 2θ − µ1(A) sin 2θ).

Therefore, σ = Re µ = µ1 cos 2θ + µ2 sin 2θ. One can choose the value of θ in
such a way that

µ(A′) = |µ(A)| = σ(A′) ≤ σ(A) = Re µ(A).

Hence Im µ(A) = 0 1.
It follows that on the extremal set of points A the function

µ(A) = µ1(A) = π

n
∑

k=1

∑

m6=k

r2
mr2

k

(ak − am)
2

has a real value.

2) Let A := {a1, a2, . . . , an} be an optimal set of centers, i.e., the functional
σ attains its maximal value on A. Consider the corresponding optimal set of

1The authors are thankful to the referee who shows a shorter proof of the first assertion
to Lemma.
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discs with the centers a1, a2, . . . , an (for simplicity we can denote this set by A

too). Introduce the following function

u(z) := Re

n
∑

m=2

r2
mr2

1

(z − ak)2
.

The sum u(a1) is the part of the sum σ, which is changing when the disc D1

is moving. Under assumption, the function u(z) attains its maximal value for
z = a1 . Moreover, |a1 − ak| > r1 + rk , k = 2, 3, . . . , n. But the function u(z) is
harmonic in the (in general, multiply connected) domain

{z : |z − ak| > r1 + rk, k = 2, 3, . . . , n}

and continuous in

{z : |z − ak| ≥ r1 + rk , k = 2, 3, . . . , n},

vanishing at infinity. Therefore, the maximal value of the function u(z) is
attained at a boundary point of the above domain, i.e., when |a1 − ak| = r1+rk

for certain k. Hence the optimal discs are touching each other.
Let us show now that the closure of the discs corresponding to the set A

is a connected set. If not, then A = A1 ∪A2, with none disc from A1 touching
any disc from A2 . Let us fix one of the centers ap ∈ A1 , and one of the centers
aq ∈ A2 . Represent another centers ak ∈ A1 in the form ak = ap + bkp , and
the centers am ∈ A2 in the form am = aq + bqm , respectively. We consider the
following function

u(z) := Re
∑

k,m

r2
mr2

k

(ap − z + bkp − bmq)2
,

where k, m are those values of indices for which ak ∈ A1 , am ∈ A2 . The sum
u(aq) is a part of the sum σ, which is changing when the mutual position of
the sets A1 , A2 is changing for fixed elements inside these sets. The variable
z is modelling such changing. This variable is running along a compact set
K in Ĉ, which described all possible changing of the mutual position of discs
corresponding to A1 , A2 , up to the touching of these sets. The function u(z)
is harmonic in int K and continuous in K. By the Maximum Principle for
harmonic functions this function has to attain its maximum on the boundary
of K. The latter corresponds to the touching of certain discs from A1 with
certain discs from A2 . It contradicts our assumption and the Lemma is proved.

It follows from the Lemma that the optimal distribution of the discs always
corresponds to the percolation situation, i.e., to the case when the discs are
touching and constitute a connected set.
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Let n = 2, D1 = {z ∈ C : |z − a1| < r}, D2 = {z ∈ C : |z − a2| < R},

r < R. Then µ1 = 2πr2R2

(a1−a2)
2 . Hence, Im 1

(a1−a2)2
= 0. It is possible in the

following two cases:

a) a1 −a2 = −(r +R)i (see Fig. 1.1), or a1 −a2 = (r +R)i (see Fig. 1.2). In

this case µ1 = − 2πr2R2

(R+r)2 . Therefore, the minimal value of the functional

σ (which is the changing part of the effective conductivity functional) for
composites with two circular inclusions is attained when the centers of
these inclusions lay on the straight line parallel to imaginary axes, and
these discs are touching each other, of course.

6

-
0 x

y

·

·��
��&%

'$
a2

a1

Fig. 1.1. Position of two inclusions corresponding

to the minimal value of the functional (4)

6

-
0 x

y

&%
'$

·

��
��

·a1

a2

Fig. 1.2. Position of two inclusions corresponding

to the minimal value of the functional (4)

b) a1 − a2 = −(R + r) (see Fig. 1.3), or a1 − a2 = R + r (see Fig. 1.4), and

thus µ1 = 2πr2R2

(R+r)2 . Maximal value of the effective conductivity functional

corresponds to the horizontal position of inclusions.
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Fig. 1.3. Position of two inclusions corresponding

to the maximal value of the functional (4)
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Fig. 1.4. Position of two inclusions corresponding

to the maximal value of the functional (4)

Example

In the case of three inclusions an optimal configuration is of the cluster type,
i.e., three inclusions are touching each other.

For instance, let us consider three discs of radii r = 1, 2, 4, respectively.
Put an origin of the coordinate system at the focal point of the triangle with
edges at the centers of the touching discs. Then the value of the functional µ

is equal to

µ = −
28π

r2
ei( π

3
−2α),

where r = 45
4
√

14
is the circumradius of the triangle, and α is a rotation angle.

The minimal (maximal) value of this functional is achieved at α = π
3 (α = 4

3π),
and is equal to µ = − 6272

2025π (µ = + 6272
2025π, respectively).

For comparison, if we consider the chain of inclusions of the same radii, then
minimal (maximal) value of µ is equal to µ = − 80

81π (µ = + 80
81π, respectively).
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