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Abstract. Diffusion problems studied in the time scale comparable with time
of particles collision lead to kinetic equations which for step-wise potentials
are functional equations in the velocity space. After a survey of derivation of
kinetic equations by projective operator method, an attention is paid to the
Lorentz gas with step potential. The gas is composed of N particles: N —1 of
which are immovable; between those N — 1 immovable particles — scatterers,
particle number 1 is moving, and we describe its movement by means of
one-particle distribution function satisfying a kinetic equation. Solutions of
the kinetic equation for some simple potentials are given. We derive also
a kinetic equation for one-dimensional Lorentz gas, which is a functional
equation.

1. Introduction

General kinetic equations with convolution time integral (hence nonlocal in
time and non-markovian) were first derived and discussed by the Brussels group,
headed by Ilya Prigogine, [1]. Different correlation functions used to describe
non-equilibrium processes satisfy such equations, [2] — [7].

A comparison of the theory of the Brussels group, with the Bogolyubov theory,
then being developed by the Uhlenbeck group was given in a paper by Stecki and
Taylor, [8]. These results were next extended and ordered by the Brussels group,
[9].

Robert Zwanzig, [4, 10] described a new method of derivation of kinetic equa-
tions. The main tool of this derivation is the use of projection operators in the
Hilbert space of Gibbsian ensemble densities. It was noted by Nelkin and Ghatak
that the Van Hove self-correlation function G4(r,t) for a dilute fluid is determined
by a linearized Boltzmann equation identical to that occuring in the theory of
neutron diffusion, [11].

The kinetic equation (KE) describing diffusion in time scale comparable with
time of the particles collision, is also a time convolution kinetic equation, which for
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a step-wise interaction potential takes form of a functional equation in the velocity
space.

We work in the framework of kinetic theory of a Boltzmann gas, with use
of statistical mechanics methods. The gas is composed of N particles, and the
problem discussed concerns the diffusion of a marked particle (number 1) amid
(N — 1) other classical dilute gas particles.

Applying to the Liouville equation the proper projection operator, a kinetic
equation for one-particle distribution function f(k, v1,t) is derived. Here k denotes
the Fourier vector variable (wave vector) after transformation of spacial coordinate
r1, which denotes the position of particle number 1. The vector v is the velocity
of this particle, while ¢ is a time. Function f(k,vy,t) is Fourier transform of
one-particle distribution function fs(r,v1,t), which represents the probability of
finding a particle at time ¢ at r with velocity vy, if the same particle was at time
t =0 at r = 0 with the given distribution of velocity vy, e.g. the Maxwellian.

Right-hand side of KE has a form of time convolution of a scattering operator
G = G(k,t) and function f = f(k,vy,t). It is valid not only for long times (in
comparison with time of collision, as it is in case of the Boltzmann equation and
in Brownian movement theory) but also for short times.

KE considered here was found previously by Jan Stecki, [12], cf. also [13, 14].
This is a time convolution equation for a gas which particles interact by attractive-
repelling potential with step dependence on distance. In such a case the phase
space consists of distincly separated regions and the kinetic equations is trans-
formed from a convolutive one into a functional equation.

1.1. Notation

The gas occupies volume V' and consists of N particles, numbered by indices i =
1,..., N, and m;, v; and r; are the mass, velocity and position of particle number
1, respectively. Cartesian coordinates of vector v; are denoted by vz, viy, vi» and
those of r; by LiyYiys -

The Maxwell distribution function of the velocity is denoted by

et = [ oo (- D)

Here the velocity modulus v; = [v;| is used and v} = v, + v}, + v,, while 37 =
kT with the Boltzmann constant kg and absolute temperature T'.
The temperature of an ideal gas is related to its average kinetic energy per

particle by the relation

3 3
= —kgT = —.
2"BT T o
The second law of thermodynamics states that any two interacting systems will
reach the same average energy per particle and hence the same temperature.
In equilibrium, the probability of finding a particle with velocity v; in the in-
finitesimal element dv; = [dv,,dvy, dv;.] about velocity v; = [vig, Viy, viz] is
o (V) dVigdviydvg, or o (vi)dv;.
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The interaction potential u;; between particles number ¢ and number j depends
on distance between these particles only:

uij = wij(|ri — ;).
Hence the total potential energy of the system
U= ulr-rh = Y Y ) = Y,
i<j i=1 j=i+1 1<J

where Tij = |rij| = |I‘i — I‘j|.

1.2. Physical meaning

The function f = f(k,vy,t) is related to scattering phenomena. Essential for
interpretation of incoherent scattering experiments is the Van Hove function

Gollr —rol 1) = {5 Zm —r)d(ri(t) = 1)) M

where
/ e PH( YavNarh  with Zy = / e P gvN arv

denotes the canonical average.

The function G(r,t) represents the probability of finding a particle at r at
time ¢ if the same particle was at r = 0 at time ¢ = 0.

Van Hove law for incoherent scattering reads

1

Se(k,w) = Py /exp[ (kr — wt)|Gy(r,t) drdt = % /exp(—iwt)]s(k,t) dt,

Ii(k,t) = /exp(ikr)GS(r,t) dr
cf. [15] - [19]. On the other hand, we have

Lok, ) = / £, v1, ) dvi

and I4(k,t) is the Fourier transform of Gs(r,t) and function f(k,vy,t) can be
found by kinetic theory. Namely, it satisfies the following linear KE

¢
((’;?t —|—sz1 (k,vy,t /g fk,vi,t—71)dr (2)
0

where

fk,vy,t) = / dry e km / dvN " Fn (1)
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and
FN (t) = e_tKN FN (0)
with
Kk e U
Fn(0) =™ ppr(v1) om(vn) 0 (3)
Here U =37, _, uij and

is the N-particle Liouville operator.
Normalization factor in (3)

Q= /e_ﬁU dr’,  where drV = dridry .. .dry
\%

is known as the partition function or sum-over-states.

The partition function @ is related to thermodynamical properties of the sys-
tem, cf. [20], [21], [22]. With a model of the microscopic constituents of a system,
one can calculate the microstate energies, and thus the partition function, which
will then allow us to calculate all the other thermodynamical properties of the
system.

Research in the prediction of binding affinities has been a continuing effort for
more than half a century, [23, 24]. An important application of the configuration
integral lies in the development of computational models for the ligand-receptor
binding affinities. Their study constitutes the most important problem in compu-
tational biochemistry. Especialy, the prediction of absolute ligand-receptor binding
affinities is essential in a wide range of biophysical questions, from the study of
protein-protein interactions to structure-based drug design.

In a ligand-receptor binding, a ligand is in general any molecule that binds to
another molecule; the receiving molecule is called a receptor, which is a protein on
the cell membrane or within the cell cytoplasm. Such binding can be represented by
the chemical reaction describing noncovalent molecular association A + B « AB,
where A represents the protein (receptor), B the ligand molecule, and AB the
protein-ligand complex. The change in the Gibbs free energy can be expressed as
a ratio of configuration integrals, [25].

An alternative form of the kinetic equation (2) is

(—iz 4+ ikvy) f(k,v1,2) — f(k,v1,t =0) = G(k, 2) f(k, v, 2) (5)

where f(k,vi,z) is the Laplace transform of f(k,vi,t) defined as f(z) =
JoT e f(t)dt. We use the same letter for a function and its Laplace transform,
but it does not lead to confusion, because all arguments are explicitly written.

If mi >my, i=2,3,..., N we have the Brownian diffusion of particle num-
ber 1. If my < my, i« = 2,3,...,N - the Lorentz gas is dealt with, cf. also
26, 27].
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1.3. Diffusion in biology

For big times and for isotropic medium the Van Hove function G5 = G4(r,t)
is given by a solution of the classical Fick’s equation, namely,

1 —r2
———edDt
8(mDt)z

Gs (ru t)t—»oo =

)

where D denotes the (macroscopic) diffusion coefficient. After tranformations we
get Is(k,t)i—o0o = exp(—k?Dt) and

1 Dk?
Ss(k,w) = ———————.
(ko) = = F DR
Hence
. w?Ss(k,w)
D= Ly lim w——73
We have also
1 9%I4(k,t)

500 6t Ok2

In spite of passing to the limit, residual information about the dynamics of system
is still contained in the diffusion coefficient D. For example, in the random walk
diffusion the coefficient D = 5, with h and 7 being the length and duration of
one step in the walk, respectively.

The laws of diffusion (in which coeflicient D is used) were discovered in 1855
by physician and physiologist Adolf Eugen Fick, [28] — [30].

At the beginning of the 20th century, Einstein and Smoluchowski, indepen-
dently, have found relation between macroscopic diffusion coefficient D and the
Brownian movement phenomenon, explaining it in microscopic, molecular terms,
cf. [31, 32]. The phenomenon was first explicitly described in 1828 by the physi-
cian and botanist Robert Brown, who observed in aqueous suspensions of pollen
grains from Clarkia pulchella a rapid, continuous, short-range motion of small in-
cluded particles that “arose neither from currents in the fluid nor from its gradual
evaporation, but belonged to the particle itself”, [33, 34].

After discovery of Fick’s laws, in physiology dominated the opinion that dif-
fusion laws should explain all problems of metabolism. It was widely believed
in XIX century that diffusion is responsible for such organic processes as gas ex-
change in the leaves of plants, gas exchange in the lungs of animals, the uptake of
the products of digestion from the gut.

However, the development of knowledge on the cell structure has permitted to
gather an abundant evidence on inadequacy of diffusion theory for explaining much
of the movements of substances in organisms, studied in biology and medicine. The
Fick diffusion alone could described physiological processes only in dead tissues.

In 1912 medical doctor and physiologist, Otto Heinrich Warburg published
a discovery: oxygen utilization requires structural elements in the cell — a solid
phase. These structures, now recognized as mitochondria, had been described by
light microscopists two decades before Warburg’s publication, and 80 years later
were found to be places where Brownian motors work, [35].
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The assumptions of the Einstein—-Smoluchowski model are not even approxi-
mately met in vivo. The cell contains a highly concentrated and heterogeneous
assembly of deformable, interacting and inelastically colliding particles; much of
the solvent (water) is bound to solid structures which, although not necessarily
long-living, have huge surface areas; and in any case the conditions only tend
to thermodynamic equilibrium after death. The model representing the “micro-
scopic” aspect of diffusion theory assumes a dilute, homogeneous suspension of
rigid, non-interacting and elastically colliding particles, a monophasic system with
the solvent (largely) unbound, and a tendency towards equilibrium. Also, the
model assumes that there are no net solvent movements, and this is undoubtedly
relevant in intracellular transport, [36, 37], also [38].

After the idea arose that the cell internum does, at least in part, behave as a gel,
the diffusion through gels became an important subject of study. Investigations
of diffusion in gels put a question on applicability of Fick’s laws in the field.

Bigwood has shown in 1930 that not only is diffusion in gels highly dependent
on the absolute concentration of diffusing substance (in contrast to the classical
linear Fick’s theory that diffusion rates depend only on concentration gradients),
but that it is both slow and unpredictable, particularly when the gel is made of
protein, as the gel state of the cell internum should be, cf. [39, 40]. It became
clear then that in description of biological cell extreme order has to be reconciled
with a fluid anatomy. Two kinds of intracellular transport are possible: one, which
accounts for the movements of macromolecules and assemblies; and second, which
will account for the movements of small molecules and ions, [41].

In 1949 Hans Ussing conducted investigations with use of radioactive tracers
and gave the systematic molecular level account of a “secretion” process in biology,
as an opposite to the “diffusion” description. Ussing defined the term “active
transport”; which means the creation of a genuinely “uphill” concentration gradient,
cf. [42, 43]. Active transport is now an accepted part of biological knowledge, and
individual active transport mechanisms are frequently objects of research.

In 1950 BBC lecture J.Z. Young concluded: the more we come to know of
the flux of chemical changes in the body, the more one great weakness of the
machine analogy stands out. The concept of a dynamic organization, such as that
of a whirlpool, demands a consideration of time — of before and after and of gradual
development and change of pattern, but the machine models of physiology allow
no place for this element. In the tissue spaces, as well as inside the cell, there is
fluid circulation among solid-state elements, [44].

The diffusion concepts persisted for a long time in description of respiratory
processes. Until now, the method of “diffusion capacity” is practicised as a mea-
surement of the lungs ability to transfer gases. Oxygen absorption may be limited
by diffusion in circumstances of low ambient oxygen or high pulmonary blood
flow. Carbon dioxide is not limited by diffusion under most circumstances. The
“diffusion capacity” is part of comprehensive test series of lung function called pul-
monary function testing. It is known, however, diffusivity estimates are seriously
problematic even with modern equipment. Longmuir wrote: “If simple diffusion
is the sole mechanism of tissue oxygen transport as proposed by Krogh (1919),
it is difficult to see how acclimatization could occur without a reduction in the
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diffusion coefficient. The kinetics of oxygen transport cannot be explained by pas-
sive diffusion alone; the search for other mechanisms led to the observation that
all kinetic data could be explained by channels in cells along which the oxygen
diffuses faster than in water, [45, 46].”

The cell internum is far more complex organised right down to the molecular
level than was hitherto appreciated, to the point where ideas of a relatively solid-
state chemistry model have occoured. The flow theory of enzyme kinetics — a role
of solid geometry in the control reaction velocity in live animals. This contrasts
sharply with the former concept that diffusion is the way by which molecules
interact within an aqueous solution of the cell internum, [47] — [52].

In living systems, most molecules do not generally move, but are moved, when
we consider what would happen if everything depended upon Brownian motion
and the law of mass action. R.P.C. Johnson in 1983 recognised a grey area at the
molecular level when considering the movement of molecules within living cells:
“This is the region of scale where flow and diffusion are not clearly separated;
where the concepts of temperature and molecular movement overlap; where it is
not clear whether molecules move or are moved; where the ideas of active and
passive lose their meaning”, [53, 48], also [54] and [55].

Until now, biologists use the term “diffusion” in a twofold meaning. One is
Fick’s diffusion, and the second one is vernacular, for spreading process, when
“diffusion” is not adhered to a specific, defined scientific term. For an active
transport the term active diffusion is sometimes used, as an opposite to passive
(i.e. Fickian) diffusion.

The complication in the description of biological processes may be found in
application of the Smoluchowski diffusion with drift equation. In this equation an
aleatory aspect is coupled with deterministic. The drift force controls diffusion
and diffusion reflects the influence of thermal vibrations of the evironment on the
process.

All phenomena, biological also, are developing in given thermal conditions,
and the application of thermodynamics is inevitable. The “microscopic” aspect
of diffusion theory, is that random thermal motions of molecules in liquids are
respounsible for return of diffusion, particularly Brownian movement theories, into
contemporary biophysics.

Brownian or molecular motors are biological “nanomachinees” and are the es-
sential agents of movement in living organisms. A motor is regarded as a device
that consumes energy and converts it into motion or mechanical power. Adenosine
triphosphate (ATP) is the fuel for the molecular motors action. Many protein-
based molecular motors convert the chemical energy present in ATP into me-
chanical energy. The ATPase molecular motors are found in the membranes of
mitochondria, the microscopic bodies in the cells of nearly all living organisms, as
well as in chloroplasts of plant cells, where the enzyme is responsible for converting
food to usable energy, [56] and [57].

It was shown by Streater that the Smoluchowski equation for a Brownian par-
ticle potentially can be supplemented by an equation for the dynamics of the tem-
perature, so that the first and the second laws of thermodynamics are obeyed. He
considered also a model studied by David Smith, known as the dumbbell model,
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in which the Brownian particle is a two-level atom, and had shown that under
isothermal conditions, the free energy can be given a natural definition out of
equilibrium, and is a decreasing function of time, [58], also [59]. Smith has applied
his model to describe a myosin molecule, [60, 61], also [62] and [63].

Macromolecular particles playing a role in protein motors are heavy (Brown-
ian) in comparison with solvent (water) molecules, but are light (Lorentzian) in
comparison with mass of substratum (mitochondrium).

Another biological example in which the passive diffusion plays a role is pro-
vided by alimentation processes in cartilage, tissue which supplies smooth surfaces
for the movement of articulating bones. The cartilage is built of cells, called chon-
drocytes, producing a large amount of extracellular matrix composed of collagen
fibers, abundant ground substance rich in proteoglycan, and elastin fibers. Unlike
other connective tissues, cartilage does not contain blood vessels. The chondro-
cytes are fed by diffusion, helped by the pumping action generated by compression
of the articular cartilage or flexion of the elastic cartilage. Thus, compared to other
connective tissues, cartilage grows and repairs more slowly, [64].

The diffusion process appears in biology also as the property of homeostasis in
organisms.

Homeostasis (from Greek: homos, “equal”; and istemi, “to stand” lit. “to stand
equally”; coined by Walter Bradford Cannon) is the property of either an open
system or a closed system, especially a living organism, that regulates its internal
environment so as to maintain a stable, constant condition. Multiple dynamic equi-
librium adjustment and regulation mechanisms make homeostasis possible. The
concept came from that of milieu interieur that was created by Claude Bernard,
often considered as the father of physiology, and published in 1865.

With respect to any given life system parameter, an organism may be a con-
former or a regulator. Regulators try to maintain the parameter at a constant
level over possibly wide ambient environmental variations. On the other hand,
conformers allow the environment to determine the parameter. For instance, en-
dothermic animals maintain a constant body temperature, while exothermic ani-
mals exhibit wide body temperature variation. Examples of endothermic animals
include mammals and birds, examples of exothermic animals include reptiles and
some sea animals.

Most homeostatic regulation is controlled by the release of hormones into the
bloodstream. However other regulatory processes rely on simple diffusion to main-
tain a balance.

Homeostatic regulation extends far beyond the control of temperature. All
animals also regulate their blood glucose, as well as the concentration of their
blood. Mammals regulate their blood glucose with insulin and glucagon. These
hormones are released by the pancreas, the inadequate production of the two for
any reason, would result in diabetes. The kidneys are used to remove excess water
and ions from the blood. These are then expelled as urine. The kidneys perform
a vital role in homeostatic regulation in mammals, removing excess water, salt,
and urea from the blood. These are the body’s main waste products, [65].



Kinetic equation for a gas with attractive forces as a functional equation [99]

2. Projective operator method

The projection operator is introduced, [66],
fO
P = eikrl N /dVN_ldrN e—ikr1,
e (v1)
where
N 1
fx= HSDM(W)QG*W
i=1
is the equilibrium distribution function. We observe
PFy(t) = e'km if(k vi,t)
em(v)” 7
In particular
. 19 .
PFEN(0) = e — N f(k vy,0) =™ £} = Fn(0)
e (v1)
and
(1-P)Fn(0)=0.
Also
/ dvNlarN e P EN (1) = f(k, v, t).

The Liouville equation

%FN(t) = —KnFy(t)

with Kn given by (4), is now rewritten in the form

%[PFN(t)] — —PENPFy(t) — PEn(1— P)Fy(t)
and
%[(1 — P)EN ()] = —(1 = P)KNPFy(t) — (1= P)Kn (1 — P)Fy(t).
Hence
AN

t
= —PKNPFN(t) + PKn / e TUPIEN (1 - PYKNPFn(t —7)dr
0
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and finally

(% +ikv1)f(k,v1,t)

t

‘ . 0
= /va_ldrN e kP Ky / e TP KN gikry v (k,vi,t —7)dT
) om(v1)

it is a general form of KE, correct also for small times, compared to the time of
collision.

3. Density expansion
An alternative form of the kinetic equation (2) is

(—iz + ikvy) f(k,v1,2) = G(k, 2) f(k,v1, 2) + f(k,vi,t = 0),

where

_3
2_”) 23t
OBm

with f(k, vy, 2) being Laplace transform of f(k,vy,t)

ft=0)=pm(v1)= (

o0

f(2) = / 57 f(t) dt.

0

The scattering operator in (2)

, , 1
G(r) = /drNva_1 e_lkrlKNe_T(l_P)KN(l — P)K ek £, .
e (v1)
After Laplace transformation we get the equation
(—iz +ikv1) f(k,vi,2) — @um(v1)
- 1
_ d N*ld N _—ikry K
/V S o I g
ity IN
x (1 —=P)Kye"™ " —=—f(k,vy,z
S T E
which right-hand side can be written as
Gk, 2)f(k,vi,2) = /va’ldrN e*““lKNL L
’ T —iz1—L(1-P)Ky
1krq f]%
X(l_P)KNe 7][(1{,\’1,2)'

o (v1)
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The first terms of the expansion are

Gk, z) = / dvN " LdrN emikn { ! (KnKy — KnPKy)

iz
1 2
n (E) (KnKnKy — KnKEnPEx — KENPENEN + KnPENPKY)

AT R

1z on(v1)”

In the dilute gas approximation only linear terms with respect to p = % are
kept, and the following form of binary scattering operator is obtained

N -1 )
Giak,z) = Vi /// drydrodvy (—iz + ikvy )e ™

X /dt S G e_tKg) (—iz 4 ikvy)e™ e U (vg).
0

For k = 0 and z = 0 the scattering operator reduces to the Boltzmann scattering
operator. It also takes the Boltzmann form for k = 0, arbitrary z and sufficiently
high velocity v;.

4. Lorentz gas

The Lorentz gas corresponds to the case ma — 00, v3 — 0 and s (v2) — §(v2).
Only the velocity of particle 1 remains and is denoted by vi = v. The Lorentz
model is widely studied as a simple model of a crystal, cf. for example [67] — [78].

—_—

light particle / \
N SO

Figure 1. Spherical potential: hard core of radius b (black circle) and well (white

ring) with internal radius b and external radius a

The Lorentz gas was examined in [66] for the following case of repulsive — attractive
potential, see Figure 1,

u(r) =00 if r<b, u(r) =—up <0 if b<r<a, u(r)=0 if r > a,

where r is the radius in polar coordinates. Thus, the potential possesses spherical
rigid repulsive core of radius b surrounded by a well (b < r < a) of depth —uy,
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ug > 0. Scattering operator for this potential, for the dilute Lorentz gas has the
following form

Giaf(k,z,v) =i(—z + kv)g /dr e Pupps(v)e kT

, ‘ k
X /dt S G e_tKg)elk”i(—z + kv)m.
ou(v)
ty

The KE for three-dimensional Lorentz gas of N — 1 fixed rigid spheres with the
square-well attractive potential was given also in [66]. It is an integral (in con-
figurational space) and functional (in velocity space) equation for the unknown
distribution function ¢ (v) which links the values of ¢ (v) at 8 different values of
argument v.

5. Lorentz gas of rigid spheres with finite time of collision 7*

The potential of rigid sphere with rectangular well changes the time of interac-
tion of the light particle with scatterer, is contrast to the zero time of interaction
with the rigid sphere potential alone. To avoid additional consideration of scatter-
ing trajectory we accept the rigid sphere potential (R; = R2), in which, however,
the interacting particles remain connected for a certain time 7*. This time of
collision is negative in case of the potential well. In this case

N a?

G12f(k7 Z, V) = ’USOM(’U)VZ /dQ I:\I](ku Z, Vl)eiz‘r* - \IJ(k, Z,V) +1-— eiZT*},

where integration is performed over the full solid angle and

U(k,z,v) M
o (v)
We introduce the following notation
WGQU%:E‘El, i/dﬂ:fj’.
Kinetic equation takes the form
(—iz 4 ikv +eg )W — h = g5 'e™ (PU) 41 — ™7 .
Here h = §(v — v’) is the initial condition. Hence

Ealeim'* R . h+1— eiZT*
—iz+ikv + ey —iz+ikv +e5

Therefore the solution reads

—1 jiz7" izT” k
Ve (1 e )
—iz + ikv + ¢ kveq 1 —1iggz
R h_|_1_eiz‘r* h_|_1_eiz‘r*
X P— - — + — - — -
—iz +ikv + ¢ —iz +1ikv + ¢,
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For the hydrodynamic pole we have
—iz =gy " + kv cot[(cos 27* — isin 27 )kveg).

If the time of collision 7* = 0, KE equation becomes

. . 1 N a2
(—iz+ikv+e; )P —h = WM(U)VZ Q.
This is the classical Boltzmann equation for the Lorentz gas. Its solution has the
form discussed by Hauge in [78].

6. One-dimensional KE

The 3 dimensional dynamics, even for the Lorentz gas, is still too complicated
to be effectively solved and for this reason we limit ourselves to 1-dimensional
model. It posseses some important features of 3-dimensional case, but mechanics
of the light particle motion is more simple. It may be expected that the obtained
results will have a more general meaning. Such procedure is often used, see [79] —
[82].

The one-dimensional considerations permitted Fermi, Pasta, Ulam and Mary
Tsingou to find that the behaviour of a 32-atom chain is quite different from
intuitive expectation. Instead of thermalisation, a complicated quasi-periodic be-
haviour of the system was observed, [83], also [84].

Morita and Fukui considered the heat transfer in one-dimensional gas, [85],
while Kac [86] — [89] and McKean [90] considered one-dimensional analogues of
the linear Boltzmann equation.

potential
U1
light particle
A% v I1I II I
-a -b 0 b a X
_u 0

Figure 2. Configurational space of one-dimensional model. Light particle moves
in potential of a well of depth —up < 0 and a repulsive core of hight u; > 0
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The Lorentz gas is examined here in one dimension, for the case of attractive
— repulsive potential

Uur, |$| < b7
u(zr) =4 —up <0, b<|z|<a,
0, |z] > a.

The quantity —ug, with ug > 0 is the depth of the potential well, while u; > 0
denotes the height of the potential barrier, see Figure 2.

6.1. Kinetic equation in 1 dimension
The KE has still structure of (5) but vectors are now one-dimensional
(i + ko) f (K, 0, 2) — (0,8 = 0) = G(k, 2)f (K, v, 2).

Scattering operator for the dilute Lorentz gas of N particles in one-dimensional
segment L, (—£ <z < £), has the following form

Gk, 2)f(k,v,2) =i(—z+ kv)% /dw e Pupp(v)e ke

T B B . k,z,v) (6)
X dt e’th e tKo e tKg elkzl 4+ kv f( )
/ ( Jeri(- 4 ko) L2

Here K> is the two particle Liouville operator, see (4), for N = 2. In calculations
L — oo but % is kept constant. Such procedure is known as the thermodynamic
limit (one increases the volume together with the particle number so that the
average particle number density remains constant). Thus, integration with respect
to = extends from minus to plus infinity. Below we put

f(k,z,v)

U(v) = ot (0)

The phase space is now two-dimensional only: one-dimension for positions and
another for velocities of the light particle. The position space is divided into 5
regions, from I to V, see Figure 2, while the velocity space in each of these regions
is divided, in dependence of kinetic energy of the particle (whether it permits for
bounded or unbounded motion of the particle).

6.2. Bounded motions

The bounded motion of particle occurs in regions of the potential well, IT and
IV, only, if simultaneously the particle kinetic energy is less than the depth of the
well ug.
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Regionsb < x < aand —a <z < —b

Let us consider bounded motion of our particle in segment b < x < a with
velocity v < %uo. The position of particle along its trajectory is given by
relation

e g = p(—t)
=z —vtn(ty —t) — vty +0'(t — t1)|n(t — t1)n(ta — t)
— [vt1 + 0 (t2 — t1) + 0" (t — t2)n(t — t2)n(ts — t)
—[vt1 +0'(t2 — t1) + 0" (t3 — t2) + 0" (t — t3)]n(t — 73)n(ts — 1)
— o= oty + 0 (b2 = t1) + 0" (t3 — to) + 0" (ta — t3) + 0" (t5 — t4)
+ o+ 0 (tang — tan) + 0V (= tan ) In(t — Tanga)-

Similarly, the velocity is given by

e 2y = p(—t)
=ty —t) +0'(t = t)n(ta —t) +0'(t — t1)n(t2 —t)
+ 0"t —t2)n(ts —t) +0""n(t —t3)n(ts —t)
4 0Pt — a1 )n(ten — t)
+ 0@t — ton)n(tangr —t) + @ FI(E — tapgr).

In the equation above we have

2n)

v =—v, V=0, 0% =y =y

and 2n denotes the number of full periods performed by the particle in the time
t. Moreover, t,,, m = 1,2, ... denotes the moment of bouncing from the wall of
the well. The instant of the first collision of the particle with wall is given by

=22 (7)

and the next instants satisfy relations

a—b

tz_tl:t3_t2:-..:tm—tm_1:7':
|v]

Differences between the subsequent moments are identical and equal 7. Therefore
the period of bouncing is 27.

For the time being we replace the infinity in the upper limit of time integral in
(6) by T', and next extend T" — oo and n — oo.

(G(k,2)f(k,v,2))r14

a to
— Z(—Z + kv)feﬁuo ©or (1)) / dr elkx{ /dt el(erkv)teflevtli(_Z _ k’U)t\I/(—U)

b t1
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t3
4 /dtei(27k’v)tefik[’ut17’[}(t27t1)7’0t2]i(_z 4 kv)t‘lj(v)
ta
ty
+ / dt 'Rtk vIsli(_y )t (—v)
t3
ts
+ /dtei(z—kv)te—ik[vtl—v(t4—t3)—vt4]i(_z_|_ kl})t‘lf(l})
ty
t2n
+... 4+ / dt ei(z+k”)te_ik[”t1+”t2"*1]i(—z — ku)t¥(—v)
t27171
ton+1
+ / dt ei(z—k'u)te—ik[vt1 —’U(tgn —tgnfl)—vtgn]i(_z + k’U)t‘I](’U)
ton
T
+ / dt ' HEVte IRVt li(—y — )t W (—v)
ton+1
T

— /dt ekt (s kv)t\I/(v)}.
31
We take n so large that
T —topt1 <T.

We integrate at first with respect to ¢, and next with respect to z. Variable x is
found only in time of the first collision t; = ””T’b, cf. (7). After integration and
passing with n to infinity, there appear series ot type

1

= for n — oo.
1— ezz2‘r

1+€iZ2T+€iZ4T—|—...—|—eiZ2nT—|—...

Finally we find the following KE
(—iz 4 ikv)¥(v) — h(v) = C[¥(—v) — T(v)]
with
f(k,v,t=0)
om(v)

Remark that C' is even in v. The solution of KE reads
(—iz —ikv + C)h(v) + Ch(—v)

—22 — 220 + k202 ’

Identical relation describes the bound motion in segment —a < x < —b, with

1 — 2e"7 cos(kvr) + €7 4

ug
1 — et27 '

h(v) = and C = %|v|

U(v) =

velocity v < %uo.
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6.3. Unbounded motions

The phase subspaces of bounded and unbounded one-dimensional motions of
the particle are separated by the value of its kinetic energy, in the dilute gas
approximation. The particle once trapped in bounded motion, persists in it forever,
and a particle in the phase subspace where unbounded motion occurs can never
become bounded.

6.3.1. Regionl:(a < x < 00)

The particle which is at the time ¢ = 0 in this region is subject to 3 accelerations
if its kinetic energy is less then the height of the potential barrier u; (Case IA) or
4 accelerations if it is higher (Case IB).

Case lA:if0 < v < %ul we have

a(—t) =z —vtn(ty —t) — [vty +0'(t — t2)n(t — t1)n(ts — 1)
= [ty + 0 (ta — t1) + 0" (t = t2)]n(t — t2)n(ts —t)
— [ty + 0 (ta — t1) + 0" (t3 — t2) + 0" (t — t3)]n(t — t3)

and
v(—t) = vn(ts —t) + v'n(ta — )n(t — t1) + 0" 'n(ts — t)n(t — t2) + v"'n(t — t3)

with

2
1)/ — i ,UQ + _UO; ,U// — _v/7 UW = —0 (8)
|v] m
and
T —a a—2b a—2>b a—2b
h=—, te=ti+— 5, t3=tot+—F =01 +2—+
|v] V| V'] [v']

denote the moments of subsequent collisions. As before (Section 6.2), the position
variable x is hidden in ¢;.

After straightforward calculations we get the part of right hand side of (6)
linked to this subregion

N i(z—kv') 9452
Gfaa = Thlen ) {[1 -0 ww)

+ [1 = RO STy (—of) 4T W (—0) - W(0) |

Case IB:if v > %ul we have

a(—t) = o —vin(ty —t) — [vtr +0'(t — t1)]n(t — t)n(t2 — 1)
— [ty + 0 (t2 — t1) + 0" (t — t2)In(t — ta)n(ts — t)
— [vty + 0 (t2 — t1) + 0" (t3 — t2) + 0" (t — t3)|n(t — 73)n(ts — t)
— vty + 0" (b2 — t1) + 0" (t3 — t2) + 0" (ts — t3) + 0" (t — ta)]n(t — t4)
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and
v(=t) = on(ts —t) + v'nlta — t)n(t — t1) + v n(ts — t)n(t — t2)
+ 0"t — )n(t —t3) + "0t — ta)
with
2 2
= 1\/v2 + —ug, V' = 1\/v2 ——uy, V=, V" =vw 9)
v m [v] m
and

—-b 2b a—
> t3:t2+ﬁ la=t3+ ——

In this subregion

Gfus) = %Ivle(v) { [1 — el )_ﬂ [1 4 iR

—b

+ [1 —e 7w (")

- |:1 - ei(sz'u )2"1 1‘7 i(z—kv'") ‘3})/‘ :| \I/(’U)} .

i(z+k'u//)‘u,, :| i(z—kv')

6.3.2. Regionl:b < xz < a

The bounded motion in this region was described in Section 6.2.

The particle which is at the time ¢ = 0 in this region and has kinetic energy
higher than the depth of the well ug, is in an unbounded motion and has undergone
2 accelerations if its kinetic energy is lower than the hight of potential barrier u,
(Case IIA) or 3 accelerations if its kinetic energy is higher than the barrier (Case
IIB).

L 2 2
Case llA:if |/ =u; > v > |/ =up we have

x(—t) =x —vtn(ty —t) — [vt1 +0'(t — t1)|n(t — t1)n(tas — t)
— [vty + ' (ta — t1) + 0" (t — t2)]n(t — t2)

and
o(=t) = vty — t) +v'ntz = )yt — 1) + "9t - t2)
with
v =—v, V' = Y v2—zuo and tl:x—b, tg—tl—i—a—_b
v m |v] v
Now

N —
Gfura = f|v|eﬁ“°cpM(v) {1 — o] }

{{1 _ ei(z-i—kv)a;‘b}\ll(_v) 4 ei(z+kv)17*f’q}(vn)) _ \I,(U)} '
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Case lIB: if v > —u1 we have

a(—t) =z —vtn(ty —t) — vty + 0" (t = t1)|n(t — t)n(tz —t)
— [vt1 + 0 (t2 — t1) + 0" (t — t2)In(t — t2)n(ts — t)
— [vty + 0 (t2 — t1) + 0" (t3 — t2) + 0" (t — t3)|n(t — 73)

and
v(=t) =vn(ty —t) +v'n(ta — )t —t1) + 0"t —ta)n(ts —t) + 0" n(t — t3)

with

2
\/ uo +up), ' =v, V= e - —up (10)
" Tl |v] m
and
z—0b 2b a—2b
1= , o=t +— t3g=t2+
v |vr] v
Now

Gfuis) = % o] € o (v) [1 - ei(z_kv)a‘%‘b}
% { [1 z(z kv’ )ﬁ}\IJ(v/) 4 ei(szv’)%ei(szv)a;‘b\Ij(vm)
+([1—ei( ko) } =k )2 —1) ‘I’(v)}.

6.3.3. Regionll: —b < x <b

The particle being at ¢ = 0 in this region, has undergone 2 accelerations. The
time dependence of its position and velocity is the following

x(—t) = x —vin(ty —t) — [vty + ' (t — t1)]n(t — t1)n(ts — t)
— [vty + 0" (t2 — t1) + 0" (t — ta)|n(t — ta)

and
v(—t) = vn(ty —t) + v'n(ta — t)n(t —t1) + 0"t — t2)
with
2 2
Vo= o (g ), o = oy [o? 4+ (11)
o] m |v] m
and
T +b a—b
t = , ta=t 4+ —.
|v] V']
Now
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6.3.4. RegionlIV: —a < x < —b

The particle which is at the time ¢ = 0 in this region and has kinetic energy
less than the depth of the well, is in the bounded motion (see section 6.2). In the
opposite case, the particle has undergone 1 acceleration.

Ifo> %uo we have

z(—t) =z —vtn(ts —t) — [vt1 + V(¢ — t1)n(t — 1)

and
v(=t) = vn(ty —t) +v'n(t —t1)
with
2
o =2 v2 — Zug and tl_:v—i—a
|v] m |v]
Then

a—=b

Gl = T lolon ()1 - R | [00) — W)

6.3.5. RegionV: —oco < x < —a

In this region the potential vanishes and operators exp(—tKs) and exp(—tK>)
are identical, and contribution of this region to the integral operator G is zero.

7. Kinetic equation in 1 dimension

We gather all contributions to the scattering operator found in the previous
section to get KE for unbounded motions (v? > %uo). At first we introduce

common definitions of velocities appearing in the equation. These are

2 2
v = |%|\/v2 - E(uo + 1) for v* > E(UO +u1)  cf. (10)
2 2
Vg = |%| v2 — 1 for v* > poel} cf. (9)2
2 2
vg = v 02— Zug for v2 > Zug cf. (10)3
v m m
2
vy = v v2 4+ —ug cf. (8)1
|v] m
v 2
vy = m ’1)2 + Eul cf. (11)2
_ v 2.2 f. (11
o |v|\/v o (w0 +u) of (1

in the form
(—iz + ikv)¥(v) — h(v) = G¥(v)
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and
G¥(v)
_ %lﬂw%@) {Gf([[[) + Gf(IV)

2 2
+n(v* < Eul) (Gf(IA) =+ Gf(HA)) + 77(02 > Eul) (Gf(IB) =+ Gf(HB))}

or

g (v)

= ol [ere (1 B [l )
+ [1 - e“*“*’“’ﬁ)ﬁ} U (vg) — \I/(v)} + efuo [1 - e“z—kv)“%b} [0 (v3) — W(v)]
T n(zul _ Uz){ [1 B ei(z—km)fv}b} U (vy)
+ [1 ey wu} SRR g () + 2Tl W (—0) — ‘Il(v)}
4 efuo [1 — g7 iEHkY) alwb}
<{|1- ei<z+’“”>”2wb]\y(—v) + T g (—ug) — W (v) }
(e — —u1 {[ ][1+ei(z_m)%eaz—m)%;?}‘I,(M)
+ [T R )
o {1_61@ kv4)2‘v4l" i(z— kv2)‘ul’2|}\1/(v)}
1 oPuo [1 _ eilz=kv) a‘;‘b] { {1 _ ile—ku) 2 } en)
T ei(z—kvl)%ei(z—kv)%b U (vs)

4 ({1_ez(z kv) o p } i(z—kv) 22y 1) \I/(v)}}

For k,z — 0, it is for the long waves and low frequencies, the scattering operator
of our KE changes to the Boltzmann operator

GU((v) = %Ivl [W(=v) = ¥(v)]. (12)

Our scattering operator takes also the form of the Boltzmann operator for suffi-
ciently high velocity v, if the time of collision of light partile with heavy particle
of crystal can be neglected.

From mathematical point of view, we see that our KE generates an infinite
sequence of functional equations. Its solution is a problem for the next publication.
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8. Conclusions

We have analyzed KE valid for a dilute Lorentz gas with short range attraction
potential and have given the explicit forms of the scattering operator for different
forms of potential, for which some exact solutions can be found. For & = 0 and
z = 0 operator reduces to the Boltzmann scattering operator. Thus our approach
enlarges the possibility of description of diffusion for the case when time of particle
collisions is not negligeable. The KE for light particle diffusion in one-dimensional
Lorentz gas was also derived. The solution of this KE will be discussed later.

The common feature of the obtained kinetic equations is that they link the
values of the probability density Fourier-Laplace transform in different points of
the velocity axis. Therefore these equations are the functional equations, [91, 92].
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