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R. WojnarKineti
 equation for a gas with attra
tive for
es asa fun
tional equationAbstra
t. Di�usion problems studied in the time s
ale 
omparable with timeof parti
les 
ollision lead to kineti
 equations whi
h for step-wise potentialsare fun
tional equations in the velo
ity spa
e. After a survey of derivation ofkineti
 equations by proje
tive operator method, an attention is paid to theLorentz gas with step potential. The gas is 
omposed of N parti
les: N−1 ofwhi
h are immovable; between those N −1 immovable parti
les � s
atterers,parti
le number 1 is moving, and we des
ribe its movement by means ofone-parti
le distribution fun
tion satisfying a kineti
 equation. Solutions ofthe kineti
 equation for some simple potentials are given. We derive alsoa kineti
 equation for one-dimensional Lorentz gas, whi
h is a fun
tionalequation.1. Introdu
tionGeneral kineti
 equations with 
onvolution time integral (hen
e nonlo
al intime and non-markovian) were �rst derived and dis
ussed by the Brussels group,headed by Ilya Prigogine, [1℄. Di�erent 
orrelation fun
tions used to des
ribenon-equilibrium pro
esses satisfy su
h equations, [2℄ � [7℄.A 
omparison of the theory of the Brussels group, with the Bogolyubov theory,then being developed by the Uhlenbe
k group was given in a paper by Ste
ki andTaylor, [8℄. These results were next extended and ordered by the Brussels group,[9℄. Robert Zwanzig, [4, 10℄ des
ribed a new method of derivation of kineti
 equa-tions. The main tool of this derivation is the use of proje
tion operators in theHilbert spa
e of Gibbsian ensemble densities. It was noted by Nelkin and Ghatakthat the Van Hove self-
orrelation fun
tion Gs(r, t) for a dilute �uid is determinedby a linearized Boltzmann equation identi
al to that o

uring in the theory ofneutron di�usion, [11℄.The kineti
 equation (KE) des
ribing di�usion in time s
ale 
omparable withtime of the parti
les 
ollision, is also a time 
onvolution kineti
 equation, whi
h forAMS (2000) Subje
t Classi�
ation: 82C41, 82C70, 92B05.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.



[92℄ R. Wojnara step-wise intera
tion potential takes form of a fun
tional equation in the velo
ityspa
e.We work in the framework of kineti
 theory of a Boltzmann gas, with useof statisti
al me
hani
s methods. The gas is 
omposed of N parti
les, and theproblem dis
ussed 
on
erns the di�usion of a marked parti
le (number 1) amid
(N − 1) other 
lassi
al dilute gas parti
les.Applying to the Liouville equation the proper proje
tion operator, a kineti
equation for one-parti
le distribution fun
tion f(k,v1, t) is derived. Here k denotesthe Fourier ve
tor variable (wave ve
tor) after transformation of spa
ial 
oordinate
r1, whi
h denotes the position of parti
le number 1. The ve
tor v1 is the velo
ityof this parti
le, while t is a time. Fun
tion f(k,v1, t) is Fourier transform ofone-parti
le distribution fun
tion fs(r,v1, t), whi
h represents the probability of�nding a parti
le at time t at r with velo
ity v1, if the same parti
le was at time
t = 0 at r = 0 with the given distribution of velo
ity v1, e.g. the Maxwellian.Right-hand side of KE has a form of time 
onvolution of a s
attering operator
G = G(k, t) and fun
tion f = f(k,v1, t). It is valid not only for long times (in
omparison with time of 
ollision, as it is in 
ase of the Boltzmann equation andin Brownian movement theory) but also for short times.KE 
onsidered here was found previously by Jan Ste
ki, [12℄, 
f. also [13, 14℄.This is a time 
onvolution equation for a gas whi
h parti
les intera
t by attra
tive-repelling potential with step dependen
e on distan
e. In su
h a 
ase the phasespa
e 
onsists of distin
ly separated regions and the kineti
 equations is trans-formed from a 
onvolutive one into a fun
tional equation.1.1. NotationThe gas o

upies volume V and 
onsists ofN parti
les, numbered by indi
es i =
1, . . . , N , and mi, vi and ri are the mass, velo
ity and position of parti
le number
i, respe
tively. Cartesian 
oordinates of ve
tor vi are denoted by vix, viy, viz andthose of ri by xi, yi, zi.The Maxwell distribution fun
tion of the velo
ity is denoted by

ϕM (vi) =

√

(

β
m

2π

)3

exp
(

− βm
v2

i

2

)

.Here the velo
ity modulus vi = |vi| is used and v2
i = v2

ix + v2
iy + v2

iz , while β−1 =
kBT with the Boltzmann 
onstant kB and absolute temperature T .The temperature of an ideal gas is related to its average kineti
 energy perparti
le by the relation

Ēkin =
3

2
kBT =

3

2β
.The se
ond law of thermodynami
s states that any two intera
ting systems willrea
h the same average energy per parti
le and hen
e the same temperature.In equilibrium, the probability of �nding a parti
le with velo
ity vi in the in-�nitesimal element dvi = [dvix, dviy, dviz ] about velo
ity vi = [vix, viy , viz] is

ϕM (vi)dvixdviydviz or ϕM (vi)dvi.



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [93℄The intera
tion potential uij between parti
les number i and number j dependson distan
e between these parti
les only:
uij = uij(|ri − rj |).Hen
e the total potential energy of the system

U =

N
∑

i<j

u(|ri − rj |) =

N−1
∑

i=1

N
∑

j=i+1

uij(rij) =
∑

i<j

uij ,where rij = |rij | = |ri − rj |.1.2. Physi
al meaningThe fun
tion f = f(k,v1, t) is related to s
attering phenomena. Essential forinterpretation of in
oherent s
attering experiments is the Van Hove fun
tion
Gs(|r − r0|, t) =

〈V

N

N
∑

i=1

δ(ri(0) − r0)δ(ri(t) − r)
〉 (1)where

〈(. . .)〉 =

∫

1

ZN

e−βH(. . .) dvNdrN with ZN =

∫

e−βH dvNdrNdenotes the 
anoni
al average.The fun
tion Gs(r, t) represents the probability of �nding a parti
le at r attime t if the same parti
le was at r = 0 at time t = 0.Van Hove law for in
oherent s
attering reads
Ss(k, ω) =

1

2π

∫

exp[i(kr − ωt)]Gs(r, t) drdt =
1

2π

∫

exp(−iωt)Is(k, t) dt,where
Is(k, t) =

∫

exp(ikr)Gs(r, t) dr
f. [15℄ � [19℄. On the other hand, we have
Is(k, t) =

∫

f(k,v1, t) dv1and Is(k, t) is the Fourier transform of Gs(r, t) and fun
tion f(k,v1, t) 
an befound by kineti
 theory. Namely, it satis�es the following linear KE
( ∂

∂t
+ ikv1

)

f(k,v1, t) =

t
∫

0

G(k, τ)f(k,v1 , t− τ) dτ (2)where
f(k,v1, t) =

∫

dr1 e−ikr1

∫

dvN−1 FN (t)



[94℄ R. Wojnarand
FN (t) = e−tKNFN (0)with

FN (0) = eikr1ϕM (v1) · . . . · ϕM (vN )
e−βU

Q
(3)Here U =

∑

i<j uij and
KN =

N
∑

i=1

vi

∂

∂ri

−
∑

i<j

∂U

∂ri

1

mi

∂

∂vi

(4)is the N -parti
le Liouville operator.Normalization fa
tor in (3)
Q =

∫

V

e−βU drN , where drN = dr1dr2 . . . drNis known as the partition fun
tion or sum-over-states.The partition fun
tion Q is related to thermodynami
al properties of the sys-tem, 
f. [20℄, [21℄, [22℄. With a model of the mi
ros
opi
 
onstituents of a system,one 
an 
al
ulate the mi
rostate energies, and thus the partition fun
tion, whi
hwill then allow us to 
al
ulate all the other thermodynami
al properties of thesystem.Resear
h in the predi
tion of binding a�nities has been a 
ontinuing e�ort formore than half a 
entury, [23, 24℄. An important appli
ation of the 
on�gurationintegral lies in the development of 
omputational models for the ligand-re
eptorbinding a�nities. Their study 
onstitutes the most important problem in 
ompu-tational bio
hemistry. Espe
ialy, the predi
tion of absolute ligand-re
eptor bindinga�nities is essential in a wide range of biophysi
al questions, from the study ofprotein-protein intera
tions to stru
ture-based drug design.In a ligand-re
eptor binding, a ligand is in general any mole
ule that binds toanother mole
ule; the re
eiving mole
ule is 
alled a re
eptor, whi
h is a protein onthe 
ell membrane or within the 
ell 
ytoplasm. Su
h binding 
an be represented bythe 
hemi
al rea
tion des
ribing non
ovalent mole
ular asso
iation A+B ↔ AB,where A represents the protein (re
eptor), B the ligand mole
ule, and AB theprotein-ligand 
omplex. The 
hange in the Gibbs free energy 
an be expressed asa ratio of 
on�guration integrals, [25℄.An alternative form of the kineti
 equation (2) is
(−iz + ikv1)f(k,v1, z) − f(k,v1, t = 0) = G(k, z)f(k,v1, z) (5)where f(k,v1, z) is the Lapla
e transform of f(k,v1, t) de�ned as f(z) =

∫ ∞

0 eiztf(t) dt. We use the same letter for a fun
tion and its Lapla
e transform,but it does not lead to 
onfusion, be
ause all arguments are expli
itly written.If m1 ≫ mi, i = 2, 3, . . . , N we have the Brownian di�usion of parti
le num-ber 1. If m1 ≪ mi, i = 2, 3, . . . , N - the Lorentz gas is dealt with, 
f. also[26, 27℄.



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [95℄1.3. Diffusion in biologyFor big times and for isotropi
 medium the Van Hove fun
tion Gs = Gs(r, t)is given by a solution of the 
lassi
al Fi
k's equation, namely,
Gs(r, t)t→∞ =

1

8(πDt)
3
2

e
−r

2

4Dt ,where D denotes the (ma
ros
opi
) di�usion 
oe�
ient. After tranformations weget Is(k, t)t→∞ = exp(−k2Dt) and
Ss(k, ω) =

1

π

Dk2

ω2 + (Dk2)2
.Hen
e

D = lim
ω→0

lim
k→0

π
ω2Ss(k, ω)

k2
.We have also

D = − lim
t→∞

1

6t

∂2Is(k, t)

∂k2
.In spite of passing to the limit, residual information about the dynami
s of systemis still 
ontained in the di�usion 
oe�
ient D. For example, in the random walkdi�usion the 
oe�
ient D = h2

2τ
, with h and τ being the length and duration ofone step in the walk, respe
tively.The laws of di�usion (in whi
h 
oe�
ient D is used) were dis
overed in 1855by physi
ian and physiologist Adolf Eugen Fi
k, [28℄ � [30℄.At the beginning of the 20th 
entury, Einstein and Smolu
howski, indepen-dently, have found relation between ma
ros
opi
 di�usion 
oe�
ient D and theBrownian movement phenomenon, explaining it in mi
ros
opi
, mole
ular terms,
f. [31, 32℄. The phenomenon was �rst expli
itly des
ribed in 1828 by the physi-
ian and botanist Robert Brown, who observed in aqueous suspensions of pollengrains from Clarkia pul
hella a rapid, 
ontinuous, short-range motion of small in-
luded parti
les that �arose neither from 
urrents in the �uid nor from its gradualevaporation, but belonged to the parti
le itself�, [33, 34℄.After dis
overy of Fi
k's laws, in physiology dominated the opinion that dif-fusion laws should explain all problems of metabolism. It was widely believedin XIX 
entury that di�usion is responsible for su
h organi
 pro
esses as gas ex-
hange in the leaves of plants, gas ex
hange in the lungs of animals, the uptake ofthe produ
ts of digestion from the gut.However, the development of knowledge on the 
ell stru
ture has permitted togather an abundant eviden
e on inadequa
y of di�usion theory for explaining mu
hof the movements of substan
es in organisms, studied in biology and medi
ine. TheFi
k di�usion alone 
ould des
ribed physiologi
al pro
esses only in dead tissues.In 1912 medi
al do
tor and physiologist, Otto Heinri
h Warburg publisheda dis
overy: oxygen utilization requires stru
tural elements in the 
ell � a solidphase. These stru
tures, now re
ognized as mito
hondria, had been des
ribed bylight mi
ros
opists two de
ades before Warburg's publi
ation, and 80 years laterwere found to be pla
es where Brownian motors work, [35℄.



[96℄ R. WojnarThe assumptions of the Einstein�Smolu
howski model are not even approxi-mately met in vivo. The 
ell 
ontains a highly 
on
entrated and heterogeneousassembly of deformable, intera
ting and inelasti
ally 
olliding parti
les; mu
h ofthe solvent (water) is bound to solid stru
tures whi
h, although not ne
essarilylong-living, have huge surfa
e areas; and in any 
ase the 
onditions only tendto thermodynami
 equilibrium after death. The model representing the �mi
ro-s
opi
� aspe
t of di�usion theory assumes a dilute, homogeneous suspension ofrigid, non-intera
ting and elasti
ally 
olliding parti
les, a monophasi
 system withthe solvent (largely) unbound, and a tenden
y towards equilibrium. Also, themodel assumes that there are no net solvent movements, and this is undoubtedlyrelevant in intra
ellular transport, [36, 37℄, also [38℄.After the idea arose that the 
ell internum does, at least in part, behave as a gel,the di�usion through gels be
ame an important subje
t of study. Investigationsof di�usion in gels put a question on appli
ability of Fi
k's laws in the �eld.Bigwood has shown in 1930 that not only is di�usion in gels highly dependenton the absolute 
on
entration of di�using substan
e (in 
ontrast to the 
lassi
allinear Fi
k's theory that di�usion rates depend only on 
on
entration gradients),but that it is both slow and unpredi
table, parti
ularly when the gel is made ofprotein, as the gel state of the 
ell internum should be, 
f. [39, 40℄. It be
ame
lear then that in des
ription of biologi
al 
ell extreme order has to be re
on
iledwith a �uid anatomy. Two kinds of intra
ellular transport are possible: one, whi
ha

ounts for the movements of ma
romole
ules and assemblies; and se
ond, whi
hwill a

ount for the movements of small mole
ules and ions, [41℄.In 1949 Hans Ussing 
ondu
ted investigations with use of radioa
tive tra
ersand gave the systemati
 mole
ular level a

ount of a �se
retion� pro
ess in biology,as an opposite to the �di�usion� des
ription. Ussing de�ned the term �a
tivetransport�, whi
h means the 
reation of a genuinely �uphill� 
on
entration gradient,
f. [42, 43℄. A
tive transport is now an a

epted part of biologi
al knowledge, andindividual a
tive transport me
hanisms are frequently obje
ts of resear
h.In 1950 BBC le
ture J.Z. Young 
on
luded: the more we 
ome to know ofthe �ux of 
hemi
al 
hanges in the body, the more one great weakness of thema
hine analogy stands out. The 
on
ept of a dynami
 organization, su
h as thatof a whirlpool, demands a 
onsideration of time � of before and after and of gradualdevelopment and 
hange of pattern, but the ma
hine models of physiology allowno pla
e for this element. In the tissue spa
es, as well as inside the 
ell, there is�uid 
ir
ulation among solid-state elements, [44℄.The di�usion 
on
epts persisted for a long time in des
ription of respiratorypro
esses. Until now, the method of �di�usion 
apa
ity� is pra
ti
ised as a mea-surement of the lungs ability to transfer gases. Oxygen absorption may be limitedby di�usion in 
ir
umstan
es of low ambient oxygen or high pulmonary blood�ow. Carbon dioxide is not limited by di�usion under most 
ir
umstan
es. The�di�usion 
apa
ity� is part of 
omprehensive test series of lung fun
tion 
alled pul-monary fun
tion testing. It is known, however, di�usivity estimates are seriouslyproblemati
 even with modern equipment. Longmuir wrote: �If simple di�usionis the sole me
hanism of tissue oxygen transport as proposed by Krogh (1919),it is di�
ult to see how a

limatization 
ould o

ur without a redu
tion in the



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [97℄di�usion 
oe�
ient. The kineti
s of oxygen transport 
annot be explained by pas-sive di�usion alone; the sear
h for other me
hanisms led to the observation thatall kineti
 data 
ould be explained by 
hannels in 
ells along whi
h the oxygendi�uses faster than in water, [45, 46℄.�The 
ell internum is far more 
omplex organised right down to the mole
ularlevel than was hitherto appre
iated, to the point where ideas of a relatively solid-state 
hemistry model have o

oured. The �ow theory of enzyme kineti
s � a roleof solid geometry in the 
ontrol rea
tion velo
ity in live animals. This 
ontrastssharply with the former 
on
ept that di�usion is the way by whi
h mole
ulesintera
t within an aqueous solution of the 
ell internum, [47℄ � [52℄.In living systems, most mole
ules do not generally move, but are moved, whenwe 
onsider what would happen if everything depended upon Brownian motionand the law of mass a
tion. R.P.C. Johnson in 1983 re
ognised a grey area at themole
ular level when 
onsidering the movement of mole
ules within living 
ells:�This is the region of s
ale where �ow and di�usion are not 
learly separated;where the 
on
epts of temperature and mole
ular movement overlap; where it isnot 
lear whether mole
ules move or are moved; where the ideas of a
tive andpassive lose their meaning�, [53, 48℄, also [54℄ and [55℄.Until now, biologists use the term �di�usion� in a twofold meaning. One isFi
k's di�usion, and the se
ond one is verna
ular, for spreading pro
ess, when�di�usion� is not adhered to a spe
i�
, de�ned s
ienti�
 term. For an a
tivetransport the term a
tive di�usion is sometimes used, as an opposite to passive(i.e. Fi
kian) di�usion.The 
ompli
ation in the des
ription of biologi
al pro
esses may be found inappli
ation of the Smolu
howski di�usion with drift equation. In this equation analeatory aspe
t is 
oupled with deterministi
. The drift for
e 
ontrols di�usionand di�usion re�e
ts the in�uen
e of thermal vibrations of the evironment on thepro
ess.All phenomena, biologi
al also, are developing in given thermal 
onditions,and the appli
ation of thermodynami
s is inevitable. The �mi
ros
opi
� aspe
tof di�usion theory, is that random thermal motions of mole
ules in liquids areresponsible for return of di�usion, parti
ularly Brownian movement theories, into
ontemporary biophysi
s.Brownian or mole
ular motors are biologi
al �nanoma
hinees� and are the es-sential agents of movement in living organisms. A motor is regarded as a devi
ethat 
onsumes energy and 
onverts it into motion or me
hani
al power. Adenosinetriphosphate (ATP) is the fuel for the mole
ular motors a
tion. Many protein-based mole
ular motors 
onvert the 
hemi
al energy present in ATP into me-
hani
al energy. The ATPase mole
ular motors are found in the membranes ofmito
hondria, the mi
ros
opi
 bodies in the 
ells of nearly all living organisms, aswell as in 
hloroplasts of plant 
ells, where the enzyme is responsible for 
onvertingfood to usable energy, [56℄ and [57℄.It was shown by Streater that the Smolu
howski equation for a Brownian par-ti
le potentially 
an be supplemented by an equation for the dynami
s of the tem-perature, so that the �rst and the se
ond laws of thermodynami
s are obeyed. He
onsidered also a model studied by David Smith, known as the dumbbell model,



[98℄ R. Wojnarin whi
h the Brownian parti
le is a two-level atom, and had shown that underisothermal 
onditions, the free energy 
an be given a natural de�nition out ofequilibrium, and is a de
reasing fun
tion of time, [58℄, also [59℄. Smith has appliedhis model to des
ribe a myosin mole
ule, [60, 61℄, also [62℄ and [63℄.Ma
romole
ular parti
les playing a role in protein motors are heavy (Brown-ian) in 
omparison with solvent (water) mole
ules, but are light (Lorentzian) in
omparison with mass of substratum (mito
hondrium).Another biologi
al example in whi
h the passive di�usion plays a role is pro-vided by alimentation pro
esses in 
artilage, tissue whi
h supplies smooth surfa
esfor the movement of arti
ulating bones. The 
artilage is built of 
ells, 
alled 
hon-dro
ytes, produ
ing a large amount of extra
ellular matrix 
omposed of 
ollagen�bers, abundant ground substan
e ri
h in proteogly
an, and elastin �bers. Unlikeother 
onne
tive tissues, 
artilage does not 
ontain blood vessels. The 
hondro-
ytes are fed by di�usion, helped by the pumping a
tion generated by 
ompressionof the arti
ular 
artilage or �exion of the elasti
 
artilage. Thus, 
ompared to other
onne
tive tissues, 
artilage grows and repairs more slowly, [64℄.The di�usion pro
ess appears in biology also as the property of homeostasis inorganisms.Homeostasis (from Greek: hómos, �equal�; and istemi, �to stand� lit. �to standequally�; 
oined by Walter Bradford Cannon) is the property of either an opensystem or a 
losed system, espe
ially a living organism, that regulates its internalenvironment so as to maintain a stable, 
onstant 
ondition. Multiple dynami
 equi-librium adjustment and regulation me
hanisms make homeostasis possible. The
on
ept 
ame from that of milieu interieur that was 
reated by Claude Bernard,often 
onsidered as the father of physiology, and published in 1865.With respe
t to any given life system parameter, an organism may be a 
on-former or a regulator. Regulators try to maintain the parameter at a 
onstantlevel over possibly wide ambient environmental variations. On the other hand,
onformers allow the environment to determine the parameter. For instan
e, en-dothermi
 animals maintain a 
onstant body temperature, while exothermi
 ani-mals exhibit wide body temperature variation. Examples of endothermi
 animalsin
lude mammals and birds, examples of exothermi
 animals in
lude reptiles andsome sea animals.Most homeostati
 regulation is 
ontrolled by the release of hormones into thebloodstream. However other regulatory pro
esses rely on simple di�usion to main-tain a balan
e.Homeostati
 regulation extends far beyond the 
ontrol of temperature. Allanimals also regulate their blood glu
ose, as well as the 
on
entration of theirblood. Mammals regulate their blood glu
ose with insulin and glu
agon. Thesehormones are released by the pan
reas, the inadequate produ
tion of the two forany reason, would result in diabetes. The kidneys are used to remove ex
ess waterand ions from the blood. These are then expelled as urine. The kidneys performa vital role in homeostati
 regulation in mammals, removing ex
ess water, salt,and urea from the blood. These are the body's main waste produ
ts, [65℄.



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [99℄2. Proje
tive operator methodThe proje
tion operator is introdu
ed, [66℄,
P = eikr1

f0
N

ϕM (v1)

∫

dvN−1drN e−ikr1 ,where
f0

N =

N
∏

i=1

ϕM (vi)
1

Q
e−βUis the equilibrium distribution fun
tion. We observe

PFN (t) = eikr1
f0

N

ϕM (v1)
f(k,v1, t).In parti
ular

PFN(0) = eikr1
f0

N

ϕM (v1)
f(k,v1, 0) = eikr1f0

N = FN (0)and
(1 − P)FN (0) = 0.Also

∫

dvN−1drN e−ikr1PFN (t) = f(k,v1, t).The Liouville equation
∂

∂t
FN (t) = −KNFN (t)with KN given by (4), is now rewritten in the form

∂

∂t
[PFN (t)] = −PKNPFN (t) − PKN(1 − P)FN (t)and

∂

∂t
[(1 − P)FN (t)] = −(1 − P)KNPFN(t) − (1 − P)KN(1 − P)FN (t).Hen
e

∂

∂t
[PFN (t)]

= −PKNPFN (t) + PKN

t
∫

0

e−τ(1−P)KN (1 − P)KNPFN (t− τ) dτ



[100℄ R. Wojnarand �nally
( ∂

∂t
+ ikv1

)

f(k,v1, t)

=

∫

dvN−1drN e−ikr1PKN

t
∫

0

e−τ(1−P)KN eikr1
f0

N

ϕM (v1)
f(k,v1, t− τ) dτit is a general form of KE, 
orre
t also for small times, 
ompared to the time of
ollision.3. Density expansionAn alternative form of the kineti
 equation (2) is

(−iz + ikv1)f(k, v1, z) = G(k, z)f(k,v1, z) + f(k,v1, t = 0),where
f(t = 0) = ϕM (v1) =

( 2π

βm

)− 3
2

e−
1
2
βv2

1with f(k,v1, z) being Lapla
e transform of f(k,v1, t)

f(z) =

∞
∫

0

eiztf(t) dt.The s
attering operator in (2)
G(τ) =

∫

drNdvN−1 e−ikr1KNe−τ(1−P)KN (1 − P)KNeikr1f0
N

1

ϕM (v1)
.After Lapla
e transformation we get the equation

(−iz + ikv1)f(k,v1, z) − ϕM (v1)

=

∫

dvN−1drN e−ikr1PKN

1

−iz + (1 − P)KN

× (1 − P)KNeikr1
f0

N

ϕM (v1)
f(k,v1, z)whi
h right-hand side 
an be written as

G(k, z)f(k,v1, z) =

∫

dvN−1drN e−ikr1KN

1

−iz

1

1 − 1
iz

(1 − P)KN

× (1 − P)KNeikr1
f0

N

ϕM (v1)
f(k,v1, z).



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [101℄The �rst terms of the expansion are
G(k, z) =

∫

dvN−1drN e−ikr1

[ 1

iz
(KNKN −KNPKN)

+
( 1

iz

)2

(KNKNKN −KNKNPKN −KNPKNKN +KNPKNPKN)

+
( 1

iz

)3

(. . .) + . . .
]

eikr1
f0

N

ϕM (v1)
.In the dilute gas approximation only linear terms with respe
t to ρ = N

V
arekept, and the following form of binary s
attering operator is obtained

G12(k, z) =
N − 1

V 2

∫∫∫

dr1dr2dv2 (−iz + ikv1)e
−ikr1

×

∞
∫

0

dt eizt
(

e−tK2 − e−tK0
2

)

(−iz + ikv1)e
ikr1e−βuϕM (v2).For k = 0 and z = 0 the s
attering operator redu
es to the Boltzmann s
atteringoperator. It also takes the Boltzmann form for k = 0, arbitrary z and su�
ientlyhigh velo
ity v1.4. Lorentz gasThe Lorentz gas 
orresponds to the 
asem2 → ∞, v2 → 0 and ϕM (v2) → δ(v2).Only the velo
ity of parti
le 1 remains and is denoted by v1 = v. The Lorentzmodel is widely studied as a simple model of a 
rystal, 
f. for example [67℄ � [78℄.

-x
6y
~

&%
'$b a-light parti
le

Figure 1. Spheri
al potential: hard 
ore of radius b (bla
k 
ir
le) and well (whitering) with internal radius b and external radius aThe Lorentz gas was examined in [66℄ for the following 
ase of repulsive � attra
tivepotential, see Figure 1,
u(r) = ∞ if r < b, u(r) = −u0 < 0 if b < r < a, u(r) = 0 if r > a,where r is the radius in polar 
oordinates. Thus, the potential possesses spheri
alrigid repulsive 
ore of radius b surrounded by a well (b < r < a) of depth −u0,
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u0 > 0. S
attering operator for this potential, for the dilute Lorentz gas has thefollowing form

G12f(k, z,v) = i(−z + kv)
N

V

∫

dr e−βuϕM (v)e−ikr

×

∞
∫

t1

dt eizt
(

e−tK2 − e−tK0
2

)

eikri(−z + kv)
f(k, z,v)

ϕM (v)
.The KE for three-dimensional Lorentz gas of N − 1 �xed rigid spheres with thesquare-well attra
tive potential was given also in [66℄. It is an integral (in 
on-�gurational spa
e) and fun
tional (in velo
ity spa
e) equation for the unknowndistribution fun
tion ψ(v) whi
h links the values of ψ(v) at 8 di�erent values ofargument v.5. Lorentz gas of rigid spheres with finite time of 
ollision τ ∗The potential of rigid sphere with re
tangular well 
hanges the time of intera
-tion of the light parti
le with s
atterer, is 
ontrast to the zero time of intera
tionwith the rigid sphere potential alone. To avoid additional 
onsideration of s
atter-ing traje
tory we a

ept the rigid sphere potential (R1 = R2), in whi
h, however,the intera
ting parti
les remain 
onne
ted for a 
ertain time τ∗. This time of
ollision is negative in 
ase of the potential well. In this 
ase

G12f(k, z,v) = vϕM (v)
N

V

a2

4

∫

dΩ
[

Ψ(k, z,v′)eizτ∗

− Ψ(k, z,v) + 1 − eizτ∗]

,where integration is performed over the full solid angle and
Ψ(k, z,v) ≡

f(k, z,v)

ϕM (v)
.We introdu
e the following notation

πa2v
N

V
= ε−1

0 ,
1

4π

∫

dΩ = P̂ .Kineti
 equation takes the form
(−iz + ikv + ε−1

0 )Ψ − h = ε−1
0 eizτ∗

(P̂Ψ) + 1 − eizτ∗

.Here h = δ(v − v′) is the initial 
ondition. Hen
e
Ψ =

ε−1
0 eizτ∗

−iz + ikv + ε−1
0

P̂Ψ +
h+ 1 − eizτ∗

−iz + ikv + ε−1
0

.Therefore the solution reads
Ψ =

ε−1
0 eizτ∗

−iz + ikv + ε−1
0

(

1 −
eizτ∗

kvε0
arctan

kvε0
1 − iε0z

)−1

× P̂
h+ 1 − eizτ∗

−iz + ikv + ε−1
0

+
h+ 1 − eizτ∗

−iz + ikv + ε−1
0

.



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [103℄For the hydrodynami
 pole we have
−iz = ε−1

0 + kv cot[(cos zτ∗ − i sin zτ∗)kvε0].If the time of 
ollision τ∗ = 0, KE equation be
omes
(−iz + ikv + ε−1

0 )Ψ − h = vϕM (v)
N

V

a2

4

∫

dΩ.This is the 
lassi
al Boltzmann equation for the Lorentz gas. Its solution has theform dis
ussed by Hauge in [78℄.6. One-dimensional KEThe 3 dimensional dynami
s, even for the Lorentz gas, is still too 
ompli
atedto be e�e
tively solved and for this reason we limit ourselves to 1-dimensionalmodel. It posseses some important features of 3-dimensional 
ase, but me
hani
sof the light parti
le motion is more simple. It may be expe
ted that the obtainedresults will have a more general meaning. Su
h pro
edure is often used, see [79℄ �[82℄.The one-dimensional 
onsiderations permitted Fermi, Pasta, Ulam and MaryTsingou to �nd that the behaviour of a 32-atom 
hain is quite di�erent fromintuitive expe
tation. Instead of thermalisation, a 
ompli
ated quasi-periodi
 be-haviour of the system was observed, [83℄, also [84℄.Morita and Fukui 
onsidered the heat transfer in one-dimensional gas, [85℄,while Ka
 [86℄ � [89℄ and M
Kean [90℄ 
onsidered one-dimensional analogues ofthe linear Boltzmann equation.

-x
6

potential
- b r0

u1
-u0 b- a a

-light parti
leV IV III II I
Figure 2. Con�gurational spa
e of one-dimensional model. Light parti
le movesin potential of a well of depth −u0 < 0 and a repulsive 
ore of hight u1 > 0



[104℄ R. WojnarThe Lorentz gas is examined here in one dimension, for the 
ase of attra
tive� repulsive potential
u(x) =











u1, |x| < b,

−u0 < 0, b < |x| < a,

0, |x| > a.The quantity −u0, with u0 > 0 is the depth of the potential well, while u1 > 0denotes the height of the potential barrier, see Figure 2.6.1. Kineti
 equation in 1 dimensionThe KE has still stru
ture of (5) but ve
tors are now one-dimensional
(−iz + ikv)f(k, v, z) − f(k, v, t = 0) = G(k, z)f(k, v, z).S
attering operator for the dilute Lorentz gas of N parti
les in one-dimensionalsegment L, (−L

2 < x < L
2 ), has the following form

G(k, z)f(k, v, z) = i(−z + kv)
N

L

∫

dx e−βuϕM (v)e−ikx

×

∞
∫

t1

dt eizt
(

e−tK2 − e−tK0
2

)

eikxi(−z + kv)
f(k, z, v)

ϕM (v)

(6)Here K2 is the two parti
le Liouville operator, see (4), for N = 2. In 
al
ulations
L → ∞ but N

L
is kept 
onstant. Su
h pro
edure is known as the thermodynami
limit (one in
reases the volume together with the parti
le number so that theaverage parti
le number density remains 
onstant). Thus, integration with respe
tto x extends from minus to plus in�nity. Below we put

Ψ(v) =
f(k, z, v)

ϕM (v)
.The phase spa
e is now two-dimensional only: one-dimension for positions andanother for velo
ities of the light parti
le. The position spa
e is divided into 5regions, from I to V, see Figure 2, while the velo
ity spa
e in ea
h of these regionsis divided, in dependen
e of kineti
 energy of the parti
le (whether it permits forbounded or unbounded motion of the parti
le).6.2. Bounded motionsThe bounded motion of parti
le o

urs in regions of the potential well, II andIV, only, if simultaneously the parti
le kineti
 energy is less than the depth of thewell u0.



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [105℄Regions b ≤ x ≤ a and −a ≤ x ≤ −bLet us 
onsider bounded motion of our parti
le in segment b ≤ x ≤ a withvelo
ity v <
√

2
m
u0. The position of parti
le along its traje
tory is given byrelation

e−tK2x = x(−t)

= x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− τ3)η(t4 − t)

− . . .− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t4 − t3) + v′′′′(t5 − t4)

+ . . .+ v(2n)(t2n+1 − t2n) + v(2n+1)(t− t2n+1)]η(t − τ2n+1).Similarly, the velo
ity is given by
e−tK2v = v(−t)

= vη(t1 − t) + v′(t− t1)η(t2 − t) + v′(t− t1)η(t2 − t)

+ v′′η(t− t2)η(t3 − t) + v′′′η(t− t3)η(t4 − t)

+ . . .+ v(2n−1)η(t− t2n−1)η(t2n − t)

+ v(2n)η(t− t2n)η(t2n+1 − t) + v(2n+1)η(t− t2n+1).In the equation above we have
v′ = −v, v′′ = v, . . . , v(2n−1) = −v, v(2n) = vand 2n denotes the number of full periods performed by the parti
le in the time

t. Moreover, tm, m = 1, 2, . . . denotes the moment of boun
ing from the wall ofthe well. The instant of the �rst 
ollision of the parti
le with wall is given by
t1 =

x− b

|v|
(7)and the next instants satisfy relations

t2 − t1 = t3 − t2 = . . . = tm − tm−1 = τ =
a− b

|v|
.Di�eren
es between the subsequent moments are identi
al and equal τ . Thereforethe period of boun
ing is 2τ .For the time being we repla
e the in�nity in the upper limit of time integral in(6) by T , and next extend T → ∞ and n→ ∞.

(G(k, z)f(k, v, z))IIA

= i(−z + kv)
N

L
eβu0ϕM (v)

a
∫

b

dx e−ikx

{ t2
∫

t1

dt ei(z+kv)te−ik2vt1 i(−z − kv)tΨ(−v)
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+

t3
∫

t2

dt ei(z−kv)te−ik[vt1−v(t2−t1)−vt2]i(−z + kv)tΨ(v)

+

t4
∫

t3

dt ei(z+kv)te−ik[vt1+vt3]i(−z − kv)tΨ(−v)

+

t5
∫

t4

dt ei(z−kv)te−ik[vt1−v(t4−t3)−vt4]i(−z + kv)tΨ(v)

+ . . .+

t2n
∫

t2n−1

dt ei(z+kv)te−ik[vt1+vt2n−1]i(−z − kv)tΨ(−v)

+

t2n+1
∫

t2n

dt ei(z−kv)te−ik[vt1−v(t2n−t2n−1)−vt2n]i(−z + kv)tΨ(v)

+

T
∫

t2n+1

dt ei(z+kv)te−ik[vt1+vt2n+1]i(−z − kv)tΨ(−v)

−

T
∫

t1

dt ei(z−kv)ti(−z + kv)tΨ(v)

}

.We take n so large that
T − t2n+1 < τ.We integrate at �rst with respe
t to t, and next with respe
t to x. Variable x isfound only in time of the �rst 
ollision t1 = x−b

v
, 
f. (7). After integration andpassing with n to in�nity, there appear series ot type

1 + eiz2τ + eiz4τ + . . .+ eiz2nτ + . . . =
1

1 − eiz2τ
for n→ ∞.Finally we �nd the following KE

(−iz + ikv)Ψ(v) − h(v) = C[Ψ(−v) − Ψ(v)]with
h(v) =

f(k, v, t = 0)

ϕM (v)
and C =

N

L
|v|

1 − 2eizτ cos(kvτ) + eizτ

1 − eizτ
eβu0 .Remark that C is even in v. The solution of KE reads

Ψ(v) =
(−iz − ikv + C)h(v) + Ch(−v)

−z2 − 2izC + k2v2
.Identi
al relation des
ribes the bound motion in segment −a ≤ x ≤ −b, withvelo
ity v < √

2
m
u0.



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [107℄6.3. Unbounded motionsThe phase subspa
es of bounded and unbounded one-dimensional motions ofthe parti
le are separated by the value of its kineti
 energy, in the dilute gasapproximation. The parti
le on
e trapped in bounded motion, persists in it forever,and a parti
le in the phase subspa
e where unbounded motion o

urs 
an neverbe
ome bounded.6.3.1. Region I: (a < x < ∞)The parti
le whi
h is at the time t = 0 in this region is subje
t to 3 a

elerationsif its kineti
 energy is less then the height of the potential barrier u1 (Case IA) or4 a

elerations if it is higher (Case IB).Case IA: if 0 < v <
√

2
m
u1 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− t3)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t3 − t)η(t− t2) + v′′′η(t− t3)with

v′ =
v

|v|

√

v2 +
2

m
u0, v′′ = −v′, v′′′ = −v (8)and

t1 =
x− a

|v|
, t2 = t1 +

a− b

|v′|
, t3 = t2 +

a− b

|v′|
= t1 + 2

a− b

|v′|denote the moments of subsequent 
ollisions. As before (Se
tion 6.2), the positionvariable x is hidden in t1.After straightforward 
al
ulations we get the part of right hand side of (6)linked to this subregion
Gf(IA) =

N

L
|v|ϕM (v)

{[

1 − e
i(z−kv′) a−b

|v′|

]

Ψ(v′)

+
[

1 − e
i(z+kv′) a−b

|v′|

]

e
i(z−kv′) a−b

|v′| Ψ(−v′) + e
iz2 a−b

|v′| Ψ(−v) − Ψ(v)
}Case IB: if v > √

2
m
u1 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− τ3)η(t4 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t4 − t3) + v′′′′(t− t4)]η(t− t4)
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v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t3 − t)η(t− t2)

+ v′′′η(t4 − t)η(t− t3) + v′′′′η(t− t4)with
v′ =

v

|v|

√

v2 +
2

m
u0, v′′ =

v

|v|

√

v2 −
2

m
u1, v′′′ = v′, v′′′′ = v (9)and

t1 =
x− a

v
, t2 = t1 +

a− b

v′
, t3 = t2 +

2b

v′′
t4 = t3 +

a− b

v′
.In this subregion

Gf(IB) =
N

L
|v|ϕM (v)

{[

1 − e
i(z−kv′) a−b

|v′|

][

1 + e
i(z−kv′′) 2b

|v′′| e
i(z−kv′) a−b

|v′|

]

Ψ(v′)

+
[

1 − e
i(z+kv′′) 2b

|v′′|

]

e
i(z−kv′) a−b

|v′| Ψ(v′′)

−
[

1 − e
i(z−kv′)2 a−b

|v′| e
i(z−kv′′) 2b

|v′′|

]

Ψ(v)
}

.6.3.2. Region II: b < x < aThe bounded motion in this region was des
ribed in Se
tion 6.2.The parti
le whi
h is at the time t = 0 in this region and has kineti
 energyhigher than the depth of the well u0, is in an unbounded motion and has undergone2 a

elerations if its kineti
 energy is lower than the hight of potential barrier u1(Case IIA) or 3 a

elerations if its kineti
 energy is higher than the barrier (CaseIIB).Case IIA: if √

2
m
u1 > v >

√

2
m
u0 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t− t2)with

v′ = −v, v′′ = −
v

|v|

√

v2 −
2

m
u0 and t1 =

x− b

|v|
, t2 = t1 +

a− b

|v|
.Now

Gf(IIA) =
N

L
|v|eβu0ϕM (v)

[

1 − e−i(z+kv) a−b

|v|

]

{[

1 − ei(z+kv) a−b

|v|

]

Ψ(−v) + ei(z+kv) a−b

|v| Ψ(v′′)) − Ψ(v)
}

.



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [109℄Case IIB: if v > √

2
m
u1 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− τ3)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t− t2)η(t3 − t) + v′′′η(t− t3)with

v′ =
v

|v|

√

v2 −
2

m
(u0 + u1), v′′ = v, v′′′ =

v

|v|

√

v2 −
2

m
u0 (10)and

t1 =
x− b

v
, t2 = t1 +

2b

|v′|
t3 = t2 +

a− b

|v|
.Now

Gf(IIB) =
N

L
|v| eβu0ϕM (v)

[

1 − ei(z−kv) a−b

|v|

]

×
{[

1 − e
i(z−kv′) 2b

|v′|

]

Ψ(v′) + e
i(z−kv′) 2b

|v′| ei(z−kv) a−b

|v| Ψ(v′′′)

+
([

1 − ei(z−kv) a−b

|v|

]

e
i(z−kv′) 2b

|v′| − 1
)

Ψ(v)
}

.6.3.3. Region III: −b < x < bThe parti
le being at t = 0 in this region, has undergone 2 a

elerations. Thetime dependen
e of its position and velo
ity is the following
x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t− t2)with
v′ =

v

|v|

√

v2 +
2

m
(u0 + u1), v′′ =

v

|v|

√

v2 +
2

m
u1 (11)and

t1 =
x+ b

|v|
, t2 = t1 +

a− b

|v′|
.Now

Gf(III) =
N

L
e−βu1 |v|ϕM (v)

[

1 − ei(z−kv) 2b

|v|

]

×
{

e
i(z−kv′) a−b

|v′| Ψ(v′′) +
[

1 − ei(z−kv′) a−b

|v′|

]

Ψ(v′) − Ψ(v)
}

.



[110℄ R. Wojnar6.3.4. Region IV: −a < x < −bThe parti
le whi
h is at the time t = 0 in this region and has kineti
 energyless than the depth of the well, is in the bounded motion (see se
tion 6.2). In theopposite 
ase, the parti
le has undergone 1 a

eleration.If v > √

2
m
u0 we have
x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)and

v(−t) = vη(t1 − t) + v′η(t− t1)with
v′ =

v

|v|

√

v2 −
2

m
u0 and t1 =

x+ a

|v|
.Then

Gf(IV ) =
N

L
eβu0 |v|ϕM (v)

[

1 − ei(z−kv) a−b

v

]

[Ψ(v′) − Ψ(v)].6.3.5. Region V: −∞ < x < −aIn this region the potential vanishes and operators exp(−tK2) and exp(−tK2)are identi
al, and 
ontribution of this region to the integral operator G is zero.7. Kineti
 equation in 1 dimensionWe gather all 
ontributions to the s
attering operator found in the previousse
tion to get KE for unbounded motions (v2 > 2
m
u0). At �rst we introdu
e
ommon de�nitions of velo
ities appearing in the equation. These are

v1 =
v

|v|

√

v2 −
2

m
(u0 + u1) for v2 ≥

2

m
(u0 + u1) cf. (10)1

v2 =
v

|v|

√

v2 −
2

m
u1 for v2 ≥

2

m
u1 cf. (9)2

v3 =
v

|v|

√

v2 −
2

m
u0 for v2 ≥

2

m
u0 cf. (10)3

v4 =
v

|v|

√

v2 +
2

m
u0 cf. (8)1

v5 =
v

|v|

√

v2 +
2

m
u1 cf. (11)2

v6 =
v

|v|

√

v2 +
2

m
(u0 + u1) cf. (11)1in the form

(−iz + ikv)Ψ(v) − h(v) = GΨ(v)
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 equation for a gas with attra
tive for
es as a fun
tional equation [111℄with
h(v) =

f(k, v, t = 0)

ϕM (v)and
GΨ(v)

=
N

L
|v|

1

ϕM (v)

[

Gf(III) +Gf(IV )

+ η(v2 <
2

m
u1)

(

Gf(IA) +Gf(IIA)

)

+ η
(

v2 >
2

m
u1

) (

Gf(IB) +Gf(IIB)

)

]or
GΨ(v)

=
N

L
|v|

[

e−βu1
(

1 − ei(z−kv) 2b

|v|
)

{

e
i(z−kv6) a−b

|v6| Ψ(v5)

+
[

1 − e
i(z−kv6) a−b

|v6|

]

Ψ(v6) − Ψ(v)
}

+ eβu0

[

1 − ei(z−kv) a−b

v

]

[Ψ(v3) − Ψ(v)]

+ η
( 2

m
u1 − v2

)

{[

1 − e
i(z−kv4) a−b

|v4|

]

Ψ(v4)

+
[

1 − e
i(z+kv4) a−b

|v4|

]

e
i(z−kv4) a−b

|v4| Ψ(−v4) + e
iz2 a−b

|v4| Ψ(−v) − Ψ(v)
}

+ eβu0

[

1 − e−i(z+kv) a−b

|v|

]

×
{[

1 − ei(z+kv) a−b

|v|

]

Ψ(−v) + ei(z+kv) a−b

|v| Ψ(−v3) − Ψ(v)
}

+ η
(

v2 −
2

m
u1

)

{[

1 − e
i(z−kv4) a−b

|v4|

][

1 + e
i(z−kv2) 2b

|v2| e
i(z−kv4) a−b

|v4|

]

Ψ(v4)

+
[

1 − e
i(z+kv2) 2b

|v2|

]

e
i(z−kv4) a−b

|v4| Ψ(v4)

−
[

1 − e
i(z−kv4)2 a−b

|v4| e
i(z−kv2) 2b

|v2
|
]

Ψ(v)
}

+ eβu0

[

1 − ei(z−kv) a−b

|v|

]{[

1 − e
i(z−kv1) 2b

|v1|

]

Ψ(v1)

+ e
i(z−kv1) 2b

|v1| ei(z−kv) a−b

|v| Ψ(v3)

+
([

1 − ei(z−kv) a−b

|v|

]

e
i(z−kv1) 2b

|v1| − 1
)

Ψ(v)
} ]For k, z → 0, it is for the long waves and low frequen
ies, the s
attering operatorof our KE 
hanges to the Boltzmann operator

GΨ((v) =
N

L
|v| [Ψ(−v) − Ψ(v)] . (12)Our s
attering operator takes also the form of the Boltzmann operator for su�-
iently high velo
ity v, if the time of 
ollision of light partile with heavy parti
leof 
rystal 
an be negle
ted.From mathemati
al point of view, we see that our KE generates an in�nitesequen
e of fun
tional equations. Its solution is a problem for the next publi
ation.
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it forms of the s
attering operator for di�erentforms of potential, for whi
h some exa
t solutions 
an be found. For k = 0 and
z = 0 operator redu
es to the Boltzmann s
attering operator. Thus our approa
henlarges the possibility of des
ription of di�usion for the 
ase when time of parti
le
ollisions is not negligeable. The KE for light parti
le di�usion in one-dimensionalLorentz gas was also derived. The solution of this KE will be dis
ussed later.The 
ommon feature of the obtained kineti
 equations is that they link thevalues of the probability density Fourier-Lapla
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