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Abstract. Analytical solutions to a special class of Riemann—Hilbert bound-
ary value problems on multiply connected domains are presented. The so-
lutions are expressed, up to a finite number of accessory parameters, as
non-singular indefinite integrals whose integrands are expressed in terms of
the Schottky—Klein prime function associated with the Schottky double of
the planar domain.

1. A class of Riemann-Hilbert problems

The subject of this paper is a special class of Riemann-Hilbert problems (RH
problems) on multiply connected planar domains. The study of general RH prob-
lems is a classical subject and discussions of it can be found in standard mono-
graphs on boundary value problems [9], [18], [13]. A solution of the general
(Riemann)—-Hilbert boundary value problem has been found, using successive it-
eration methods, by Mityushev [14]. Here we restrict attention to a special (but
important) subclass of the same RH problems and find an analytical expression
for the solutions, up to a finite set of accessory parameters, in terms of a transcen-
dental function known as the Schottky—Klein prime function [3] associated with
the multiply connected domain.

We define a circular domain D¢ in a complex parametric (-plane to be a domain
whose boundaries are all circles. Let D¢ be the M +1 connected circular domain in
a (-plane consisting of the unit disc with M smaller discs excised from its interior.
The outer boundary of D¢ is the unit circle which we label Cy. Label the M inner
boundary circles of D¢ as Cy,...,Cy. For k = 0,1,..., M let the centre and
radius of Cj be 0 and gj respectively.

Consider the Riemann—Hilbert problem for the function w(¢):

Re[Mw(()] =di  onCy, k=0,1,..., M, (1)

where {\, € C| |M\x| =1, k=0,1,..., M} is a set of complex constants with unit
modulus and {dy € R| k =0,1,...,M} is a set of real constants. We solve for
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w(C) satistying (1) that is analytic, but not necessarily single-valued, in D, except
for a simple pole, with known residue, at some point ¢ = 3 strictly inside D.

Circular domains are a canonical class of planar domains because every planar
domain is conformally equivalent to some circular domain [10]. Because of this,
and because the class of RH problems (1) is conformally invariant, it means that
the solution scheme which follows is rather general. It applies, up to conformal
mapping from the canonical class of circular domains, to any multiply connected
planar region.

Problem (1) is a generalization of the classical Schwarz problem [9], [18], [13],
a case of which is retrieved on making the choice, for example, that A\, = 1
for all kK = 0,1,..., M in (1). This paper produces an analytical expression for
the solution of (1) when the constants {\; € C| k = 0,1,..., M} are generally
distinct. The solution is expressed as a non-singular, indefinite integral whose
integrand is written in terms of the Schottky—Klein prime function [3] associated
with D¢. This integrand depends on a finite set of accessory parameters that
can, in principle, be determined (for example, numerically) from the given data
{)\kadk 6(C| kZO,l,...,M}.

The special form of RH problem (1) has been considered by other authors.
Vekua [18] shows that, if it exists, the solution of the RH problem (1) is unique [18].
Wegmann & Nasser [19] study the doubly connected case M =1 of (1) in a recent
paper on numerical solutions of RH problems on multiply connected regions using
integral equations based on the generalized Neumann kernel.

The class of RH problems appears in a variety of applications, especially in
the more general (discontinuous) case when the value of the constant )\, assumes
different values on different segments of the circle C (the methods of this paper,
presented for the continuous problem, can be generalized to this case). One of
the more important applications is to free streamline theory in hydrodynamics.
There, in the study of jets and cavities, it is traditional to study a function known
as the Joukowski function [11], often written as

Q(¢) = log (Viodi‘;()) |

where z = z+1iy, Vj is a constant scaling factor and w(z) is an analytic function in
the flow region (known as the complex velocity potential). On any solid boundaries
in contact with the fluid, the imaginary part of (¢) is constant; on any free
streamlines, owing to the constancy of pressure in a cavity region on one side
of the free streamline and Bernoulli’s theorem, it is the real part of Q(¢) that
is constant. Since a single streamline in a real flow can, in part, be in contact
with a solid boundary and then separate into a free streamline bounding a cavity,
Q(¢) turns out to satisfy a (discontinuous) Riemann—Hilbert problem of precisely
the form (1). In the simply connected situation, Schwarz—Christoffel methods
have proved to be very useful in problems of this kind [11]. Interestingly, there
has been recent interest [2] in developing this nonlinear theory to flows involving
multiple body-cavity systems. The theory presented here, for multiply connected
situations, should find application in such studies.
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2. Function theory

The investigation we now present borrows ideas from prior work by the author
[5], [6] in which new analytical formulae for the Schwarz—Christoffel mappings
to bounded and unbounded polygonal domains were constructed. Although this
viewpoint is not the one taken in [5], [6], such Schwarz—Christoffel mappings can be
viewed as satisfying a RH problem on a multiply connected domain of exactly the
form (1). Here, the same constructive method is exploited to find explicit repre-
sentations of the solution of broader classes of RH problems in multiply connected
domains.

In this paper, for ease of exposition, we focus on the continuous case where
the constant A\, assumes the same value at all points on the circle Cj (in the
discontinuous analogue, which is more akin to the usual Schwarz—Christoffel prob-
lem, the value of this constant is allowed to be different on different segments of
Ck). A consequence of this assumption is that we effectively do not allow any
branch point singularities of w(¢) on any of the circles {C;| j = 0,1,...,M}.
The method, however, can be readily generalized to the case where branch points
are present.

We now construct some special functions associated with D¢. First, for k£ =
0,1,..., M, define the M6bius transformation ¢ (¢) by

2

G =0+~ k=0,1,...,M. 2)
¢ —0k
It is straightforward to check that for ¢ on circle Cy,
o(C) = ¢

We define the reflection of a point ¢ in the circle Cy by ¢%(¢). Then, for k =
1,..., M, introduce the Mdbius transformation 6y (¢) defined by

0u(Q) = 6e(C ). k=10 3)
It follows from (3) and (2) that
2
0,(C) = o1 + lfkg_kc, k=1,..., M.

For k =1,...,M, let C}, denote the reflection of Cj in Cy. It can be shown that
01 (¢) maps C, onto Cj.

Let © denote the set of all compositions of the maps {6;(¢)| k=1,..., M} and
their inverses. It is an example of an infinite Schottky group. Further information
on Schottky groups can be found in [3], [4]. We refer to the maps {0x(C)| k =
1,..., M}, together with their inverses, as the generators of ©. A fundamental
region of © is a connected region whose images under all maps in © tessellate the
whole of the plane. Consider the region consisting of D¢ and its reflection in Cy,
i.e., the 2M-connected region bounded by {Cj,C} | k = 1,...,M}. Label this
region as F'. I is a fundamental region of ©.
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Associated with © are M functions known as integrals of the first kind which
we denote {vg(¢)| k=1,..., M}. These are analytic, but not single-valued, in F'.
Indeed, for j,k=1,..., M we have

[wk(Ole; = =vr(Qler = Gk, (4)

where [vr(¢)]c, and [Uk(C)]c; denote respectively the changes in vk (¢) on travers-
ing C; and OJ’» with the interior of F' on the right, and 6, denotes the Kronecker
delta function. Furthermore, for j,k=1,..., M,

v(05(¢)) — vk(C) = Tk (5)
for some {7;x | j,k =1,..., M} which are constants, i.e., independent of ¢. The
functions {vi(¢)| k=1,..., M} are uniquely determined (up to an additive con-

stant) by their periods given by (4) and (5).

2.1. The Schottky—Klein prime function

Let « be some arbitrary point in F'. It is established in [12] that there exists
a unique function X (¢, «) defined by the properties:

(i) X(¢, ) is single-valued and analytic in F.

X (¢, @) has a second-order zero at each of the points 6(«), 6 € ©.

(i)
(iii) limeq ()é“;;g =1.
)

(iv) Fork=1,....M

)

0x (<)
g

The Schottky—Klein prime function (henceforth referred to as S—K prime function),
which we denote w((, «), is defined as

w(C,a) = (X(¢ )"/,

where the branch of the square root is chosen so that w({, a) behaves like ({ — «)
as ¢ — a.

There are two known ways to evaluate the S—K prime function. One possibility
is to use a classical infinite product formula for it as recorded, for example, in
Baker [3]. It is given by

e 1T B0 — ) ale) )
w6 == G =0m@ —ar ©

where the product is over all compositions of the basic maps {6,,6 ; 1| j =
1,..., M} excluding the identity and all inverse maps. This product, even if it
is convergent, can converge so slowly and require such a large number of terms
in the product, that its use in many circumstances is impractical. An alternative
numerical scheme has recently been put forward by Crowdy & Marshall [8]; it is
much more computationally efficient than methods based on the infinite product
(6) over the Schottky group.

X(04(¢),0) = exp (~2i(201(C) — 200() + i) &

X (¢, ).
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3. The circular slit domain

To proceed with the construction, we introduce an intermediate 7-plane. Con-
sider a conformal mapping, denoted 7((; @), taking the multiply connected circu-
lar domain D¢ to a conformally equivalent circular slit domain called D,,. « is
the point in D¢ mapping to n = 0 in D,, ie., n(e;a) = 0. Figure 1 shows
a schematic in a triply connected case. Let the image of Cy under this map-
ping be the unit circle in the n-plane which will be called Ly. The M circles
{C;| 7=1,...,M} will be taken to have circular-slit images, centred on n = 0,
and labelled {L;| j=1,...,M}. Let the circular arc L; be characterized by the
conditions

il =r;,  argln] € o7, 05,
There will be two pre-image points on the circle C; corresponding to the two end-

points of the circular-slit L;. These two pre-image points, labelled *yfj ) and *yéj ),
satisfy the conditions

; - (F) :

N5 a) = rjei”, nc(\?, ) =0,
j o) ;

N5 a) = e () = 0.

These two zeros of 1¢(¢) on C; are simple zeros.

{-plane n-plane
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 1: A typical circular slit mapping from a triply connected circular region
D¢ in a ¢-plane to a triply connected circular slit domain D, in a 7-plane.

It is shown in [5] and [7] that an explicit expression for the conformal slit
mapping from D¢ to D,, can be found in terms of the S-K prime function of D¢.
It is given by

n(¢a) = w(,0)

alw(¢a™h)’

Formula (7) will be crucial in the solution scheme to follow.

(7)



[10] Darren Crowdy

4. Solution scheme

The required function w(¢) is analytic in D¢. One can also consider the com-
posed function W (n), analytic in D,,, defined by

W(n(¢ o)) = w(().
The boundary conditions (1), expressed in terms of this new function W (n), are
Re [ M W(n)] =de  on Ly, k=0,1,..., M.

These can be rewritten in the form

A W(n) + MW (n) = 2dy on Ly, k=0,1,..., M,

1

or, on use of the fact that 7 =rin~! on L,

N W)+ MW (rgn )y =2d,  on Ly, k=0,1,..., M. (8)

Using W’ (n) to denote the derivative of W with respect to its argument, differen-
tiation of (8) with respect to n gives

—_ 2 [—
Ak W’(n)—;—g)\kW/(rinfl) =0 onLg k=0,1,...,M,

which can be rewritten as

nW'(n) _ e

U -2k onLy k=0,1,..., M.
nW'(n) Ak

This is a statement of the fact that the argument of nWW'(n) is constant on L.
Let us now suppose that we seek a solution for which there are precisely two

zeros of the derivative dw/d¢ on each of the boundary components {C;| j =

0,1,...,M}. Let the positions of the two zeros on C; be at points a; and ¢;, i.e.,

dw dw
d_C(aj) =0= d_((cj)'

These zero positions will not be known a priori but will enter our representation
of the solution as accessory parameters.

4.1. Building block functions

A set of “building block” functions will be used to construct the required solu-
tions. Their characterizing feature is that they all have constant argument on the
boundary circles {C;| j = 0,1,...,M}. These functions were introduced in |5]
and their properties established there.

It is shown in [5] that functions of the form

w(<7 Cl)

R1(¢5¢1,G) = DG’
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where (7 and (2 are any two points on the same circle Cy, (for k =0, 1,..., M) has
constant argument on each of the boundary circles {C;| j =0,1,...,M}. Also,
functions of the form

Ro((i (1, o) = Y66 ) (10)

w(<7<2)w(<7<2 )
where (1 and (s are any two ordinary points of the Schottky group (these points
need not be points on the boundary circles) similarly have constant argument on
each of the boundary circles {C;| j =0,1,...,M}.
Let 79 be some point on Cy that is distinct from ag and ¢g. Consider the
function

R1(¢; a0, 70)R1(¢; co,v0) Ra(C; 70, B)Ra (G o, B)

M 1) @) (11)
< [T R(Gs ar, v ) Ra (G5 en,m.7)-
k=1

First, since it is a product of the building block functions just introduced, the
function in (11) has constant argument on the circles {C;| j =0,1,...,M}. As
for its singularities, it is a meromorphic function in D¢ with a second order pole at
¢ =7 (and at Bil), simple poles at the points {7121)771(92) | k=1,..., M}, simple
zeros at ( = « and @ ! and simple zeros at the points {ax,cx | k=0,1,..., M}.
It has no other singularities in D¢. Let the function (11), considered now as
a function of 7, be called U (n).

Now cousider the function nW'(n) which, we have already established, must

have constant argument on the circles {C;| j = 0,1,...,M}. By the chain rule
we have
dw/d¢
nW'(n) =n :
) dn/d¢

This function is analytic everywhere in D, except for simple poles at the zeros
of dn/d¢, i.e., at the points {*y,(cl),”y](f) | k=1,...,M}. It also has second order

poles at ( = § and B_l. It has a simple zero at ( = « since 7((; «) has a sim-
ple zero there and, as can be seen after making use of (7), it also has a simple
zero at @ !. By assumption, it also has 2(M + 1) simples zeros at the points
{ag,cx | k=0,1,...,M}. In short, it has all the same zeros and poles in D; as
the function U (7).

We are thus led to consider the ratio

_ nW'(n)
Vn) = e

in the domain D,. Since we know that U(n) and nW’(n) have the same poles
and zeros inside and on the boundaries of D¢, the function V() can be deduced
to be analytic everywhere in the domain D,), as well as on its boundaries. This
means that V(n) is analytic everywhere in |n| < 1. Moreover, it is known that the
arguments of both U(n) and nW’'(n) are constant on Ly. Thus,

V(n) =eV(n) on Lo,
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for some constant € implying that
Vin ™) =eV(n) on Ly.

This equation furnishes the analytic continuation of V(n) into |n| > 1 and, in
particular, shows that it is analytic there (and bounded at infinity). Since V() is
analytic everywhere in the complex 7-plane, and bounded as 7 — oo, Liouville’s
theorem implies V' (n) = B, where B is some complex constant.

On use of (9) and (10), and after some cancellations, we deduce that

dw () BS(Ga
= w C,(l C?C )7
A (¢, B2, 6 H S

where

B w<<,a-1>w<<<7a>—w<<,a>w<<<,a—l>>
SC,O{ = 1 5 .
(i ( [T, (G ()

Hence, the required solution can be written as the indefinite integral

¢ M
S(C/;Oz) / / /
w(()=A+B — w(¢’sag)w(¢’s ex) dd, (12)
1/ T T L S

where A is some complex constant. Formula (12) is the main result of this paper.

It is demonstrated in the appendix that for any two distinct choices of «;
and ag, S((;a1) = CS((;az), where C is some constant (independent of ().
This means that making different choices of « in the representation (12) simply
corresponds to making a different choice of the constant B.

5. The doubly connected case

As verification we consider two problems in the doubly connected case. Let
D¢ to be the concentric annulus p < |¢| < 1 for some real p. Any doubly con-
nected domain is conformally equivalent to some such annulus. The solutions to
the following two problems can, it turns out, be found in analytical form using
alternative arguments which allows us to check our analysis.

PROBLEM 1
We specialize to the case where \j = A\ = 1 with ¢g = 0. The problem is then the
classical Schwarz problem. One form of the solution is

U
w(C) = 5" Alog ¢+ I(¢), (13)

where A is a constant and the single-valued function I (¢) can be written in terms
of the classical Villat formula [1]:

10=55 § S a-2r0s0, ))[ e[gﬁ

3 +A10g§”
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1 ¢’ , U -
=] (2= 2K (/¢ ) |1 e | - + Ao |
where
K(¢.p) = SEs) (19
and
P¢,p) == JJa-p* 00— p¢H. (15)
k=1

Alternatively, the same solution can be written in the form

w(¢) = % (KB, p) + K(CB,p)) + ClogC + D,

where

C= 10;) (Cl - % (K(pB~ Y, p)+ K(pB,p) = K(B~',p) — K(B,p))>

and
D= —% (KB~ p)+K(@B.p)).

The new solution method given earlier provides a third representation of the
same solution:

w(()
(16)

o S(C/;Oz) / / / / /
—4+B / e G (e

where, in this doubly connected case, it can be shown (see [5] for details) that

S(¢a) x CLQ

To check (16) we use the solution (13) to numerically compute (using Newton’s
method) the two points on Cy at which dw/d¢ = 0. These are substituted into
(16) as the values of ag and c¢p. Similarly, we find the two points on C; at which
dw/d¢ = 0 and take these as the values of a; and c¢;. Next, we set A = w(1),
where the right hand side is computed using the known solution (13). We also
fix B by ensuring that

w(p) = A+ B/ 5(¢)

(C/ 6)2 (C/ B—l W(C/uaO)w(ClaCO)W(C/,al)w(C/7cl)d</,
1 wiss wi&

)2
where the left hand side of this equation is evaluated using the known solution

(13). With all the parameters in (16) now determined, we check the value of the
integral (16) against the values given by (13) for different (arbitrary) choices of ¢ in
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the annulus (the integral (16) is computed using the trapezoidal rule). The values
are found to be in agreement (to within the accuracy of the numerical method)
thereby confirming that (16) is indeed a representation of the required solution.

ProsBLEM 2

We now specialize to the case where \g =1, A\ = ¢ with no restrictions on dg
and d;. This is no longer a classical Schwarz problem so the Villat formula cannot
be used here. An analytical formula for the solution can, however, be found:

= % [K(¢B7,p%) = K(CB,p°) — K(CB™1p 2, p%) + K(CBp~ 2, p7)]

+doy + 1d,

im/2

w(©) -

where the special function defined in (14) again appears. A derivation of (17) is
given in appendix B. In a manner akin to that used in Problem 1, the expression
(17) was used to find the locations of the zeros of dw/d¢ on both Cy and C; (there
are two on each circle). These are then used as the values of ag, co, a1 and ¢ in
an expression of the form (16). The values of A and B are determined in the same
way as in Problem 1 and the values of the integral (16) for arbitrary values of ¢
checked against the values given by (17). They are found to be in agreement.

6. Discussion

This paper describes a constructive method for finding solutions to Riemann—
Hilbert problems of the special form (1) on multiply connected domains. The
solution having two zeros of the derivative on each of the boundary circles is
given in (12) as a non-singular indefinite integral containing a finite set of acces-
sory parameters. In general, these parameters must be determined from a set
of equations obtained by substituting the form (12) into the boundary condi-
tions (1). In other words, given the 2M + 2 real parameters associated with the
set {\g,di| k=0,1,..., M} it is possible to determine the 2M + 2 real parame-
ters associated with the set of zeros {ay,cr | K =0,1,..., M}. How to determine
these accessory parameters numerically in an efficient manner remains a subject
for future research.

In principle, it is possible to extend the constructive method herein to find rep-
resentations to solutions of the discontinuous analogues of the special RH problems
considered here where the constant \j is allowed to assume different piecewise con-
stant values on different segments of circle Cj. In such cases, one must generally
introduce branch point singularities in the derivative w¢(¢) but this just requires
the incorporation of appropriate non-integer powers of the building block functions
when performing the construction described herein. It is very similar to what is
done in constructing multiply connected Schwarz—Christoffel formulae [5], [6].
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A. The function S(¢; o)

In this appendix we establish the fact that S(¢; 1) = CS((; a2), where C' is
some constant (independent of ¢). To this end, consider the ratio
S(¢ o)

S(¢ )’

where o and ag are two distinct values in D¢. First, notice that S((;«1) can be
rewritten in the form

) = (@elGan) weGar ) w(G aw(Car )
SlGen) <W(<=0‘1) w(¢ar ™) > Hﬁlw(c,vél))w(c,'y,iz)),

where {”y,(cl), *y,(f) | k=1,..., M} are the zeros of the slit map 7({; aq). Similarly

(@G wlCm ) wlGane(ar)
S(Ca 2) <(AJ(<,O(2) W(C,O&Q ) > Hk 1(.()(< ~(1)) (C,;?I(f)), (20)
(1) ~(2)| b —

where {7,,% ..., M} are the zeros of the slit map n(¢; ). It is also
easy to check that, for j =1,2,

R(() = (18)

(19)

WC(Caaj) WC(Cva_J_l) nC(Cvaj)

w(Gay)  w(CamTh)  nGaey)

Next, observe that on C; (and for any ),

(¢ a)n(Ca) =13,

where 7; is some real constant. A differentiation with respect to ¢ yields

e~ () (i)

It follows that the ratio of any two such functions, that is,

1¢(G ) /n(C an)
1¢(G az) /(G5 az)
will be real (and, in particular, have constant argument) on all the circles {C; | j =
0,1,...,M}.
Substitution of (19) and (20) into (18) then produces

T(¢) =

R(¢) = T({)Ra(Cs o, 2) HRlc W ARG AP).

=1
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The important observation is that this is a product of functions that all have

constant argument on the circles {C;| 7 =0,1,...,M}. These conditions can be
written as

R(C) = w;R(C)  onCj, j=0,1,..., M, (21)
for some set of complex constants {x;| j = 0,1,...,M}. R({) can be shown to

be a constant. One way to do this is to use arguments similar to those used in
§4.1. to show that V() is constant, but it is instructive to present an alternative
argument based on RH methods. The function R(¢) is known to be analytic and
single-valued everywhere in the fundamental region of the group ©. Consider the
real part of equation (21); it can be written in the standard form of a RH problem:

Re[m; R(C)] =0 onCj, j=0,1,..., M, (22)

for some set of complex constants {u;| j = 0,1,...,M}. The (homogeneous)
Riemann-Hilbert problem (22) has been well studied and it is known (see, for
example, p. 257 of Vekua [18]) that it admits no solution for R(¢) unless all the
constants {y;| j = 0,1,..., M} are identical. In this case, the unique solution
is R(¢) = C, where C is a constant. Thus, we have established that S({;a1) =
C'S(C; az) for some constant C' that is independent of .

B. Derivation of (17)
To find solution (17), consider the following boundary value problem for w(¢):

Re[w()]
Im[w(C)]

=0 on [¢| =1,
=0 onl¢|=p
These imply that
w(¢)+@(¢") =0 on|¢|=1,
w(¢) =wW(p*¢1) =0 on|¢]=p.
The relations (23) can be analytically continued off the respective circles and imply
that w(¢) satisfies the functional relation

w(p'¢) = w(C). (24)

Now P((, p) can be shown, directly from its definition (15), to satisfy the functional
relations

(23)

P p)=—CTTP(Cp), P(p*Cp) =—CTP(C,p),

from which it also follows that

K(<717p):1—K(<,p), K(pQCap):K(Cap)_l

Furthermore, near ( =1, K((, p) has a simple pole with unit residue, i.e.,

1
K(¢p) = Cj + analytic.
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We can therefore use K (¢, p?) to construct a function w(({) satisfying (24) and
having a simple pole at { = 3. The relations (23) imply that w(¢) also has simple
poles at ¢ = 371, p?3, p?3~! (and at all points equivalent to these under ¢ — p*().
The required form of solution can now easily be deduced to be that given in (17).

References

1]
2]
13l
4]
[5]
[6]
7]
18]
19]
[10]

[11]
[12]

[13]

[14]

[15]
[16]

[17]

[18]

N.I. Akhiezer, Elements of the theory of elliptical functions, AMS Translations of
Mathematical Monographs, Providence, RI, 1990.

Y. Antipov, V.V. Silvestrov, Method of Riemann surfaces in the study of super-
cavitating flow around two hydrofoils in a channel, Physica D. 235 (2007), 72-81.

H.F. Baker, Abelian functions: Abel’s theorem and the allied theory of theta func-
tions, Cambridge University Press, 1897.

AF. Beardon, A primer on Riemann surfaces, London Mathematical Society
Lecture Note Series 78, Cambridge University Press, 1984.

D.G. Crowdy, The Schwarz—Christoffel mapping to bounded multiply connected
polygonal domains, Proc. Roy. Soc. A. 461 (2005), 2653-2678.

D.G. Crowdy, Schwarz—Christoffel mappings to unbounded multiply connected
polygonal regions, Math. Proc. Camb. Phil. Soc. 142 (2007), 319-339.

D.G. Crowdy, J.S. Marshall, Conformal mappings between canonical multiply con-
nected domains, Comput. Methods Funct. Theory 6 (2006), 59-76.

D.G. Crowdy, J.S. Marshall, Computing the Schottky—Klein prime function on the
Schottky double of planar domains, Comput. Methods Funct. Theory 7 (2007),
293-308.

F.D. Gakhov, Boundary value problems, Dover, New York, 1990.

G.M. Goluzin, Geometric theory of functions of a complex variable, Amer. Math.
Soc., Providence, RI, 1969.

M.I. Gurevich, Theory of jets in ideal fluids, Academic Press, New York, 1965.

D.A. Hejhal, Theta functions, kernel functions and Abelian integrals, Mem. Amer.
Math. Soc. 129 (1972).

V.V. Mityushev, S.V. Rogosin, Constructive methods for linear and nonlinear
boundary value problems, Monographs & Surveys in Pure & Applied Mathematics,
Chapman & Hall/CRC, 1999.

V.V. Mityushev, Solution of the Hilbert boundary value problem for a multiply
connected domain, Slup. Prace Mat. Przyr. Mat. Fiz. 9A (1994), 37-69.

Z. Nehari, Conformal mapping, Dover, New York, 1952.

M. Schiffer, Recent advances in the theory of conformal mappings, appendix to:
R. Courant, Dirichlet’s principle, conformal mapping and minimal surfaces, Pure
and Applied Mathematics. A Series of Text and Monographs III, Interscience
Publishers, New York, 1950.

S. Tanveer, New solutions for steady bubbles in a Hele-Shaw cell, Phys. Fluids 30
(1987), 651-658.

LN. Vekua, Generalized analytic functions, Pergamon Press, New York, 1962.



[18] Darren Crowdy

[19] R. Wegmann, M.M.S. Nasser, The Riemann—Hilbert problem and the general-
ized Neumann kernel on multiply connected regions, J. Comput. Appl. Math. 214
(2008), 36-57.

Department of Mathematics
Imperial College London

180 Queen’s Gate

London, SW7 2AZ

United Kingdom

E-mail: d.crowdy@imperial.ac.uk

Received: 2 July 2008; final version: 17 December 2008;
available online: 9 April 2009.



