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Darren CrowdyExpliit solution of a lass of Riemann�HilbertproblemsAbstrat. Analytial solutions to a speial lass of Riemann�Hilbert bound-ary value problems on multiply onneted domains are presented. The so-lutions are expressed, up to a �nite number of aessory parameters, asnon-singular inde�nite integrals whose integrands are expressed in terms ofthe Shottky�Klein prime funtion assoiated with the Shottky double ofthe planar domain.1. A lass of Riemann�Hilbert problemsThe subjet of this paper is a speial lass of Riemann�Hilbert problems (RHproblems) on multiply onneted planar domains. The study of general RH prob-lems is a lassial subjet and disussions of it an be found in standard mono-graphs on boundary value problems [9℄, [18℄, [13℄. A solution of the general(Riemann)�Hilbert boundary value problem has been found, using suessive it-eration methods, by Mityushev [14℄. Here we restrit attention to a speial (butimportant) sublass of the same RH problems and �nd an analytial expressionfor the solutions, up to a �nite set of aessory parameters, in terms of a transen-dental funtion known as the Shottky�Klein prime funtion [3℄ assoiated withthe multiply onneted domain.We de�ne a irular domain Dζ in a omplex parametri ζ-plane to be a domainwhose boundaries are all irles. Let Dζ be the M +1 onneted irular domain ina ζ-plane onsisting of the unit dis with M smaller diss exised from its interior.The outer boundary of Dζ is the unit irle whih we label C0. Label the M innerboundary irles of Dζ as C1, . . . , CM . For k = 0, 1, . . . , M let the entre andradius of Ck be δk and qk respetively.Consider the Riemann�Hilbert problem for the funtion w(ζ):

Re
[

λk w(ζ)
]

= dk on Ck, k = 0, 1, . . . , M, (1)where {λk ∈ C | |λk| = 1, k = 0, 1, . . . , M} is a set of omplex onstants with unitmodulus and {dk ∈ R | k = 0, 1, . . . , M} is a set of real onstants. We solve forAMS (2000) Subjet Classi�ation: 30C20, 30E25, 35F15.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[6℄ Darren Crowdy
w(ζ) satisfying (1) that is analyti, but not neessarily single-valued, in Dζ exeptfor a simple pole, with known residue, at some point ζ = β stritly inside Dζ .Cirular domains are a anonial lass of planar domains beause every planardomain is onformally equivalent to some irular domain [10℄. Beause of this,and beause the lass of RH problems (1) is onformally invariant, it means thatthe solution sheme whih follows is rather general. It applies, up to onformalmapping from the anonial lass of irular domains, to any multiply onnetedplanar region.Problem (1) is a generalization of the lassial Shwarz problem [9℄, [18℄, [13℄,a ase of whih is retrieved on making the hoie, for example, that λk = 1for all k = 0, 1, . . . , M in (1). This paper produes an analytial expression forthe solution of (1) when the onstants {λk ∈ C | k = 0, 1, . . . , M} are generallydistint. The solution is expressed as a non-singular, inde�nite integral whoseintegrand is written in terms of the Shottky�Klein prime funtion [3℄ assoiatedwith Dζ . This integrand depends on a �nite set of aessory parameters thatan, in priniple, be determined (for example, numerially) from the given data
{λk, dk ∈ C | k = 0, 1, . . . , M}.The speial form of RH problem (1) has been onsidered by other authors.Vekua [18℄ shows that, if it exists, the solution of the RH problem (1) is unique [18℄.Wegmann & Nasser [19℄ study the doubly onneted ase M = 1 of (1) in a reentpaper on numerial solutions of RH problems on multiply onneted regions usingintegral equations based on the generalized Neumann kernel.The lass of RH problems appears in a variety of appliations, espeially inthe more general (disontinuous) ase when the value of the onstant λk assumesdi�erent values on di�erent segments of the irle Ck (the methods of this paper,presented for the ontinuous problem, an be generalized to this ase). One ofthe more important appliations is to free streamline theory in hydrodynamis.There, in the study of jets and avities, it is traditional to study a funtion knownas the Joukowski funtion [11℄, often written as

Ω(ζ) ≡ log

(

1

V0

dw(z)

dz

)

,where z = x+iy, V0 is a onstant saling fator and w(z) is an analyti funtion inthe �ow region (known as the omplex veloity potential). On any solid boundariesin ontat with the �uid, the imaginary part of Ω(ζ) is onstant; on any freestreamlines, owing to the onstany of pressure in a avity region on one sideof the free streamline and Bernoulli's theorem, it is the real part of Ω(ζ) thatis onstant. Sine a single streamline in a real �ow an, in part, be in ontatwith a solid boundary and then separate into a free streamline bounding a avity,
Ω(ζ) turns out to satisfy a (disontinuous) Riemann�Hilbert problem of preiselythe form (1). In the simply onneted situation, Shwarz�Christo�el methodshave proved to be very useful in problems of this kind [11℄. Interestingly, therehas been reent interest [2℄ in developing this nonlinear theory to �ows involvingmultiple body-avity systems. The theory presented here, for multiply onnetedsituations, should �nd appliation in suh studies.



Expliit solution of a lass of Riemann�Hilbert problems [7℄2. Funtion theoryThe investigation we now present borrows ideas from prior work by the author[5℄, [6℄ in whih new analytial formulae for the Shwarz�Christo�el mappingsto bounded and unbounded polygonal domains were onstruted. Although thisviewpoint is not the one taken in [5℄, [6℄, suh Shwarz�Christo�el mappings an beviewed as satisfying a RH problem on a multiply onneted domain of exatly theform (1). Here, the same onstrutive method is exploited to �nd expliit repre-sentations of the solution of broader lasses of RH problems in multiply onneteddomains.In this paper, for ease of exposition, we fous on the ontinuous ase wherethe onstant λk assumes the same value at all points on the irle Ck (in thedisontinuous analogue, whih is more akin to the usual Shwarz�Christo�el prob-lem, the value of this onstant is allowed to be di�erent on di�erent segments of
Ck). A onsequene of this assumption is that we e�etively do not allow anybranh point singularities of w(ζ) on any of the irles {Cj | j = 0, 1, . . . , M}.The method, however, an be readily generalized to the ase where branh pointsare present.We now onstrut some speial funtions assoiated with Dζ . First, for k =
0, 1, . . . , M , de�ne the Möbius transformation φk(ζ) by

φk(ζ) = δk +
q2
k

ζ − δk
, k = 0, 1, . . . , M. (2)It is straightforward to hek that for ζ on irle Ck,

φk(ζ) = ζ.We de�ne the re�etion of a point ζ in the irle Ck by φk(ζ). Then, for k =
1, . . . , M , introdue the Möbius transformation θk(ζ) de�ned by

θk(ζ) = φk

(

ζ
−1)

, k = 1, . . . , M. (3)It follows from (3) and (2) that
θk(ζ) = δk +

q2
kζ

1 − δkζ
, k = 1, . . . , M.For k = 1, . . . , M , let C′

k denote the re�etion of Ck in C0. It an be shown that
θk(ζ) maps C′

k onto Ck.Let Θ denote the set of all ompositions of the maps {θk(ζ) | k = 1, . . . , M} andtheir inverses. It is an example of an in�nite Shottky group. Further informationon Shottky groups an be found in [3℄, [4℄. We refer to the maps {θk(ζ) | k =
1, . . . , M}, together with their inverses, as the generators of Θ. A fundamentalregion of Θ is a onneted region whose images under all maps in Θ tessellate thewhole of the plane. Consider the region onsisting of Dζ and its re�etion in C0,i.e., the 2M -onneted region bounded by {Ck, C′

k | k = 1, . . . , M}. Label thisregion as F . F is a fundamental region of Θ.



[8℄ Darren CrowdyAssoiated with Θ are M funtions known as integrals of the �rst kind whihwe denote {υk(ζ) | k = 1, . . . , M}. These are analyti, but not single-valued, in F .Indeed, for j, k = 1, . . . , M we have
[υk(ζ)]Cj

= −[υk(ζ)]C′

j
= δjk, (4)where [υk(ζ)]Cj

and [υk(ζ)]C′

j
denote respetively the hanges in υk(ζ) on travers-ing Cj and C′

j with the interior of F on the right, and δjk denotes the Kronekerdelta funtion. Furthermore, for j, k = 1, . . . , M ,
υk(θj(ζ)) − υk(ζ) = τjk (5)for some {τjk | j, k = 1, . . . , M} whih are onstants, i.e., independent of ζ. Thefuntions {υk(ζ) | k = 1, . . . , M} are uniquely determined (up to an additive on-stant) by their periods given by (4) and (5).2.1. The Shottky�Klein prime funtionLet α be some arbitrary point in F . It is established in [12℄ that there existsa unique funtion X(ζ, α) de�ned by the properties:(i) X(ζ, α) is single-valued and analyti in F .(ii) X(ζ, α) has a seond-order zero at eah of the points θ(α), θ ∈ Θ.(iii) limζ→α

X(ζ,α)
(ζ−α)2 = 1.(iv) For k = 1, . . . , M ,

X(θk(ζ), α) = exp (−2πi(2υk(ζ) − 2υk(α) + τkk))
dθk(ζ)

dζ
X(ζ, α).The Shottky�Klein prime funtion (heneforth referred to as S�K prime funtion),whih we denote ω(ζ, α), is de�ned as

ω(ζ, α) = (X(ζ, α))1/2,where the branh of the square root is hosen so that ω(ζ, α) behaves like (ζ − α)as ζ → α.There are two known ways to evaluate the S�K prime funtion. One possibilityis to use a lassial in�nite produt formula for it as reorded, for example, inBaker [3℄. It is given by
ω(ζ, α) = (ζ − α)

∏

θk

(θk(ζ) − α)(θk(α) − ζ)

(θk(ζ) − ζ)(θk(α) − α)
, (6)where the produt is over all ompositions of the basi maps {θj , θ

−1
j | j =

1, . . . , M} exluding the identity and all inverse maps. This produt, even if itis onvergent, an onverge so slowly and require suh a large number of termsin the produt, that its use in many irumstanes is impratial. An alternativenumerial sheme has reently been put forward by Crowdy & Marshall [8℄; it ismuh more omputationally e�ient than methods based on the in�nite produt(6) over the Shottky group.



Expliit solution of a lass of Riemann�Hilbert problems [9℄3. The irular slit domainTo proeed with the onstrution, we introdue an intermediate η-plane. Con-sider a onformal mapping, denoted η(ζ; α), taking the multiply onneted iru-lar domain Dζ to a onformally equivalent irular slit domain alled Dη. α isthe point in Dζ mapping to η = 0 in Dη, i.e., η(α; α) = 0. Figure 1 showsa shemati in a triply onneted ase. Let the image of C0 under this map-ping be the unit irle in the η-plane whih will be alled L0. The M irles
{Cj | j = 1, . . . , M} will be taken to have irular-slit images, entred on η = 0,and labelled {Lj | j = 1, . . . , M}. Let the irular ar Lj be haraterized by theonditions

|η| = rj , arg[η] ∈ [φ
(j)
1 , φ

(j)
2 ].There will be two pre-image points on the irle Cj orresponding to the two end-points of the irular-slit Lj. These two pre-image points, labelled γ

(j)
1 and γ

(j)
2 ,satisfy the onditions

η(γ
(j)
1 ; α) = rje

iφ
(j)
1 , ηζ(γ

(j)
1 , α) = 0,

η(γ
(j)
2 ; α) = rje

iφ
(j)
2 , ηζ(γ

(j)
2 , α) = 0.These two zeros of ηζ(ζ) on Cj are simple zeros.
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Figure 1: A typial irular slit mapping from a triply onneted irular region
Dζ in a ζ-plane to a triply onneted irular slit domain Dη in a η-plane.It is shown in [5℄ and [7℄ that an expliit expression for the onformal slitmapping from Dζ to Dη an be found in terms of the S�K prime funtion of Dζ .It is given by

η(ζ; α) =
ω(ζ, α)

|α|ω(ζ, α−1)
. (7)Formula (7) will be ruial in the solution sheme to follow.



[10℄ Darren Crowdy4. Solution shemeThe required funtion w(ζ) is analyti in Dζ . One an also onsider the om-posed funtion W (η), analyti in Dη, de�ned by
W (η(ζ; α)) ≡ w(ζ).The boundary onditions (1), expressed in terms of this new funtion W (η), are

Re
[

λk W (η)
]

= dk on Lk, k = 0, 1, . . . , M.These an be rewritten in the form
λk W (η) + λkW (η) = 2dk on Lk, k = 0, 1, . . . , M,or, on use of the fat that η = r2

kη−1 on Lk,
λk W (η) + λkW (r2

kη−1) = 2dk on Lk, k = 0, 1, . . . , M. (8)Using W ′(η) to denote the derivative of W with respet to its argument, di�eren-tiation of (8) with respet to η gives
λk W ′(η) −

r2
k

η2
λkW

′
(r2

kη−1) = 0 on Lk, k = 0, 1, . . . , M,whih an be rewritten as
ηW ′(η)

ηW ′(η)
=

λk

λk

on Lk, k = 0, 1, . . . , M.This is a statement of the fat that the argument of ηW ′(η) is onstant on Lk.Let us now suppose that we seek a solution for whih there are preisely twozeros of the derivative dw/dζ on eah of the boundary omponents {Cj | j =
0, 1, . . . , M}. Let the positions of the two zeros on Cj be at points aj and cj , i.e.,

dw

dζ
(aj) = 0 =

dw

dζ
(cj).These zero positions will not be known a priori but will enter our representationof the solution as aessory parameters.4.1. Building blok funtionsA set of �building blok� funtions will be used to onstrut the required solu-tions. Their haraterizing feature is that they all have onstant argument on theboundary irles {Cj | j = 0, 1, . . . , M}. These funtions were introdued in [5℄and their properties established there.It is shown in [5℄ that funtions of the form

R1(ζ; ζ1, ζ2) =
ω(ζ, ζ1)

ω(ζ, ζ2)
, (9)



Expliit solution of a lass of Riemann�Hilbert problems [11℄where ζ1 and ζ2 are any two points on the same irle Ck (for k = 0, 1, . . . , M) hasonstant argument on eah of the boundary irles {Cj | j = 0, 1, . . . , M}. Also,funtions of the form
R2(ζ; ζ1, ζ2) =

ω(ζ, ζ1)ω(ζ, ζ1
−1

)

ω(ζ, ζ2)ω(ζ, ζ2
−1

)
, (10)where ζ1 and ζ2 are any two ordinary points of the Shottky group (these pointsneed not be points on the boundary irles) similarly have onstant argument oneah of the boundary irles {Cj | j = 0, 1, . . . , M}.Let γ0 be some point on C0 that is distint from a0 and c0. Consider thefuntion

R1(ζ; a0, γ0)R1(ζ; c0, γ0)R2(ζ; γ0, β)R2(ζ; α, β)

×
M
∏

k=1

R1(ζ; ak, γ
(1)
k )R1(ζ; ck, γ

(2)
k ).

(11)First, sine it is a produt of the building blok funtions just introdued, thefuntion in (11) has onstant argument on the irles {Cj | j = 0, 1, . . . , M}. Asfor its singularities, it is a meromorphi funtion in Dζ with a seond order pole at
ζ = β (and at β

−1), simple poles at the points {γ(1)
k , γ

(2)
k | k = 1, . . . , M}, simplezeros at ζ = α and α−1 and simple zeros at the points {ak, ck | k = 0, 1, . . . , M}.It has no other singularities in Dζ . Let the funtion (11), onsidered now asa funtion of η, be alled U(η).Now onsider the funtion ηW ′(η) whih, we have already established, musthave onstant argument on the irles {Cj | j = 0, 1, . . . , M}. By the hain rulewe have

ηW ′(η) = η
dw/dζ

dη/dζ
.This funtion is analyti everywhere in Dη exept for simple poles at the zerosof dη/dζ, i.e., at the points {γ

(1)
k , γ

(2)
k | k = 1, . . . , M}. It also has seond orderpoles at ζ = β and β

−1. It has a simple zero at ζ = α sine η(ζ; α) has a sim-ple zero there and, as an be seen after making use of (7), it also has a simplezero at α−1. By assumption, it also has 2(M + 1) simples zeros at the points
{ak, ck | k = 0, 1, . . . , M}. In short, it has all the same zeros and poles in Dζ asthe funtion U(η).We are thus led to onsider the ratio

V (η) ≡
ηW ′(η)

U(η)in the domain Dη. Sine we know that U(η) and ηW ′(η) have the same polesand zeros inside and on the boundaries of Dζ , the funtion V (η) an be deduedto be analyti everywhere in the domain Dη, as well as on its boundaries. Thismeans that V (η) is analyti everywhere in |η| ≤ 1. Moreover, it is known that thearguments of both U(η) and ηW ′(η) are onstant on L0. Thus,
V (η) = ǫV (η) on L0,



[12℄ Darren Crowdyfor some onstant ǫ implying that
V (η−1) = ǫV (η) on L0.This equation furnishes the analyti ontinuation of V (η) into |η| > 1 and, inpartiular, shows that it is analyti there (and bounded at in�nity). Sine V (η) isanalyti everywhere in the omplex η-plane, and bounded as η → ∞, Liouville'stheorem implies V (η) = B, where B is some omplex onstant.On use of (9) and (10), and after some anellations, we dedue that

dw(ζ)

dζ
=

BS(ζ; α)

ω(ζ, β)2ω(ζ, β
−1

)2

M
∏

k=0

ω(ζ, ak)ω(ζ, ck),where
S(ζ; α) ≡

(

ω(ζ, α−1)ωζ(ζ, α) − ω(ζ, α)ωζ(ζ, α−1)
∏M

k=1 ω(ζ, γ
(1)
k )ω(ζ, γ

(2)
k )

)

.Hene, the required solution an be written as the inde�nite integral
w(ζ) = A + B

ζ
∫

1

S(ζ′; α)

ω(ζ′, β)2ω(ζ′, β
−1

)2

M
∏

k=0

ω(ζ′, ak)ω(ζ′, ck) dζ′, (12)where A is some omplex onstant. Formula (12) is the main result of this paper.It is demonstrated in the appendix that for any two distint hoies of α1and α2, S(ζ; α1) = CS(ζ; α2), where C is some onstant (independent of ζ).This means that making di�erent hoies of α in the representation (12) simplyorresponds to making a di�erent hoie of the onstant B.5. The doubly onneted aseAs veri�ation we onsider two problems in the doubly onneted ase. Let
Dζ to be the onentri annulus ρ < |ζ| < 1 for some real ρ. Any doubly on-neted domain is onformally equivalent to some suh annulus. The solutions tothe following two problems an, it turns out, be found in analytial form usingalternative arguments whih allows us to hek our analysis.Problem 1We speialize to the ase where λ0 = λ1 = 1 with c0 = 0. The problem is then thelassial Shwarz problem. One form of the solution is

w(ζ) =
U

ζ − β
+ Ã log ζ + I(ζ), (13)where Ã is a onstant and the single-valued funtion I(ζ) an be written in termsof the lassial Villat formula [1℄:

I(ζ) =
1

2πi

∮

|ζ′|=1

dζ′

ζ′
(1 − 2K(ζ/ζ′, ρ))

[

−Re

[

U

ζ − β
+ Ã log ζ

]]



Expliit solution of a lass of Riemann�Hilbert problems [13℄
−

1

2πi

∮

|ζ′|=ρ

dζ′

ζ′
(2 − 2K(ζ/ζ′, ρ))

[

c1 − Re

[

U

ζ − β
+ Ã log ζ

]]

,where
K(ζ, ρ) ≡

ζPζ(ζ, ρ)

P (ζ, ρ)
(14)and

P (ζ, ρ) ≡ (1 − ζ)

∞
∏

k=1

(1 − ρ2kζ)(1 − ρ2kζ−1). (15)Alternatively, the same solution an be written in the form
w(ζ) =

U

β

(

K(ζβ−1, ρ) + K(ζ β, ρ)
)

+ C log ζ + D,where
C =

1

log ρ

(

c1 −
U

β

(

K(ρβ−1, ρ) + K(ρ β, ρ) − K(β−1, ρ) − K(β, ρ)
)

)and
D = −

U

α

(

K(β−1, ρ) + K(β, ρ)
)

.The new solution method given earlier provides a third representation of thesame solution:
w(ζ)

= A + B

ζ
∫

1

S(ζ′; α)

ω(ζ′, β)2ω(ζ′, β
−1

)2
ω(ζ′, a0)ω(ζ′, c0)ω(ζ′, a1)ω(ζ′, c1) dζ′,

(16)where, in this doubly onneted ase, it an be shown (see [5℄ for details) that
S(ζ; α) ∝

1

ζ2
.To hek (16) we use the solution (13) to numerially ompute (using Newton'smethod) the two points on C0 at whih dw/dζ = 0. These are substituted into(16) as the values of a0 and c0. Similarly, we �nd the two points on C1 at whih

dw/dζ = 0 and take these as the values of a1 and c1. Next, we set A = w(1),where the right hand side is omputed using the known solution (13). We also�x B by ensuring that
w(ρ) = A + B

ρ
∫

1

S(ζ′)

ω(ζ′, β)2ω(ζ′, β
−1

)2
ω(ζ′, a0)ω(ζ′, c0)ω(ζ′, a1)ω(ζ′, c1) dζ′,where the left hand side of this equation is evaluated using the known solution(13). With all the parameters in (16) now determined, we hek the value of theintegral (16) against the values given by (13) for di�erent (arbitrary) hoies of ζ in



[14℄ Darren Crowdythe annulus (the integral (16) is omputed using the trapezoidal rule). The valuesare found to be in agreement (to within the auray of the numerial method)thereby on�rming that (16) is indeed a representation of the required solution.Problem 2We now speialize to the ase where λ0 = 1, λ1 = eiπ/2 with no restritions on d0and d1. This is no longer a lassial Shwarz problem so the Villat formula annotbe used here. An analytial formula for the solution an, however, be found:
w(ζ) =

U

β

[

K(ζβ−1, ρ2) − K(ζβ, ρ2) − K(ζβ−1ρ−2, ρ2) + K(ζβρ−2, ρ2)
]

+ d0 + id1,

(17)where the speial funtion de�ned in (14) again appears. A derivation of (17) isgiven in appendix B. In a manner akin to that used in Problem 1, the expression(17) was used to �nd the loations of the zeros of dw/dζ on both C0 and C1 (thereare two on eah irle). These are then used as the values of a0, c0, a1 and c1 inan expression of the form (16). The values of A and B are determined in the sameway as in Problem 1 and the values of the integral (16) for arbitrary values of ζheked against the values given by (17). They are found to be in agreement.6. DisussionThis paper desribes a onstrutive method for �nding solutions to Riemann�Hilbert problems of the speial form (1) on multiply onneted domains. Thesolution having two zeros of the derivative on eah of the boundary irles isgiven in (12) as a non-singular inde�nite integral ontaining a �nite set of aes-sory parameters. In general, these parameters must be determined from a setof equations obtained by substituting the form (12) into the boundary ondi-tions (1). In other words, given the 2M + 2 real parameters assoiated with theset {λk, dk | k = 0, 1, . . . , M} it is possible to determine the 2M + 2 real parame-ters assoiated with the set of zeros {ak, ck | k = 0, 1, . . . , M}. How to determinethese aessory parameters numerially in an e�ient manner remains a subjetfor future researh.In priniple, it is possible to extend the onstrutive method herein to �nd rep-resentations to solutions of the disontinuous analogues of the speial RH problemsonsidered here where the onstant λk is allowed to assume di�erent pieewise on-stant values on di�erent segments of irle Ck. In suh ases, one must generallyintrodue branh point singularities in the derivative wζ(ζ) but this just requiresthe inorporation of appropriate non-integer powers of the building blok funtionswhen performing the onstrution desribed herein. It is very similar to what isdone in onstruting multiply onneted Shwarz�Christo�el formulae [5℄, [6℄.AknowledgementsThe author aknowledges support from a 2004 Philip Leverhulme Prize inMathematis, an EPSRC Advaned Researh Fellowship and partial support from



Expliit solution of a lass of Riemann�Hilbert problems [15℄the European Siene Foundation's MISGAM and HCAA researh networks. Thiswork was initiated during the BFA onferene, Kraków, Poland, April 16-23, 2008;the author thanks Prof. V. Mityushev for suggesting this problem as a topi ofstudy.A. The funtion S(ζ; α)In this appendix we establish the fat that S(ζ; α1) = CS(ζ; α2), where C issome onstant (independent of ζ). To this end, onsider the ratio
R(ζ) ≡

S(ζ; α1)

S(ζ; α2)
, (18)where α1 and α2 are two distint values in Dζ . First, notie that S(ζ; α1) an berewritten in the form

S(ζ; α1) =

(

ωζ(ζ, α1)

ω(ζ, α1)
−

ωζ(ζ, α1
−1)

ω(ζ, α1
−1)

)

ω(ζ, α1)ω(ζ, α1
−1)

∏M
k=1 ω(ζ, γ

(1)
k )ω(ζ, γ

(2)
k )

, (19)where {γ
(1)
k , γ

(2)
k | k = 1, . . . , M} are the zeros of the slit map η(ζ; α1). Similarly

S(ζ; α2) =

(

ωζ(ζ, α2)

ω(ζ, α2)
−

ωζ(ζ, α2
−1)

ω(ζ, α2
−1)

)

ω(ζ, α2)ω(ζ, α2
−1)

∏M
k=1 ω(ζ, γ̃

(1)
k )ω(ζ, γ̃

(2)
k )

, (20)where {γ̃
(1)
k , γ̃

(2)
k | k = 1, . . . , M} are the zeros of the slit map η(ζ; α2). It is alsoeasy to hek that, for j = 1, 2,

ωζ(ζ, αj)

ω(ζ, αj)
−

ωζ(ζ, αj
−1)

ω(ζ, αj
−1)

=
ηζ(ζ; αj)

η(ζ; αj)
.Next, observe that on Cj (and for any α),

η(ζ; α)η(ζ; α) = r2
j ,where rj is some real onstant. A di�erentiation with respet to ζ yields

ηζ(ζ; α)

η(ζ; α)
= −

(

dζ

dζ

)(

ηζ(ζ; α)

η(ζ; α)

)

.It follows that the ratio of any two suh funtions, that is,
T (ζ) ≡

ηζ(ζ; α1)/η(ζ; α1)

ηζ(ζ; α2)/η(ζ; α2)will be real (and, in partiular, have onstant argument) on all the irles {Cj | j =
0, 1, . . . , M}.Substitution of (19) and (20) into (18) then produes

R(ζ) = T (ζ)R2(ζ; α1, α2)

M
∏

j=1

R1(ζ; γ̃
(1)
j , γ

(1)
j )R1(ζ; γ̃

(2)
j , γ

(2)
j ).



[16℄ Darren CrowdyThe important observation is that this is a produt of funtions that all haveonstant argument on the irles {Cj | j = 0, 1, . . . , M}. These onditions an bewritten as
R(ζ) = κjR(ζ) on Cj , j = 0, 1, . . . , M, (21)for some set of omplex onstants {κj | j = 0, 1, . . . , M}. R(ζ) an be shown tobe a onstant. One way to do this is to use arguments similar to those used in�4.1. to show that V (η) is onstant, but it is instrutive to present an alternativeargument based on RH methods. The funtion R(ζ) is known to be analyti andsingle-valued everywhere in the fundamental region of the group Θ. Consider thereal part of equation (21); it an be written in the standard form of a RH problem:
Re[ µj R(ζ)] = 0 on Cj , j = 0, 1, . . . , M, (22)for some set of omplex onstants {µj | j = 0, 1, . . . , M}. The (homogeneous)Riemann�Hilbert problem (22) has been well studied and it is known (see, forexample, p. 257 of Vekua [18℄) that it admits no solution for R(ζ) unless all theonstants {µj | j = 0, 1, . . . , M} are idential. In this ase, the unique solutionis R(ζ) = C, where C is a onstant. Thus, we have established that S(ζ; α1) =

CS(ζ; α2) for some onstant C that is independent of ζ.B. Derivation of (17)To �nd solution (17), onsider the following boundary value problem for w(ζ):
Re[w(ζ)] = 0 on |ζ| = 1,

Im[w(ζ)] = 0 on |ζ| = ρ.These imply that
w(ζ) + w(ζ−1) = 0 on |ζ| = 1,

w(ζ) − w(ρ2ζ−1) = 0 on |ζ| = ρ.
(23)The relations (23) an be analytially ontinued o� the respetive irles and implythat w(ζ) satis�es the funtional relation

w(ρ4ζ) = w(ζ). (24)Now P (ζ, ρ) an be shown, diretly from its de�nition (15), to satisfy the funtionalrelations
P (ζ−1, ρ) = −ζ−1P (ζ, ρ), P (ρ2ζ, ρ) = −ζ−1P (ζ, ρ),from whih it also follows that
K(ζ−1, ρ) = 1 − K(ζ, ρ), K(ρ2ζ, ρ) = K(ζ, ρ) − 1.Furthermore, near ζ = 1, K(ζ, ρ) has a simple pole with unit residue, i.e.,

K(ζ, ρ) =
1

ζ − 1
+ analytic.
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