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Darren CrowdyExpli
it solution of a 
lass of Riemann�HilbertproblemsAbstra
t. Analyti
al solutions to a spe
ial 
lass of Riemann�Hilbert bound-ary value problems on multiply 
onne
ted domains are presented. The so-lutions are expressed, up to a �nite number of a

essory parameters, asnon-singular inde�nite integrals whose integrands are expressed in terms ofthe S
hottky�Klein prime fun
tion asso
iated with the S
hottky double ofthe planar domain.1. A 
lass of Riemann�Hilbert problemsThe subje
t of this paper is a spe
ial 
lass of Riemann�Hilbert problems (RHproblems) on multiply 
onne
ted planar domains. The study of general RH prob-lems is a 
lassi
al subje
t and dis
ussions of it 
an be found in standard mono-graphs on boundary value problems [9℄, [18℄, [13℄. A solution of the general(Riemann)�Hilbert boundary value problem has been found, using su

essive it-eration methods, by Mityushev [14℄. Here we restri
t attention to a spe
ial (butimportant) sub
lass of the same RH problems and �nd an analyti
al expressionfor the solutions, up to a �nite set of a

essory parameters, in terms of a trans
en-dental fun
tion known as the S
hottky�Klein prime fun
tion [3℄ asso
iated withthe multiply 
onne
ted domain.We de�ne a 
ir
ular domain Dζ in a 
omplex parametri
 ζ-plane to be a domainwhose boundaries are all 
ir
les. Let Dζ be the M +1 
onne
ted 
ir
ular domain ina ζ-plane 
onsisting of the unit dis
 with M smaller dis
s ex
ised from its interior.The outer boundary of Dζ is the unit 
ir
le whi
h we label C0. Label the M innerboundary 
ir
les of Dζ as C1, . . . , CM . For k = 0, 1, . . . , M let the 
entre andradius of Ck be δk and qk respe
tively.Consider the Riemann�Hilbert problem for the fun
tion w(ζ):

Re
[

λk w(ζ)
]

= dk on Ck, k = 0, 1, . . . , M, (1)where {λk ∈ C | |λk| = 1, k = 0, 1, . . . , M} is a set of 
omplex 
onstants with unitmodulus and {dk ∈ R | k = 0, 1, . . . , M} is a set of real 
onstants. We solve forAMS (2000) Subje
t Classi�
ation: 30C20, 30E25, 35F15.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.
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w(ζ) satisfying (1) that is analyti
, but not ne
essarily single-valued, in Dζ ex
eptfor a simple pole, with known residue, at some point ζ = β stri
tly inside Dζ .Cir
ular domains are a 
anoni
al 
lass of planar domains be
ause every planardomain is 
onformally equivalent to some 
ir
ular domain [10℄. Be
ause of this,and be
ause the 
lass of RH problems (1) is 
onformally invariant, it means thatthe solution s
heme whi
h follows is rather general. It applies, up to 
onformalmapping from the 
anoni
al 
lass of 
ir
ular domains, to any multiply 
onne
tedplanar region.Problem (1) is a generalization of the 
lassi
al S
hwarz problem [9℄, [18℄, [13℄,a 
ase of whi
h is retrieved on making the 
hoi
e, for example, that λk = 1for all k = 0, 1, . . . , M in (1). This paper produ
es an analyti
al expression forthe solution of (1) when the 
onstants {λk ∈ C | k = 0, 1, . . . , M} are generallydistin
t. The solution is expressed as a non-singular, inde�nite integral whoseintegrand is written in terms of the S
hottky�Klein prime fun
tion [3℄ asso
iatedwith Dζ . This integrand depends on a �nite set of a

essory parameters that
an, in prin
iple, be determined (for example, numeri
ally) from the given data
{λk, dk ∈ C | k = 0, 1, . . . , M}.The spe
ial form of RH problem (1) has been 
onsidered by other authors.Vekua [18℄ shows that, if it exists, the solution of the RH problem (1) is unique [18℄.Wegmann & Nasser [19℄ study the doubly 
onne
ted 
ase M = 1 of (1) in a re
entpaper on numeri
al solutions of RH problems on multiply 
onne
ted regions usingintegral equations based on the generalized Neumann kernel.The 
lass of RH problems appears in a variety of appli
ations, espe
ially inthe more general (dis
ontinuous) 
ase when the value of the 
onstant λk assumesdi�erent values on di�erent segments of the 
ir
le Ck (the methods of this paper,presented for the 
ontinuous problem, 
an be generalized to this 
ase). One ofthe more important appli
ations is to free streamline theory in hydrodynami
s.There, in the study of jets and 
avities, it is traditional to study a fun
tion knownas the Joukowski fun
tion [11℄, often written as

Ω(ζ) ≡ log

(

1

V0

dw(z)

dz

)

,where z = x+iy, V0 is a 
onstant s
aling fa
tor and w(z) is an analyti
 fun
tion inthe �ow region (known as the 
omplex velo
ity potential). On any solid boundariesin 
onta
t with the �uid, the imaginary part of Ω(ζ) is 
onstant; on any freestreamlines, owing to the 
onstan
y of pressure in a 
avity region on one sideof the free streamline and Bernoulli's theorem, it is the real part of Ω(ζ) thatis 
onstant. Sin
e a single streamline in a real �ow 
an, in part, be in 
onta
twith a solid boundary and then separate into a free streamline bounding a 
avity,
Ω(ζ) turns out to satisfy a (dis
ontinuous) Riemann�Hilbert problem of pre
iselythe form (1). In the simply 
onne
ted situation, S
hwarz�Christo�el methodshave proved to be very useful in problems of this kind [11℄. Interestingly, therehas been re
ent interest [2℄ in developing this nonlinear theory to �ows involvingmultiple body-
avity systems. The theory presented here, for multiply 
onne
tedsituations, should �nd appli
ation in su
h studies.
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it solution of a 
lass of Riemann�Hilbert problems [7℄2. Fun
tion theoryThe investigation we now present borrows ideas from prior work by the author[5℄, [6℄ in whi
h new analyti
al formulae for the S
hwarz�Christo�el mappingsto bounded and unbounded polygonal domains were 
onstru
ted. Although thisviewpoint is not the one taken in [5℄, [6℄, su
h S
hwarz�Christo�el mappings 
an beviewed as satisfying a RH problem on a multiply 
onne
ted domain of exa
tly theform (1). Here, the same 
onstru
tive method is exploited to �nd expli
it repre-sentations of the solution of broader 
lasses of RH problems in multiply 
onne
teddomains.In this paper, for ease of exposition, we fo
us on the 
ontinuous 
ase wherethe 
onstant λk assumes the same value at all points on the 
ir
le Ck (in thedis
ontinuous analogue, whi
h is more akin to the usual S
hwarz�Christo�el prob-lem, the value of this 
onstant is allowed to be di�erent on di�erent segments of
Ck). A 
onsequen
e of this assumption is that we e�e
tively do not allow anybran
h point singularities of w(ζ) on any of the 
ir
les {Cj | j = 0, 1, . . . , M}.The method, however, 
an be readily generalized to the 
ase where bran
h pointsare present.We now 
onstru
t some spe
ial fun
tions asso
iated with Dζ . First, for k =
0, 1, . . . , M , de�ne the Möbius transformation φk(ζ) by

φk(ζ) = δk +
q2
k

ζ − δk
, k = 0, 1, . . . , M. (2)It is straightforward to 
he
k that for ζ on 
ir
le Ck,

φk(ζ) = ζ.We de�ne the re�e
tion of a point ζ in the 
ir
le Ck by φk(ζ). Then, for k =
1, . . . , M , introdu
e the Möbius transformation θk(ζ) de�ned by

θk(ζ) = φk

(

ζ
−1)

, k = 1, . . . , M. (3)It follows from (3) and (2) that
θk(ζ) = δk +

q2
kζ

1 − δkζ
, k = 1, . . . , M.For k = 1, . . . , M , let C′

k denote the re�e
tion of Ck in C0. It 
an be shown that
θk(ζ) maps C′

k onto Ck.Let Θ denote the set of all 
ompositions of the maps {θk(ζ) | k = 1, . . . , M} andtheir inverses. It is an example of an in�nite S
hottky group. Further informationon S
hottky groups 
an be found in [3℄, [4℄. We refer to the maps {θk(ζ) | k =
1, . . . , M}, together with their inverses, as the generators of Θ. A fundamentalregion of Θ is a 
onne
ted region whose images under all maps in Θ tessellate thewhole of the plane. Consider the region 
onsisting of Dζ and its re�e
tion in C0,i.e., the 2M -
onne
ted region bounded by {Ck, C′

k | k = 1, . . . , M}. Label thisregion as F . F is a fundamental region of Θ.



[8℄ Darren CrowdyAsso
iated with Θ are M fun
tions known as integrals of the �rst kind whi
hwe denote {υk(ζ) | k = 1, . . . , M}. These are analyti
, but not single-valued, in F .Indeed, for j, k = 1, . . . , M we have
[υk(ζ)]Cj

= −[υk(ζ)]C′

j
= δjk, (4)where [υk(ζ)]Cj

and [υk(ζ)]C′

j
denote respe
tively the 
hanges in υk(ζ) on travers-ing Cj and C′

j with the interior of F on the right, and δjk denotes the Krone
kerdelta fun
tion. Furthermore, for j, k = 1, . . . , M ,
υk(θj(ζ)) − υk(ζ) = τjk (5)for some {τjk | j, k = 1, . . . , M} whi
h are 
onstants, i.e., independent of ζ. Thefun
tions {υk(ζ) | k = 1, . . . , M} are uniquely determined (up to an additive 
on-stant) by their periods given by (4) and (5).2.1. The S
hottky�Klein prime fun
tionLet α be some arbitrary point in F . It is established in [12℄ that there existsa unique fun
tion X(ζ, α) de�ned by the properties:(i) X(ζ, α) is single-valued and analyti
 in F .(ii) X(ζ, α) has a se
ond-order zero at ea
h of the points θ(α), θ ∈ Θ.(iii) limζ→α

X(ζ,α)
(ζ−α)2 = 1.(iv) For k = 1, . . . , M ,

X(θk(ζ), α) = exp (−2πi(2υk(ζ) − 2υk(α) + τkk))
dθk(ζ)

dζ
X(ζ, α).The S
hottky�Klein prime fun
tion (hen
eforth referred to as S�K prime fun
tion),whi
h we denote ω(ζ, α), is de�ned as

ω(ζ, α) = (X(ζ, α))1/2,where the bran
h of the square root is 
hosen so that ω(ζ, α) behaves like (ζ − α)as ζ → α.There are two known ways to evaluate the S�K prime fun
tion. One possibilityis to use a 
lassi
al in�nite produ
t formula for it as re
orded, for example, inBaker [3℄. It is given by
ω(ζ, α) = (ζ − α)

∏

θk

(θk(ζ) − α)(θk(α) − ζ)

(θk(ζ) − ζ)(θk(α) − α)
, (6)where the produ
t is over all 
ompositions of the basi
 maps {θj , θ

−1
j | j =

1, . . . , M} ex
luding the identity and all inverse maps. This produ
t, even if itis 
onvergent, 
an 
onverge so slowly and require su
h a large number of termsin the produ
t, that its use in many 
ir
umstan
es is impra
ti
al. An alternativenumeri
al s
heme has re
ently been put forward by Crowdy & Marshall [8℄; it ismu
h more 
omputationally e�
ient than methods based on the in�nite produ
t(6) over the S
hottky group.



Expli
it solution of a 
lass of Riemann�Hilbert problems [9℄3. The 
ir
ular slit domainTo pro
eed with the 
onstru
tion, we introdu
e an intermediate η-plane. Con-sider a 
onformal mapping, denoted η(ζ; α), taking the multiply 
onne
ted 
ir
u-lar domain Dζ to a 
onformally equivalent 
ir
ular slit domain 
alled Dη. α isthe point in Dζ mapping to η = 0 in Dη, i.e., η(α; α) = 0. Figure 1 showsa s
hemati
 in a triply 
onne
ted 
ase. Let the image of C0 under this map-ping be the unit 
ir
le in the η-plane whi
h will be 
alled L0. The M 
ir
les
{Cj | j = 1, . . . , M} will be taken to have 
ir
ular-slit images, 
entred on η = 0,and labelled {Lj | j = 1, . . . , M}. Let the 
ir
ular ar
 Lj be 
hara
terized by the
onditions

|η| = rj , arg[η] ∈ [φ
(j)
1 , φ

(j)
2 ].There will be two pre-image points on the 
ir
le Cj 
orresponding to the two end-points of the 
ir
ular-slit Lj. These two pre-image points, labelled γ

(j)
1 and γ

(j)
2 ,satisfy the 
onditions

η(γ
(j)
1 ; α) = rje

iφ
(j)
1 , ηζ(γ

(j)
1 , α) = 0,

η(γ
(j)
2 ; α) = rje

iφ
(j)
2 , ηζ(γ

(j)
2 , α) = 0.These two zeros of ηζ(ζ) on Cj are simple zeros.
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Figure 1: A typi
al 
ir
ular slit mapping from a triply 
onne
ted 
ir
ular region
Dζ in a ζ-plane to a triply 
onne
ted 
ir
ular slit domain Dη in a η-plane.It is shown in [5℄ and [7℄ that an expli
it expression for the 
onformal slitmapping from Dζ to Dη 
an be found in terms of the S�K prime fun
tion of Dζ .It is given by

η(ζ; α) =
ω(ζ, α)

|α|ω(ζ, α−1)
. (7)Formula (7) will be 
ru
ial in the solution s
heme to follow.



[10℄ Darren Crowdy4. Solution s
hemeThe required fun
tion w(ζ) is analyti
 in Dζ . One 
an also 
onsider the 
om-posed fun
tion W (η), analyti
 in Dη, de�ned by
W (η(ζ; α)) ≡ w(ζ).The boundary 
onditions (1), expressed in terms of this new fun
tion W (η), are

Re
[

λk W (η)
]

= dk on Lk, k = 0, 1, . . . , M.These 
an be rewritten in the form
λk W (η) + λkW (η) = 2dk on Lk, k = 0, 1, . . . , M,or, on use of the fa
t that η = r2

kη−1 on Lk,
λk W (η) + λkW (r2

kη−1) = 2dk on Lk, k = 0, 1, . . . , M. (8)Using W ′(η) to denote the derivative of W with respe
t to its argument, di�eren-tiation of (8) with respe
t to η gives
λk W ′(η) −

r2
k

η2
λkW

′
(r2

kη−1) = 0 on Lk, k = 0, 1, . . . , M,whi
h 
an be rewritten as
ηW ′(η)

ηW ′(η)
=

λk

λk

on Lk, k = 0, 1, . . . , M.This is a statement of the fa
t that the argument of ηW ′(η) is 
onstant on Lk.Let us now suppose that we seek a solution for whi
h there are pre
isely twozeros of the derivative dw/dζ on ea
h of the boundary 
omponents {Cj | j =
0, 1, . . . , M}. Let the positions of the two zeros on Cj be at points aj and cj , i.e.,

dw

dζ
(aj) = 0 =

dw

dζ
(cj).These zero positions will not be known a priori but will enter our representationof the solution as a

essory parameters.4.1. Building blo
k fun
tionsA set of �building blo
k� fun
tions will be used to 
onstru
t the required solu-tions. Their 
hara
terizing feature is that they all have 
onstant argument on theboundary 
ir
les {Cj | j = 0, 1, . . . , M}. These fun
tions were introdu
ed in [5℄and their properties established there.It is shown in [5℄ that fun
tions of the form

R1(ζ; ζ1, ζ2) =
ω(ζ, ζ1)

ω(ζ, ζ2)
, (9)



Expli
it solution of a 
lass of Riemann�Hilbert problems [11℄where ζ1 and ζ2 are any two points on the same 
ir
le Ck (for k = 0, 1, . . . , M) has
onstant argument on ea
h of the boundary 
ir
les {Cj | j = 0, 1, . . . , M}. Also,fun
tions of the form
R2(ζ; ζ1, ζ2) =

ω(ζ, ζ1)ω(ζ, ζ1
−1

)

ω(ζ, ζ2)ω(ζ, ζ2
−1

)
, (10)where ζ1 and ζ2 are any two ordinary points of the S
hottky group (these pointsneed not be points on the boundary 
ir
les) similarly have 
onstant argument onea
h of the boundary 
ir
les {Cj | j = 0, 1, . . . , M}.Let γ0 be some point on C0 that is distin
t from a0 and c0. Consider thefun
tion

R1(ζ; a0, γ0)R1(ζ; c0, γ0)R2(ζ; γ0, β)R2(ζ; α, β)

×
M
∏

k=1

R1(ζ; ak, γ
(1)
k )R1(ζ; ck, γ

(2)
k ).

(11)First, sin
e it is a produ
t of the building blo
k fun
tions just introdu
ed, thefun
tion in (11) has 
onstant argument on the 
ir
les {Cj | j = 0, 1, . . . , M}. Asfor its singularities, it is a meromorphi
 fun
tion in Dζ with a se
ond order pole at
ζ = β (and at β

−1), simple poles at the points {γ(1)
k , γ

(2)
k | k = 1, . . . , M}, simplezeros at ζ = α and α−1 and simple zeros at the points {ak, ck | k = 0, 1, . . . , M}.It has no other singularities in Dζ . Let the fun
tion (11), 
onsidered now asa fun
tion of η, be 
alled U(η).Now 
onsider the fun
tion ηW ′(η) whi
h, we have already established, musthave 
onstant argument on the 
ir
les {Cj | j = 0, 1, . . . , M}. By the 
hain rulewe have

ηW ′(η) = η
dw/dζ

dη/dζ
.This fun
tion is analyti
 everywhere in Dη ex
ept for simple poles at the zerosof dη/dζ, i.e., at the points {γ

(1)
k , γ

(2)
k | k = 1, . . . , M}. It also has se
ond orderpoles at ζ = β and β

−1. It has a simple zero at ζ = α sin
e η(ζ; α) has a sim-ple zero there and, as 
an be seen after making use of (7), it also has a simplezero at α−1. By assumption, it also has 2(M + 1) simples zeros at the points
{ak, ck | k = 0, 1, . . . , M}. In short, it has all the same zeros and poles in Dζ asthe fun
tion U(η).We are thus led to 
onsider the ratio

V (η) ≡
ηW ′(η)

U(η)in the domain Dη. Sin
e we know that U(η) and ηW ′(η) have the same polesand zeros inside and on the boundaries of Dζ , the fun
tion V (η) 
an be dedu
edto be analyti
 everywhere in the domain Dη, as well as on its boundaries. Thismeans that V (η) is analyti
 everywhere in |η| ≤ 1. Moreover, it is known that thearguments of both U(η) and ηW ′(η) are 
onstant on L0. Thus,
V (η) = ǫV (η) on L0,



[12℄ Darren Crowdyfor some 
onstant ǫ implying that
V (η−1) = ǫV (η) on L0.This equation furnishes the analyti
 
ontinuation of V (η) into |η| > 1 and, inparti
ular, shows that it is analyti
 there (and bounded at in�nity). Sin
e V (η) isanalyti
 everywhere in the 
omplex η-plane, and bounded as η → ∞, Liouville'stheorem implies V (η) = B, where B is some 
omplex 
onstant.On use of (9) and (10), and after some 
an
ellations, we dedu
e that

dw(ζ)

dζ
=

BS(ζ; α)

ω(ζ, β)2ω(ζ, β
−1

)2

M
∏

k=0

ω(ζ, ak)ω(ζ, ck),where
S(ζ; α) ≡

(

ω(ζ, α−1)ωζ(ζ, α) − ω(ζ, α)ωζ(ζ, α−1)
∏M

k=1 ω(ζ, γ
(1)
k )ω(ζ, γ

(2)
k )

)

.Hen
e, the required solution 
an be written as the inde�nite integral
w(ζ) = A + B

ζ
∫

1

S(ζ′; α)

ω(ζ′, β)2ω(ζ′, β
−1

)2

M
∏

k=0

ω(ζ′, ak)ω(ζ′, ck) dζ′, (12)where A is some 
omplex 
onstant. Formula (12) is the main result of this paper.It is demonstrated in the appendix that for any two distin
t 
hoi
es of α1and α2, S(ζ; α1) = CS(ζ; α2), where C is some 
onstant (independent of ζ).This means that making di�erent 
hoi
es of α in the representation (12) simply
orresponds to making a di�erent 
hoi
e of the 
onstant B.5. The doubly 
onne
ted 
aseAs veri�
ation we 
onsider two problems in the doubly 
onne
ted 
ase. Let
Dζ to be the 
on
entri
 annulus ρ < |ζ| < 1 for some real ρ. Any doubly 
on-ne
ted domain is 
onformally equivalent to some su
h annulus. The solutions tothe following two problems 
an, it turns out, be found in analyti
al form usingalternative arguments whi
h allows us to 
he
k our analysis.Problem 1We spe
ialize to the 
ase where λ0 = λ1 = 1 with c0 = 0. The problem is then the
lassi
al S
hwarz problem. One form of the solution is

w(ζ) =
U

ζ − β
+ Ã log ζ + I(ζ), (13)where Ã is a 
onstant and the single-valued fun
tion I(ζ) 
an be written in termsof the 
lassi
al Villat formula [1℄:

I(ζ) =
1

2πi

∮

|ζ′|=1

dζ′

ζ′
(1 − 2K(ζ/ζ′, ρ))

[

−Re

[

U

ζ − β
+ Ã log ζ

]]



Expli
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lass of Riemann�Hilbert problems [13℄
−

1

2πi

∮

|ζ′|=ρ

dζ′

ζ′
(2 − 2K(ζ/ζ′, ρ))

[

c1 − Re

[

U

ζ − β
+ Ã log ζ

]]

,where
K(ζ, ρ) ≡

ζPζ(ζ, ρ)

P (ζ, ρ)
(14)and

P (ζ, ρ) ≡ (1 − ζ)

∞
∏

k=1

(1 − ρ2kζ)(1 − ρ2kζ−1). (15)Alternatively, the same solution 
an be written in the form
w(ζ) =

U

β

(

K(ζβ−1, ρ) + K(ζ β, ρ)
)

+ C log ζ + D,where
C =

1

log ρ

(

c1 −
U

β

(

K(ρβ−1, ρ) + K(ρ β, ρ) − K(β−1, ρ) − K(β, ρ)
)

)and
D = −

U

α

(

K(β−1, ρ) + K(β, ρ)
)

.The new solution method given earlier provides a third representation of thesame solution:
w(ζ)

= A + B

ζ
∫

1

S(ζ′; α)

ω(ζ′, β)2ω(ζ′, β
−1

)2
ω(ζ′, a0)ω(ζ′, c0)ω(ζ′, a1)ω(ζ′, c1) dζ′,

(16)where, in this doubly 
onne
ted 
ase, it 
an be shown (see [5℄ for details) that
S(ζ; α) ∝

1

ζ2
.To 
he
k (16) we use the solution (13) to numeri
ally 
ompute (using Newton'smethod) the two points on C0 at whi
h dw/dζ = 0. These are substituted into(16) as the values of a0 and c0. Similarly, we �nd the two points on C1 at whi
h

dw/dζ = 0 and take these as the values of a1 and c1. Next, we set A = w(1),where the right hand side is 
omputed using the known solution (13). We also�x B by ensuring that
w(ρ) = A + B

ρ
∫

1

S(ζ′)

ω(ζ′, β)2ω(ζ′, β
−1

)2
ω(ζ′, a0)ω(ζ′, c0)ω(ζ′, a1)ω(ζ′, c1) dζ′,where the left hand side of this equation is evaluated using the known solution(13). With all the parameters in (16) now determined, we 
he
k the value of theintegral (16) against the values given by (13) for di�erent (arbitrary) 
hoi
es of ζ in



[14℄ Darren Crowdythe annulus (the integral (16) is 
omputed using the trapezoidal rule). The valuesare found to be in agreement (to within the a

ura
y of the numeri
al method)thereby 
on�rming that (16) is indeed a representation of the required solution.Problem 2We now spe
ialize to the 
ase where λ0 = 1, λ1 = eiπ/2 with no restri
tions on d0and d1. This is no longer a 
lassi
al S
hwarz problem so the Villat formula 
annotbe used here. An analyti
al formula for the solution 
an, however, be found:
w(ζ) =

U

β

[

K(ζβ−1, ρ2) − K(ζβ, ρ2) − K(ζβ−1ρ−2, ρ2) + K(ζβρ−2, ρ2)
]

+ d0 + id1,

(17)where the spe
ial fun
tion de�ned in (14) again appears. A derivation of (17) isgiven in appendix B. In a manner akin to that used in Problem 1, the expression(17) was used to �nd the lo
ations of the zeros of dw/dζ on both C0 and C1 (thereare two on ea
h 
ir
le). These are then used as the values of a0, c0, a1 and c1 inan expression of the form (16). The values of A and B are determined in the sameway as in Problem 1 and the values of the integral (16) for arbitrary values of ζ
he
ked against the values given by (17). They are found to be in agreement.6. Dis
ussionThis paper des
ribes a 
onstru
tive method for �nding solutions to Riemann�Hilbert problems of the spe
ial form (1) on multiply 
onne
ted domains. Thesolution having two zeros of the derivative on ea
h of the boundary 
ir
les isgiven in (12) as a non-singular inde�nite integral 
ontaining a �nite set of a

es-sory parameters. In general, these parameters must be determined from a setof equations obtained by substituting the form (12) into the boundary 
ondi-tions (1). In other words, given the 2M + 2 real parameters asso
iated with theset {λk, dk | k = 0, 1, . . . , M} it is possible to determine the 2M + 2 real parame-ters asso
iated with the set of zeros {ak, ck | k = 0, 1, . . . , M}. How to determinethese a

essory parameters numeri
ally in an e�
ient manner remains a subje
tfor future resear
h.In prin
iple, it is possible to extend the 
onstru
tive method herein to �nd rep-resentations to solutions of the dis
ontinuous analogues of the spe
ial RH problems
onsidered here where the 
onstant λk is allowed to assume di�erent pie
ewise 
on-stant values on di�erent segments of 
ir
le Ck. In su
h 
ases, one must generallyintrodu
e bran
h point singularities in the derivative wζ(ζ) but this just requiresthe in
orporation of appropriate non-integer powers of the building blo
k fun
tionswhen performing the 
onstru
tion des
ribed herein. It is very similar to what isdone in 
onstru
ting multiply 
onne
ted S
hwarz�Christo�el formulae [5℄, [6℄.A
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 ofstudy.A. The fun
tion S(ζ; α)In this appendix we establish the fa
t that S(ζ; α1) = CS(ζ; α2), where C issome 
onstant (independent of ζ). To this end, 
onsider the ratio
R(ζ) ≡

S(ζ; α1)

S(ζ; α2)
, (18)where α1 and α2 are two distin
t values in Dζ . First, noti
e that S(ζ; α1) 
an berewritten in the form

S(ζ; α1) =

(

ωζ(ζ, α1)

ω(ζ, α1)
−

ωζ(ζ, α1
−1)

ω(ζ, α1
−1)

)

ω(ζ, α1)ω(ζ, α1
−1)

∏M
k=1 ω(ζ, γ

(1)
k )ω(ζ, γ

(2)
k )

, (19)where {γ
(1)
k , γ

(2)
k | k = 1, . . . , M} are the zeros of the slit map η(ζ; α1). Similarly

S(ζ; α2) =

(

ωζ(ζ, α2)

ω(ζ, α2)
−

ωζ(ζ, α2
−1)

ω(ζ, α2
−1)

)

ω(ζ, α2)ω(ζ, α2
−1)

∏M
k=1 ω(ζ, γ̃

(1)
k )ω(ζ, γ̃

(2)
k )

, (20)where {γ̃
(1)
k , γ̃

(2)
k | k = 1, . . . , M} are the zeros of the slit map η(ζ; α2). It is alsoeasy to 
he
k that, for j = 1, 2,

ωζ(ζ, αj)

ω(ζ, αj)
−

ωζ(ζ, αj
−1)

ω(ζ, αj
−1)

=
ηζ(ζ; αj)

η(ζ; αj)
.Next, observe that on Cj (and for any α),

η(ζ; α)η(ζ; α) = r2
j ,where rj is some real 
onstant. A di�erentiation with respe
t to ζ yields

ηζ(ζ; α)

η(ζ; α)
= −

(

dζ

dζ

)(

ηζ(ζ; α)

η(ζ; α)

)

.It follows that the ratio of any two su
h fun
tions, that is,
T (ζ) ≡

ηζ(ζ; α1)/η(ζ; α1)

ηζ(ζ; α2)/η(ζ; α2)will be real (and, in parti
ular, have 
onstant argument) on all the 
ir
les {Cj | j =
0, 1, . . . , M}.Substitution of (19) and (20) into (18) then produ
es

R(ζ) = T (ζ)R2(ζ; α1, α2)

M
∏

j=1

R1(ζ; γ̃
(1)
j , γ

(1)
j )R1(ζ; γ̃

(2)
j , γ

(2)
j ).



[16℄ Darren CrowdyThe important observation is that this is a produ
t of fun
tions that all have
onstant argument on the 
ir
les {Cj | j = 0, 1, . . . , M}. These 
onditions 
an bewritten as
R(ζ) = κjR(ζ) on Cj , j = 0, 1, . . . , M, (21)for some set of 
omplex 
onstants {κj | j = 0, 1, . . . , M}. R(ζ) 
an be shown tobe a 
onstant. One way to do this is to use arguments similar to those used in�4.1. to show that V (η) is 
onstant, but it is instru
tive to present an alternativeargument based on RH methods. The fun
tion R(ζ) is known to be analyti
 andsingle-valued everywhere in the fundamental region of the group Θ. Consider thereal part of equation (21); it 
an be written in the standard form of a RH problem:
Re[ µj R(ζ)] = 0 on Cj , j = 0, 1, . . . , M, (22)for some set of 
omplex 
onstants {µj | j = 0, 1, . . . , M}. The (homogeneous)Riemann�Hilbert problem (22) has been well studied and it is known (see, forexample, p. 257 of Vekua [18℄) that it admits no solution for R(ζ) unless all the
onstants {µj | j = 0, 1, . . . , M} are identi
al. In this 
ase, the unique solutionis R(ζ) = C, where C is a 
onstant. Thus, we have established that S(ζ; α1) =

CS(ζ; α2) for some 
onstant C that is independent of ζ.B. Derivation of (17)To �nd solution (17), 
onsider the following boundary value problem for w(ζ):
Re[w(ζ)] = 0 on |ζ| = 1,

Im[w(ζ)] = 0 on |ζ| = ρ.These imply that
w(ζ) + w(ζ−1) = 0 on |ζ| = 1,

w(ζ) − w(ρ2ζ−1) = 0 on |ζ| = ρ.
(23)The relations (23) 
an be analyti
ally 
ontinued o� the respe
tive 
ir
les and implythat w(ζ) satis�es the fun
tional relation

w(ρ4ζ) = w(ζ). (24)Now P (ζ, ρ) 
an be shown, dire
tly from its de�nition (15), to satisfy the fun
tionalrelations
P (ζ−1, ρ) = −ζ−1P (ζ, ρ), P (ρ2ζ, ρ) = −ζ−1P (ζ, ρ),from whi
h it also follows that
K(ζ−1, ρ) = 1 − K(ζ, ρ), K(ρ2ζ, ρ) = K(ζ, ρ) − 1.Furthermore, near ζ = 1, K(ζ, ρ) has a simple pole with unit residue, i.e.,

K(ζ, ρ) =
1

ζ − 1
+ analytic.
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lass of Riemann�Hilbert problems [17℄We 
an therefore use K(ζ, ρ2) to 
onstru
t a fun
tion w(ζ) satisfying (24) andhaving a simple pole at ζ = β. The relations (23) imply that w(ζ) also has simplepoles at ζ = β−1, ρ2β, ρ2β−1 (and at all points equivalent to these under ζ 7→ ρ4ζ).The required form of solution 
an now easily be dedu
ed to be that given in (17).Referen
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