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The transmission problem for elliptic second

order equations in a conical domain

Abstract. The present article is a survey of our last results. We establish
best possible estimates of the weak solutions to the transmission problem
near conical boundary point. We study this problem for the Laplace
operator with N different media, for linear and quasi-linear (with semi-
linear principal part) elliptic second order equations in divergence form.
Boundary conditions in these problems are different: the Dirichlet, the
Neumann, the Robin, as well as mixed boundary conditions.

The transmission problems often appear in different fields of physics and
technics. For instance, one of the important problems of the electrodynam-
ics of solid media is the electromagnetic processes research in ferromagnetic
media with different dielectric constants. Such problems also appear in solid
mechanics if a body consists of composite materials. Let us quote also vi-
brating folded membranes, composite plates, folded plates, junctions in elastic
multi-structures etc.

The present article is a survey of our last results. We consider the best
possible estimates of the weak solutions to the transmission problem near co-
nical boundary point. Analogous results were established in [3] for the Dirichlet
and Robin problems in a conical domain without interfaces.

Let G € R™, n > 2 be a bounded domain with boundary dG that is a
smooth surface everywhere except at the origin O € G and near the point O
it is a conical surface with vertex at O and the opening wy. We assume that
G =Y, G; is divided into N > 2 subdomains G;, i = 1,..., N by (N —1)
hyperplanes ¥, , k = 1,..., N —1 (by hyperplane ¥ in the case N = 2), where
O belongs to every ¥j and G; N G; = 0, i # j. We shall study the following
elliptic transmission problems.
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Problem (LN). For the Laplace operator with N different media and
mixed boundary condition

Li[u] = a;Au; — piui(z) = fi(z), reG;,i1=1,...,N;
[ulg, =0, k=1,...,N —1;
S[u}—[aau} + LB @) = (@), zeX
kU] = |65 — Bk = hg(x), ks
Oy |5, |zl k=1,...,N—1;
Blu] = a(x)a s + Ty (@) = gx) €06\ 0
u] = a(z)azs m’ywux—gm, x ,
where w = %, a; >0,p; >0, (i=1,...,N) are constants;
[ if 2 € D;
W=\, ifreD,

and D C 0G is the part of the boundary dG where we consider the Dirichlet
boundary condition; here 7i; (77 ) denotes the unite outward with respect to G,
(@) normal to 3y, (0G \ O).

Problem (L). For linear equations

£lul = S @ () + 0 @, +ale)u= [@), € G\
[U]EO =0;

Slu] = [%}Z + @u(w) = h(z), x € Xo;
B[u]:%—i—%u:g(x), x € 90G\ O.

Problem (W L). For weak nonlinear equations

d 3
o (Ju|?a" (z)uy, ) + bz, u, Vu) = 0, q>0, zeG\Zp;
[U]EO =0;

Slu] = [@} _ B vt = h(zu), @€ N

ov |y, ||
_Ou W) g
Blu] = £ + 2] ulul? = g(z,u), x€IG\O

(the summation over repeated indices from 1 to n is understood; ‘3—7; is the
co-normal derivative of u(z)), i.e., 2% = |u|9a¥ (2)u, cos(i, z;).
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The principal new feature of our work is the consideration of estimates of
weak solutions for linear elliptic second-order equations with minimal smooth
coefficients in n-dimensional conical domains. Our examples demonstrate this
fact.

1. Problem (LINV)

Let ¢; be openings at the vertex O in domains G; . Let us define the value
Ok = 1+ 2 + ... + 1, thus wg = O . We introduce the following notations:

— ; — a domain on the unit sphere S”~! with boundary 9€); obtained by
the intersection of the domain G; with the sphere S"~1 (i =1,...,N);
thus Q = Uf\il Qi;

ey S = Gn{wi=2 -6}, k=1,...,N—1
U:Zi\:llgk» or = XN,

— (@) ={(rw)| 0<a<r<b weQ}NG; i=1,...,N;
7(Ek)Z:GZmZk, ]g:]‘,v_[\[_]_7

— u(@) =ui(z), [f(z)=/[fi(z), zeGi G|G—i =a;, etey

— [u]g, denotes the saltus of the function u(x) on crossing Xy, i.e.,

s, = ue @), — w1 @]
U u(x), uk+1(f)|Ek: lim u(x);

k(T = lim
( )|Zk GrOdr—TEX Gry122—TEX

— [a%ﬁ‘k] o denotes the saltus of the co-normal derivative of the function

u(x) on crossing Xy, i.e.,
ou ouy, QU1
ao=— = 0k 75—
b

—Ak+1—(f7s
Ofiy Ofiy,

Sk ‘
Without loss of generality we assume that there exists d > 0 such that G@

is a convez rotational cone with the vertex at O and the aperture wg , thus

n
Fg: {(r,w) ‘ x% :cotQ? xf; r € (0,d), w1 = %, wo € (0,7'(')};
i=2

2 ={(r,w)| 0<a<r<b; wedN}NIG — the lateral surface of layer G2 .
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We use the standard function spaces:
— C*(G;) with the norm |u;x.q, ,
— the Lebesgue space L,(G;), p > 1 with the norm ||u;||p.c; »

— the Sobolev space W*?(G;) with the norm |u; ||k p.; »

— direct sum C*(G) = C*(Gy) + ...+ C*(Gy) with the norm

N
lule.g =Y lwilk, i
i=1

— L,(G) = Ly(G1)+ ...+ Ly(Gn) with the norm

N 1
@ =Z( / uﬁdx> :
=1 G

— WFP(G) = WkP(Gy) 4 ...+ WEP(Gy) with the norm
N k 1
lullime = 3 ( /> |D5uipdas> |

=1 *q, 18l=0

We define the weighted Sobolev spaces: Vi (G) = V¥ (G1)+... 4V}, (G) for
integer k > 0 and real o, where Vp’fa(Gi) denotes the space of all distributions
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u € D'(G;) satistying r» T181=*| DBy, € Ly(Gs), i=1,...,N. VE (G)isa
Banach space with the norm

lullvs () = (/}:W”WkD%Wm>

|B8]=0

k—L1
V,.o" (0G) is the space of functions ¢, given on 9G, with the norm

H<PH k-1 1Hf||‘I’||Vk (@) >
P (8G)

where the infimum is taken over all functions ® such that ¢ ’ 9= ¥ in the sense
of traces. We denote W*(G) = Wk2(Q), VOV(";(G) = V5, (G).

DEFINITION 1

The function u(z) is called a weak solution of the problem (LN) provided that
u(z) € CO(G) N VOV(I) and satisfies the integral identity

/wwmm+/x3 Mm@+/mm%wmwmmw

- [atgten %+/h @—/@M@+ﬂwmwwx

for all functions n(z) € C*(G) N VOV(I)(G) The integrals above are sums:

/?qu=§j/ﬁuma /m@@:
G =1 q,

REMARK 1
In the Dirichlet boundary condition case (a(xz) = 0) we assume, without loss
of generality, that

logrp =0 = ulygnp =0.

We assume that My = max, g |u(z)| is known. Let us define numbers

a, = min{ay,...,an} > 0;
a* = max{ay,...,an} > 0;
p* = max{p1,...,pn} > 0;
[a]Zk:ak_akJrla k=1,...,N—1;
ao = max |laly,|;
a = max(a*, ag).
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We assume that:
(a) f(z) € La(G)NLa2(G); g >n;

(b) v(¢) =7 >atang on 0G;
Br(¢) > Bo >atan > on Xp, k=1,...,N —1;

(¢c) there exist numbers fo >0, go >0, hg >0, s> 1, 8> s — 2 such that

[f(@)] < folzl”, l9(2)| < golz|*,
|hi(z)| < holz|*~Y, k=1,...,N—1.

We consider the following eigenvalue problem (EV P).

Let © C S™! with smooth boundary 9 be the intersection of the cone
C with the unit sphere S"~!. Let 77 be the exterior normal to OC at points of
00 and 7, be the exterior with respect to €2 normal to X, (lying in the plane
tangent to Q), k = 1,...,N — 1. Let v(¢), ¢ € 90 be a positive bounded
piecewise smooth function, Sx(¢) be a positive continuous function on oy,
k=1,...,N—1. We consider the eigenvalue problem for the Laplace-Beltrami
operator Ay on the unit sphere

a; (Db + ;) =0, ¢ € Q;, a; are positive
constants; ¢ = 1,..., N;
[Y]o, =0, k=1,...,N —1;
oY (EVP)
{aa—ﬁjakﬁLﬁk(@W%:O, k=1,...,N—1;
o
a(9)azs= +7(8)¥] 0= 0,

which consists of the determination of all values ¥ (eigenvalues) for which
(EV P) has a non-zero weak solutions (eigenfunctions).

Our main result is the following theorem. Let ) be the smallest positive
solution of (EV P) and let

)\:2—71—1—\/(721—2)2—&-419. (L1)

THEOREM 1

Let u be a weak solution of the problem (LN) and assumptions (a)-(c) be sati-
sfied. Assume that the domain G and parameters in (a)-(c) are such that A
defined above satisfies A > 1. Then there are d € (0,1) and constants Cy > 0,
¢ > 0 depending only on n, a., a*, p*, A, q, wo, fo, ho, 90, Bo, Yo, s, Mo,
meas G, diam G such that for all x € G&
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2|, if s> A
()] < Co 4 [ In° (%) L ifs=2A
|x|®, if s <A
Suppose, in addition, that
(W )GCl(aG) fz )Gquq n(G);
h(z) € Vot ’L(5), 9(x) € V50, (9G);
q > n and there is a number
e (U ’ L)
Then for all x € G
|z, if s>\
|Vau(z)] < Cy ¢ |2/} n° (%) ) if s=A
|z|s—L, if s <\

Furthermore, the following is true

—ueV2, .(G),q>n and

o, if s>\

1 .
lulve, o3y <Cad Pl (5) L s
o’ if s <\

— if f(x) 6‘?\’2‘(61), Is a_th( )yds + [y g*(x) ds < co, where 4 —
n—2\ < a <2, then u(x )EWQ 2(G) and

/ a(r® 2| Vul? + r**?) dz + / r* 72 B(¢)u* (z) ds

G b

+ /a(m)ra_37(¢)u2(as) ds

oG

gC{G/(u2+(1+r°‘)f2(ac))dx+z/r“1h2(as)ds

+ / a(z)r* g (z) ds},

oG
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where the constant C' > 0 depends only on q, n, a., a*, o, A and the
domain G.

11. Eigenvalue fransmission problem in a composite plane domain with an
angular point
Let G C R? be bounded domain with the boundary curve G smooth

everywhere except at the origin @ € JG. Near the point O it is a fan that
consists of N corners with vertices at O. Thus G = Ufil G;; 0G = UN+1 Iy,

7=0
Y= Usz_ll 3. Here 3, k=1,..., N — 1 are rays that divide G into angular
domains G;,i=1,...,N. Let w; be apertures at the vertex O in domains G; ,

1=1,...,N. We define the value 0, = w1 +ws+ ... +wr. Let I' = U;\[:lrj
be the curvilinear portion of the boundary dG. In this case we have A = /0.

x4

Fig. 2

We also assume that
I'p={(r,w)|r >0, w=0}, F'yviyi={(r,w)| r>0, w=0x},
ﬁk|0_k: Br(0k) = B, = const, ~(0) =~ = const, ~y(wg) =N = const.

The eigenvalue problem in this case has the form
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Y+ N2 (w) = 0, weQ ={wi-1 <w<w},
i=1,...,N;
Vi(0;) = Viv1(6:), i=1,...,N—1,

azw;(ez) — ai+1¢£+1(92‘) + 52’1/12(01) =0, i=1,..., N — 1;
a1a191(0) +7191(0) = 0;
anany(wo) + NN (wo) = 0,

where a1, an € {0,1}.
By direct calculation, we get

Y;(w) = 4; cos(Aw) + B; sin(lw), i=1,...,N

and constants Ai,...,An; Bi,...,By are defined by the algebraic homoge-
neous system of equations:

Aara1 By + v = 0;

in®(\0; b Ab; 0)-&
o sin®(\0;) — N sin(\0; ) cos(A;)

+(sin()\9i)cos()\9i) (1— o )- b sinz(/\Qi)>-B

A = (cosz()ﬂi) +

i1 AGit1
i=1,...,N—1;
. a; Bi 2
B;y1 = [ sin(A\d;) cos(A0;) | 1 — + cos“(N0;) | - A;

Qi1 Qi1
+ (sinz()\ei) + cos?(M\0;) + b sin(A\d;) cos(A6;) > B;,

Q41 Qi1
i=1,...,N—1;

(yn cos(Awo) — danan sin(Awg)) « Ax + (7w sin(Awp)
+Aanan cos(Awp)) - By =

The least positive eigenvalue A is determined by the vanishing of the determi-
nant of this system.

1.2.  Four media fransmission problem

Our goal is to derive the eigenvalues equation corresponding to our trans-
mission problem for N =4. Let S! be the unit circle in R2. We denote:
Q; = G; NS for i =1,2,3,4. The eigenvalue problem is the following:
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¢//+/\2¢z(w) weQ; fori=1,2,3,4;

Ya(wr) = 1 (w1 )

P3(02) = ¥2(02);

Ya(03) = ¥3(03);

a1 (w1) — azpy(wi) + Brhr(wi) = 0; (1.2)
a0 (02) — azy(0a) + Barha(62) =

azyy(03) — aapy(f3) + 53¢3(93) =

a1a19(0) + 7191 (0) =

asaq Py (0a) + vatpa(0s) =

where oy = O‘|1“0 = a|

{0,1}.

A general solution of (1.2) is

we0? 4= a|1,5 = a]w=94, 1 =7(0), va =7(04); 1,4 €

i(w) = A; cos(Aw) + B; sin(Aw) fori=1,2,3,4,

with arbitrary constants A;, B; (i = 1,2,3,4). Boundary condition of (1.2)
force A;, B; to satisfy the following system of linear equations:

As cos Awq + Bosinwy — Ay cos Awy — By sin dw; = 0,
Ascos Ny + B3 sinfy — Ag cos A0 — Bosin Ay = 0,
Ay cos N3 + Bysinf3 — Az cos \@3 — Bz sin Af3 = 0,

Aag As sin dwi — AagBs cos Awi — Aaq A1 sin Adwy + a1 By cos Awq
+061 A1 cos Adwy + 1By sin dw1 = 0,

Aag Az sin Ao — Aas B3 cos Ay — Aag As sin Ao + Aao By cos Ao
+B5As cos A0y + B3 Bo sin Afy = 0,

Aag Ay sin N0z — Aag By cos \03 — Aaz Az sin \03 + Aaz B3 cos A3
+03A3 cos M3 + B3B3 sin A3 = 0,
a1a1AB1 + 7141 =0,
Qga4 A A4 Sin N0y — aqag A\By cos A0y — Y4 Ag cos A0y — v4 By sin A0y = 0.

This system has a non-trivial solution if its determinant vanishes. This gives
the eigenvalues equation, which is too complex to state here in full generality.
We provide an explicite form only in special cases of boundary conditions.

1. DIRICHLET PROBLEM: a1 =4 =01 =F2=03=0; 11 =74 = 1.

Aas ag sin Awi €os Aws sin Aws sin Adwy
+ a%ag sin Aw1 sin Adws €cos Aws sin Adwy
+ a%a4 sin Adwq sin Aws sin Aws cos Awy

+ ap ag COS A\w1 sin Aws sin Adws sin Adwy
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— Q2304 SN Aw1 COS Aws COS Aws3 COS Awy
— a1a3G4 COS Aw1 SIN Aws COS Aws COS Awy
— @1a2a4 COS Aw1 COS Aws Sin Aws COS Awy
— @1a2a3 COS A\w1 COS Awsg COS Aws3 Sin Awy
=0.
In the isotropic case (a; = az = a3 = a4) we recover the well known
result:
sin(My) =0 = A= 2, n=1,2....
04
COROLLARY: A = wlo >1,if 0 < wy < 7.
2. NEUMANN PROBLEM: a1 =ay =1; f1 = o = 83 =0; 71 =74 = 0.
—a?aza’ sin Adwi cos Aws sin Aws sin A\wy
— a%agai sin Adw sin Adws cos Adws sin Awy
— a%a§a4 sin Adwi sin Adws sin Aws cos Awy
— am%ai €OS Aw1 sin Aws sin Aws sin Adwy
+ a%a2a3a4 sin Adwi cos Aws €os Aws COS Awy
+ a1a§a3a4 COS Aw1 Sin Aws oS Aws COS Awy
+ a1a2a§a4 COS Aw1 COS Aws Sin Aws cos Awy

+ alagagai COS AWw1 COS Awsg COS Aws Sin Awy

=0.
In the isotropic case (a1 = as = agz = a4) we recover again:
0
sin(My) =0 => A, = 7;— n=0,1,2....
4

COROLLARY: A\ = wlo >1,if0<wy <.

3. MIXED PROBLEM: a1 =y =1, a4 =01 =P2=F3=0;v =0.
a%ag sin Awq sin Aws sin Aws sin Awy
— a%aga4 sin Adw1 sin Aws cos Adws €oS Adwy
— a%agag Sin Awi €os Aws €os Aws sin Adwy
— a%ag a4 Sin Aw1 cos Aws Sin Adws €os Awy
—a agag COS Aw1 €OS Aws Sin Aws sin Adwy
—a a§a4 €OS Aw1 sin Adws sin Aws cos Awy
—a a%a4 €OS Aw1 sin Awsg €os Aws sin Adwy
+ a1a2a3a4 COS Aw1 COS Aws COS Aws3 COS AWy

=0.



72 Mikhail Borsuk

In the isotropic case (a1 = a2 = as = a4) we hence recover:

m(2n — 1)

cos(My) =0 = A\, = 20,

, n=12....

. —_ _T 3 ™
COROLLARY: A = 700 > L if 0 <wg < 3.

4. ROBIN PROBLEM: a1 = a4 = 1.

In the isotropic case (a1 = as = a3 = a4 = 1; B = B2 = B3 = 0) we
obtain:
Alva —m)

(o) = e

13. Three media fransmission problem

Our goal is the derivation of the eigenvalues equation that corresponds to
our transmission problem for the case N = 3. Let S! be the unit circle in R?
centered at O. We denote: Q; = G; N S'; i =1,2,3. The eigenvalue problem
is the following one:

D+ X2 (w) = 0, weQ;; (i=1,2,3);
Y1(w1) = Pa(wi); P3(62) = ¥2(02);

azy(w1) — a1y (wr) + Brapr(wr) = 0;

a3y (02) — azthy(02) + B2vb2(62) = 0;

ara1y1(0) +71¢1(0) = 0;

azazy(03) + y313(03) = 0.

(1.3)

We find a general solution of (1.3):
¥i(w) = A; cos(Aw) + B; sin(Aw) for i =1,2,3,

where A;, B; (i = 1,2, 3) are arbitrary constants. From the boundary condition
of (1.3) we obtain the homogenous algebraic system of six linear equations
determining A;, B; (i = 1,2,3). The determinant of the system must be equal
to zero for a nontrivial solution of this system to exist. The latter gives the
required eigenvalues A-equation:
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N aza3(Bim + N arat) = 3(B1 0271 + A2 faaf — A2a3)]
X sin(Aw1 ) sin(Aws ) sin(Aws)
+ Xy - [Nasa3(y — fron) +y3(B16200 — 7102 — N2ara3)]
x cos(Awr ) sin(Aws) sin(Aws)
= Aaz - [y3(Bim1 + Narad) + as(Bifay + N arfaaf — Ny1a3)]
X sin(Aw1 ) sin(Aws ) cos(Aws)
+ Nayaz - [y3(Brar — m) + az(B1f2cn — 7162 — Naya3)]
x cos(Awr ) sin(Aws) cos(Aws)
— Aaz - [13(Bey1 + AN2a1a? + Biy1) — N2azyia3] (1.4)
x sin(Awy ) cos(Aws) sin(Aws)
+ Nayag - [y3(6201 + a161 —m) — Nazaiaj]
X cos(Awr ) cos(Aws) sin(Aws)
— Nagas - [y17s + as(Bonr + Naga? + i)
x sin(Awy ) cos(Aws) cos(Aws)
+ Najasas - [a1vs + az(Bear + a1 — 71)]
X cos(Awq ) cos(Aws) cos(Aws)

= 0.
We consider special cases of boundary conditions.
1. DIRICHLET PROBLEM: a1 = ag =31 = 2 =0; 71 =3 = 1.

ajas - cos(Awi) sin(Awz ) cos(Aws)
+ ajaz - cos(Awy) cos(Awz) sin(Aws)
+ agas - sin(Awq ) cos(Aws ) cos(Aws)
— a3 - sin(Aw; ) sin(Aws) sin(Aws)
=0.

In the isotropic case (a1 = as = az) we obtain the well known result:

™

sin(Ad3) =0 = )\nzﬂ_’ n=12,....
3

COROLLARY: A\ = % >1,if 03 = w; +wo + w3z < .
2. NEUMANN PROBLEM: 01 =3 =71 =73 =0; a1 = a3z = 1.

a3 - cos(Awy ) sin(Aws) cos(Aws)
+ agas - cos(Awr ) cos(Aws) sin(Aws)
+ ajaz - sin(Awq) cos(Awz) cos(Aws)
(

Awq ) sin(Aws) sin(Aws)

—ai1as - sin

=0.

In the isotropic case (a1 = as = az) we hence obtain:
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™
0s’
COROLLARY: A\ = % >1,if 03 = w; +wo + w3z < .

sin(Ads) =0 = A\, = n=0,1,2,....

3. MIXED PROBLEM: a1 =7y3 =1, a3 =1 =2 =71 =0.
a3 - cos(Aw ) sin(Aws) sin(Aws)
+ ayas - sin(Awq) sin(Aws) cos(Aws)
+ ajas - sin(Awq) cos(Aws) sin(Aws)
— azag - cos(Awr ) cos(Awa) cos(Aws)
=0.
In the isotropic case (a1 = a2 = as):
m(2n —1)
205
COROLLARY: A\ = ﬁ >1,if 03 = w1 +ws +wz < 3.

cos(A3) =0 = A\, = n=12....

4. ROBIN PROBLEM: a1 =1, a3 =1; 81 = 2 =0.

(Na2a3 + y1y3a3) - sin(Awy ) sin(Aws) sin(Aws)

— X (y3a103 — y1a103) - cos(Awr ) sin(Aws) sin(Aws)
— Aaz - (1362 — y1a3) - sin(Aw ) sin(Aws) cos(Aws)
— ara3(y1y3 + A%a3) - cos(Awi) sin(Aws) cos(Aws)

— Xag - (1303 — y1a3) - sin(Awy ) cos(Aws) sin(\ws)
—ajaz - (1193 + A2a3) - cos(Awy ) cos(Aws) sin(Aws)
— agaz - (1193 + A%a?) - sin(Aw; ) cos(Aws) cos(Aws)
+ Aajasas - (y3 — v1) - cos(Awr ) cos(Aws) cos(Aws)

=0.

In the isotropic case (a1 = az = az = 1) we recover (see [3], §10.1.7, Example 1):

14. Two media transmission problem

Here we consider in detail 2-dimensional transmission problem with two
different media (w; = wp = %) for the Laplace operator in an angular sym-
metric domain and investigate the corresponding eigenvalue problem. Suppose
n = 2, the domain G lies inside the angle

GO:{(T’MH r > 0; _%<W<?}, woe]O,Qﬂ'[;
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O € 0G and in some neighborhood of O the boundary 0G coincides with the

sides of the corner w = —* and w = %*. We denote

Fi:{(r,w)|r>0;w:i%}, Yo={(r,w)| r>0; w=0}
and we put

B(w)|20 = ((0) = 8 = const > 0, ’y(w)|w:i%o = v+ = const > 0.

We consider the following problem:

arNuy = fy(x), T e Gy
[U}EO =0;
Ou 1 _ . (1.5)
{aaﬁ] o + |x|ﬂu(aj) = h(x), x € Xo;
Ot L us(e) —gel@),  a€TL)\O
axat == + 2yEuE(T) = 9£(7), x + .

It is well known that the homogeneous problem (f(z) = h(xz) = g(z) = 0) has
solution of the form u(r,w) = r*1)(w), where \ is an eigenvalue and 9 (w) is the
corresponding eigenfunction of the problem

Py + Ay (w) =0, for w € (0, 4);
Y+ A2 (w) =0, for w € (—%2,0);
¥4(0) =¥ (0); (1.6)

a9 (0) — a9’ (0) = By (0);

tarard (i%) oyt (i%) —0.

Thecase A = 0

In this case the solution of our equations has the form
Yi(w) = Asr-w+ By,

From the boundary conditions we obtain By = B_ = B and to find A, A_,
B, we have the system

G+A+ —a_A_— ﬁB = 0,

wo
(04+a+ + 7%) Ay +74B =0,

- (a,a, + %v,> A_+~_B=0.

Since A?s- + A2 + B? £ 0, the determinant must be equal to zero; this means
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wo wo wo
p (Oé+a+ + 7’V+) (a,a, + 777) ta4y+ <a,a, + 77—)

) (1.7)

wo
ta-7- (Oé+a+ T
=0.
Thus if the equality (1.7) is satisfied, then A = 0 and the corresponding eigen-
functions are

_wo _ wo .
R A e fo> e e if 3 = 0;
a+7+{(w+7) 7_—a_a_}, we (=%,0),
o )+ ) (55
w e (0,%9);
)= wWoY+ a— a+7+ woY— A0
7_(a+a++ 5 )( —?)— B (a_a_—l- 5 >,
we (—%,0),

The case A # 0

In this case the solution of our equations has the form
Y1 (w) = Ay cos(Aw) + By sin(Aw).
From the boundary conditions we obtain Ay = A_ = A and to find A, B, ,
B_ we have the system

ﬂA — )\(Z+B+ —+ )\a,B, = 0,

A A A A

(m. cos % — Aaja4 sin %)A + <’y+ sin % + Aayay cos %)BJr =0,
A A A A

(’y_ cos % — Aa_a_sin %)A — (’y_ sin % + Aa_a_ cos %)B_ =0.

Since A% + B% 4+ B? # 0, the determinant must be zero; this means that X is
defined by the transcendental equation

BNara aras +vi7-) + A ay —a-)(a-ayy — avagy-)
+ ABla-a—v4 + ataqy-)
T (as +a)(1a7 — Naga_ara )] sin(wo)
+[B(Vara_ara —y4-)
+ X (as +a-)(a—a—ys + atpayy-)] cos(Awo)

(1.8)

=0.

Now we investigate special cases of the boundary conditions.
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1. THE DIRICHLET PROBLEM: a+ = 0. Equation (1.8) takes the form
B(1 — cos(Awp)) + Aat + a—) sin(Awp) = 0.

Hence we get

w
A= ' Aw ar+a
the least positive root of tan TO = —% -, if 86#0
and the corresponding eigenfunction is
sin)\(ﬂ—w), w e (0,%9);
2
b(w) = 2
sin)\(g +w>, we (—%,0).

2. THE NEUMANN PROBLEM: v+ = 0. Equation (1.8) takes the form
B(1 + cos(Awp)) — Aat + a—) sin(Awp) = 0.

Hence we get A = min{\*, wlo , where \* is the least positive root of the
transcendental equation

)\o.)o ﬂ 1
tan — = —— - —.
2 ar +a_ A

We find the corresponding eigenfunctions

a— sinE, w e (0,9); -
wo X
Y(w) = . Tw wo )\:W_O’
a+smw—o, we (=%2,0),
) cos \* (w—%), w € (0,9);
(w) = : A=\
* 0
cos A (w+7), we (=%2,0),

3. MIXED PROBLEM: a4 = 1, a— = 0; y4 = 0, v— = 1. Equation (1.8) takes
the form

Bsin(Awp) + Aat + a—) cos(Awp) = AMay —a_). (1.9)

In particular, if 8 = 0, then

2 a_ . a_
A= —arctan /| — > 1, if wg < 2arctan , / —
wo a4 a4

as aya_ > 0; and the corresponding eigenfunction is
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a_

cos(Aw) + -sin(Aw), w € (0,9);
a+
bw) = i
cos(Aw) + [ — - sin(Aw), w e (—%,0).
a_

If X\ is the least positive root of the transcendental equation (1.9), then
we find the corresponding eigenfunction

A
sinﬂcos)\(w—ﬂ), w € (0,%);
_ 2 2
Plw) = v .
COSTOSiH)\(w-i-?O), w e (—%,0).

4. THE ROBIN PROBLEM: at = 1; v+ # 0. Equation (1.8) takes the form

BN ara- +747-) + A ay —a-)(a-yy —ayy-)
+ABla—y4 +ayy-) + (a4 + a) (77— — Aapa)]sin(Awo)
+[B(Navas —vpy-) + X (as +a-)(a—ys + ay-)] cos(Awo)
=0.
In particular, in the case of the problem without the interface (ay =

a_ =1, f = 0) we obtain the least eigenvalue as the least positive root
of the transcendental equation

A+ +9-)
o 1.10
A2 =77 (1.10)

and the corresponding eigenfunction is

Y(w) = Acos [)\ (w - %)] — Y4 sin [)\ (w - 7)]
(see [3], §10.1.7).

In order to have A > 1 we show that the condition v+ > v > tan = from
the assumption (b) of our Theorem is satisfied. In fact, we rewrite the
equation (1.10) in the equivalent form A\ = w—lo (arctan "’T* + arctan "’T’)
It follows that

tan(Awg) =

1 p—
1 < A < —(arctanvy; + arctany_) = wy < arctan M,
wo 1—yeyo’ (1.11)
provided that y;vy— <1

has to be fulfilled. But our condition from the assumption (b) means that
Y+ > Yo > tan % Hence we obtain

- o 20 2 tan
L=y T 1=73 1—tan®*<p

T
= tanwy, wo < 5



The transmission problem for elliptic second order equations in a conical domain 79

Thus we established (1.11). In the case v+ > v > tan g > 1 for wg €
[5,m) the inequality A > 1 is fulfilled a fortiori, because of the property
of the monotonic increase of the eigenvalues together with the increase of
~v(w) (see for example [4], chapter VI, §2, Theorem 6). In fact, A = 1 is
the solution of the equation (1.10) under assumption v+ = tan <

2. Problem (L)

We assume that G = G1 U G_ U Xy is divided into two subdomains G4
and G_ by a hyperplane ¥¢ = G N {z,, = 0}, where O € ¥y. We assume also
that Mo = max ¢ [u(x)| is known and, without loss of generality, that there
exists d > 0 such that G¢ is a rotational cone with the vertex at O and the
aperture wg € (0, 27), thus

n
Fg:{(r,w)’x%:cotz% z7; r€(0,d), w1=7}-

=2

DEFINITION 2
A function wu(zx) is called a weak solution of the problem (L) provided that

u(z) € CO(G)N VOV%)(G) and satisfies the integral identity

/ (089 (@)t 1, — (@)1, 1() — () (z) } dx
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/ﬁ ds—i—/v(w)u(x)n(x) ds

/ ds+/h ds—/f

for all functions n(z) € C°(G) N Vci/'(l) .

Regarding the equation we assume that the following conditions are satis-
fied:

(a) the condition of the uniform ellipticity:
vi€? <af(@)6i& < pe€?, Ve eGi, VEER™

Vi, u+ = const > 0, and aiij(()) = aéf ,

where (5? is the Kronecker symbol and

a+, .’EEG+;
a_, reG_,

with positive constants a+; we denote
a, = min{ay, a_} >0, a* = max{ay, a_} > 0;

Ve = min{v_, vy }; p = max(p—, fiy);

(b) a¥(z) € C°(G), a'(x) € L,(G), a(z), f(x) € Lz (G)NL2(G); p>n. The

inequalities
( S Ja (2) - ai£<y>2) < as A(le - )
ij=1
|x|(Z |az;<x>|2) t lePlas (2)] < azA(a])

=1

hold for x,y € G, Here A(r) is a monotonically increasing, nonnegative
function, continuous at 0 with A(0) = 0;

(¢) a(z) <0in G; B(w) > vy >0 on og; y(w) > vy >0 on 0G;
(d) there exist numbers f1 >0, g1 >0, h1 >0, s> 1, 8> s— 2 such that
f@)] < filzl?, @) < gilal™h, [h(@)] < Pafaf*

v(w) is a positive bounded piecewise smooth function on 0, o(w) is a
positive continuous function on og;
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z": 94 (2)
: ox;

=1

(aa)

Our main result is the following theorem.

<K forallj=1,...,n

THEOREM 2

Let u be a weak solution of the problem (L), the assumptions (a)-(d), (aa) are

satisfied with A(r) Dini-continuous at zero. Let \ be as in (1.1); N =2. Then

there are d € (0,1) and constants C > 0, ¢ > 0 depending only on n, v., p*,
A1, \ai(x)\QHLP(G) , K, wo, fi, h1, g1, v, s, My, measG, diam G

and on the quantity fo AW gy such that for all x € G

|z, if s>\

1 )
u<x>sco(||u||2,c+f1+7gl+ + ) mnc(m), Foma
|lz|®, if s < .

Suppose, in addition, that
a'(z) € CYQG), o(w) € Cl(oo) v(w) € Cl(aG),
f@) € V0o W(G),  h(x) €V,yl W(00),  glx) € V, 0 ,(9G);

p > n and there is a number

p2p n

—. —Ss
Ot (I T A

p,2p—n\Tp/2 P,2p—n( e/2

Then for all x € G

Vu(z)] < 1 (|u|2,a ST N S TQ)
o Ve

lz|A 1, if s>\
x { |z[* ! n® <%> , ifs=X
|lz[*~1, if s <.
Furthermore, w € V2 5, . (G) and

vz, e < Co (lulac + i+ <o+ —=hi+7:)
A

0", if s >\

X gln()zfs—

0°, if s <A\
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3. Problem (W L)

We consider problem (W L) that is the transmission problem for a quasi-
linear equation with semi-linear principal part.

DEFINITION 3

The function u(x) is called a weak solution of the problem (WL) provided that
u(z) € C°(G) N W1(G) and satisfies the integral identity

/ (]9 (), 7o, + b, u, ug ()} d
G

r

—I—/@ulu\qﬁ(as) ds+/7(w)“|u\q7l(l‘)ds
o

oG
= [ st ds + [ hiawnta) ds
oG 3o
for all functions n(z) € C°(G) N W(G).

Regarding the equation we assume that the following conditions are satis-
fied.

Let q>0,0< u<qg+1,5s>1, f1>0,91 >0, h1 >0, 3> 5—2 be given
numbers.

(a) The condition of the uniform ellipticity:
a8 <a(2)&&; < Ar&?, Vo € Gi, VEERM
a4+, A+ = const > 0, ag(()) = aé{,
where (53 is the Kronecker symbol;

a+, .’EEG+;
a =
a_, reG_;

as = min{ay, a_} > 0;
a* = max{ay, a_} > 0;
A* =max(A_, A}).

(b) a’l(z) € C°(G) and the inequality

n

( 3 Ja¥ () —aiﬁ‘(y)F)z < Alz - y)

ij=1



The transmission problem for elliptic second order equations in a conical domain 83

holds for x,y € G, where A(r) is a monotonically increasing, nonnegative
function, continuous at 0 with A(0) = 0.

() [b(m, u,ue)| < ap|ult™HVul® + bo(z); 0 < 1 < 1+44q, bo(w) € Ly2(G),
n<p<2n.

(d) B(w) > vy >0 on og; y(w) > vy >0 on 0G.

(e) Bhgz,u) <0, ag(az,u) <0.

u =

(£) bo(x)] < frlzl?, |g(z,0)| < gal2]*~, |h(w,0)] < halz*.

We assume without loss of generality that there exists d > 0 such that G¢ is a
rotational cone with the vertex at O and the aperture wg € (0, 27).
Our main result is the following statement.

THEOREM 3

Let u be a weak solution of the problem (W L), the assumptions (a)-(f) are satis-
fied with A(r) Dini-continuous at zero. Let us assume that Mo = max, ¢ [u(7)|
is known. Let X be as in (1.1) for N = 2. Then there are d € (0,1) and con-
stants Cy > 0, ¢ > 0 depending only on n, a., A*, p, ¢, \, i, fr, h1, 91, o,
s, My, meas G, diam G and on the quantity fol AW gr such that for all z € G¢

r

AAtg—p) 1 _
|z @ if s > )\%q“;
A(14q—p) .
lu(@)| < Co { fo) @o*” e | = ifs = ALt a
lz| )’ 1+q
‘x‘mv ZfS < )\%qu

Suppose, in addition, that coefficients of the problem (WL) satisfy such con-
ditions, which guarantee the local estimate [Vulo,gr < My for any smooth
G' C G\ {O} (see for example [1], §4). Then for all x € G4

AA+q—p) 1 _
\x\ (¢+1)2 1’ ifs>)\%;
q
A(A+q—p) _
Vu(@) < C1 4 [af Gt e (L ifs = A\LTd— R,
| ) l4+q
s 1 —
|z|7+ Tt z‘fs<>\7+q =
1+¢

with C1 = cl(||u||2(q+1),g +fi+g1+ hl), where ¢ depends on My, M, and
Cy from above.

The idea of the proofs of Theorems 1-3 is based on the deduction of a new
inequality of the Friedrichs—Wirtinger type with the exact constant as well
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as other integral-differential inequalities adapted to the transmission problem.
The precise exponent of the solution decrease rate depends on this exact con-
stant. We obtain the Friedrichs—Wirtinger type inequality by the variational
principle:

LEMMA 1
Let 9 be the smallest positive eigenvalue of the problem (EV P). Let  C S™~!
be a bounded domain. Let ) € W(Q) and satisfy the boundary and conjunction
conditions from (EV P) in the weak sense. Let v(w) be a positive bounded
piecewise smooth function on 02, B(w) be a positive continuous function on
oo. Then

0 [arwdns [avou@P s [seure s+ [ o) d.
Q Q o)

o0

LEMMA 2
Let G¢ be the conical domain and Vv(p,-) € La(Q) for almost all ¢ € (0,d).
Assume that for almost all ¢ € (0,d)

Vip) = /arz_"\Vdeac—l—/Tl_nﬂ(“})vz(w) ds—l—/rl_"’y(w)UQ(x) ds < o0.

Gg =5 rg

Then

At last we derive a result that asserts the local estimate at the boundary
(near the conical point) of the weak solution of problem (WL).

THEOREM 4

Let u(x) be a weak solution of the problem (WL). Suppose that assumptions
(a), (c)-(e) are satisfied. Suppose, in addition, that h(xz) € Lo(X0), g(z) €
Lo (0G). Then the inequality

lu(z)| < ¢
sup |u(z)| € ——5+——=
Gye (1= s¢) (D)

1 . -
+ 07 (Ilg(w, 0) |1 T T + (2, 01T, ) §

—n 2 (1_n .
{07 F 0D ullygyny g + 07T ool 175

holds for any t > 0, s € (0,1) and o € (0,d), where C = const(n, a., A*, t,p,
u,G) and d € (0,1).
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Examples

Here we consider two dimensional transmission problem for the Laplace
operator with absorbtion term in an angular domain and investigate the cor-
responding eigenvalue problem. Suppose n = 2, and the domain G lies inside
the angle

Go:{(r,w)| r > 0; _0 o< ﬂ}, wo €10, 27[;

2 2
O € 0G and in some neighborhood of O the boundary G coincides with the
sides w = = and w = <. We denote
Fi:{(r,w)|r>0;w:i%}, Yo={(r,w)| r>0; w=0}

and we put
ﬂ(w)|zoz B = const > 0, ’y(w)| = v+ = const > 0.

—4 %0
w==%3

We consider the following problem:

dx; (|u|"ug,) = a0T72u‘u|q - Mu|u‘q_2‘vu‘2’ z € Go \ Xo;
[uly, = 0;
[au|qg—Z]E + %uur] =0, x € Xo;
0
aiaiuiq(gg—;—k%uiuﬂqzo, zelyL\O,

where

a4, ZL’GG+;
a =
a—, reG_,

a4 are positive constants; ag > 0,0 < pu <1+g¢, ¢ >0; ax € {0;1}. We make
the function change u = v|v|*~! with ¢ = — and consider our problem for the

q+1
function v(x):
1

AU+M§U_1‘VU|2 :(10(1—1—q)7“_21}7 ¢ = l——i—q’ x € Go \ Xo;
[U]zo =0;

0
{“_U] ++pt o, x € Xo;

on s, ||

v vy (x

aiai8—:+(1+q)’yi ix():(), I'GFi\O.
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We want to find the exact solution of this problem in the form v(r, w) = r*y(w).
For 1 (w) we obtain the problem

P (w) + ﬁ (W) 4+ {(1+ )52 — ag(1 +‘1)} () =
we (—%,0)U (0, 70),
[w}w:O = 07
[ay’(0)] = (1 + q)B(0);
torary)y ( %) (1 +a)revs ( “; ) =0
We assume that 2 > ag %;ﬁ: and define the value T" = /5 — ag &—;(2# We

consider separately two cases: p = 0 and p # 0.

Thecase u = 0
In this case we get
Y1 (w) = Acos(Tw) + By sin(Tw),

where constants A, B4 should be determined from the conjunction and bound-
ary conditions.

1. THE DIRICHLET PROBLEM: at = 0, 7+ # 0. Direct calculations will

give
wo i B =0;
Py (w) = cos(Yw) F cot (TT) -sin(Yw), T =< wo
e, ip#0,
where T* is the least positive root of the transcendental equation
1
T - cot (Two) ___1ta
2 ar +a_
and from the graphic solution we obtain 7= <7 < Z%. The correspond-
ing eigenfunctions are
cos (E> , if 6=0;

cos(T*w) F cot (T*4) - sin(T*w), it 8#0.
2. THE NEUMANN PROBLEM: a4 = 1, 7+ = 0. Direct calculations give

T
—, if B =0;
T =< wo h

T B £,
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where 7" is the least positive root of the transcendental equation

T.tan (Tﬂ) — i
2 CL++0,_

and from the graphic solution we obtain 0 < 7* < o The corresponding
eigenfunctions are

W

as sin (—) , if 6=0;
Vi (w) = wo
cos(Y*w) + tan (T4 ) - sin(T*w), if 8 #£0.

3. MIXED PROBLEM: ay =1, a_ =0; v4 =0, v— = 1. Direct calculations
give: T = 7", where T* is the least positive root of the transcendental

equation
1
a4 tan (T%) —a_ cot (T%) — %ﬁ

The corresponding eigenfunctions are
Yy (w) = cos(T*w) + tan (T*%) -sin(T*w), we [0,4];
P_(w) = cos(T*w) + cot <T*%) -sin(T*w), w e [-2,0].

4. THE ROBIN PROBLEM: at = 1, v4 # 0. Direct calculations give:

1) * =+ = ¢i(w) = agsin(T*w), where T™* is the least positive
root of the transcendental equation

T - cot (T%) =—(1+ Q)Z_i
and from the graphic solution we obtain 2o < T < Z_Z
2) £ % s A0 and 44 (0) £ 0;
further see below the general case p # 0.
The case pu # 0
Y (w)

It is obvious that in this case 1(0) # 0. By setting y(w) = ) e arrive
at the problem for y(w)

Y+ 1+ p)y () + (L + ps)s —ao(1+q) =0, we (=5,0)U(0,%);

a4+y+(0) —a_y—(0) = (1 + ¢)B;
torarys (£4) + (14 )y =0.
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Integrating the equation of our problem we find
Y+ (w) =T tan{T (Cx — (1 + us)w)}, vCy.

From the boundary conditions we have

wo _ 1 (1+q)v+
Cy==(1 — F = tan —————.
* (14 pis) 2 + T arean atarT
Finally, in virtue of the conjunction condition, we get the equation for s:
aya T tan {(14 p)T 5} — (1+ )y
ayar? + (14 q)vy tan {(1 + pc)T5 }
a_a_Ttan {(1 4 p)TL} — (1 + q)7-

a+

+a_ -
a_a_T + (14 q)y—tan {(1 + pc) T}
1 1
= %ﬁ, where 1+ p¢ = %—gu

Thus we obtain

1
1tgtp (iﬂ _ w) + arctan
1+g¢

yi(w):nan{r : %}

aiaiT

and, because of (Inv¥(w)) = y(w), it follows that

_14+q 1 q 1 ( wo (1 Q) /+
— THarn { Yy — 2 P (422 ) tan —— 2 "= L
’(/)i (w) COS { 1 w | F arctan T

At last, returning to the function u we establish a solution of our problem

(1+9)+ }

aiaiT

1
M (iﬂ — w) F arctan
1+4+4¢

P23 1
ut(r,w) = r7T+Ha cosThatr ¢ 1 5

If we consider the Dirichlet problem without the interface: ayL = 0,
a+ =1, 8 =0, then we can calculate

X ~ 2
u(r,w) =7 Cosﬁw (E> ; N\ = \/(W/WO) + a()(l +q+ /~L)
wo I+q+p

It recovers a well known result (see [2], p. 374, Example 4.6). Now we can
verify that the derived exact solution satisfies the estimate of Theorem 3. In

s

fact, in our case we have: the value A is equal ¥ = o and therefore

;\ e 1 o  ltqg—p
lu(r,w)] < 1™ < oo T < P Grel

1 > 1tq—p

since ag > 0 and Tt 2 GraT
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