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Pavel Hí, Milan PokornýRandomly Cn∪Cm graphsAbstrat. A graph G is said to be a randomly H graph if and only if

any subgraph of G without isolated vertices, which is isomorphic to a
subgraph of H , can be extended to a subgraph F of G such that F is
isomorphic to H . In this paper the problem of randomly H graphs, where
H = Cn ∪ Cm , m 6= n, is discussed.1. Introdution

In 1951 Ore [12] studied arbitrarily traceable graphs, which were later re-
ferred to as randomly eulerian graphs. This concept was later extended by
Chartrand and White [5], and Erickson [8]. In 1968 Chartrand and Kronk
[2] introduced and characterized the concept of randomly hamiltonian graphs.
Analogous questions were studied in [4], [6], [7], and [12].

In 1986 Chartrand, Oellermann, and Ruiz [3] generalized these concepts
and introduced the term ‘randomly H graph’ as follows: Let G be a graph
containing a subgraph H without isolated vertices. Then G is called a randomly
H graph if whenever F is a subgraph of G without isolated vertices that is
isomorphic to a subgraph of H , then F can be extended to a subgraph H1 of
G such that H1 is isomorphic to H .

The graph G shown in Figure 1 is not randomly P4 since the subgraph F of
G cannot be extended to a subgraph of G isomorphic to P4 , while the graph
K3,3 is randomly P4 as well as randomly C4 .
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Figure 1
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Every nonempty graph is randomly K2 , while every graph G without iso-

lated vertices is a randomly G graph. Kn is randomly H for every H ⊆ Kn .
The graph K3,3 is randomly H for every subgraph H of K3,3 (see [3], Theo-
rem 1).

The requirement that both H and F are without isolated vertices follows
from [3]. That is why we consider that both H and F are free of isolated
vertices.2. Preliminaries

The general question is ‘For what classes of graphs H is it possible to
characterize all those graphs G that are randomly H?’.

In [10] the characterization of randomly Kr,s graphs was given, but in terms
of H-closed graphs. In [1] Alavi, Lick, and Tian studied randomly complete
n-partite graphs and characterized them.

The problem of characterization of randomly H graphs, where H is r-regular
graph on p vertices, was given by Tomasta and Tomová (see [14]). In general,
the characterization of such graphs seems to be difficult. However, there exist
several results for some special values of r and p.

Theorem A (see Sumner [13])
Let H be a 1-regular graph on 2p vertices. A graph G on 2p vertices is randomly
H (perfect matchable) if and only if

1. G = K2p , or

2. G = Kp,p , or

3. G = H.

This is a list of results about randomly 2-regular connected graphs, which
means randomly Cn graphs.

Theorem B (see Tomasta and Tomová [14])
Let G be a p-vertex graph which is randomly Cn , n > 4, p > n. Then G = Kp .

Theorem C (see Chartrand, Oellermann, and Ruiz [3])
A graph G is randomly C3 if and only if each component of G is a complete
graph of order at least 3.

Theorem D (see Chartrand, Oellermann, and Ruiz [3] and also Híc [10])
A graph G is randomly C4 if and only if

1. G = Kp , where p ≥ 4, or

2. G = Kr,s , where 2 ≤ r ≤ s.
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Theorem E (see Chartrand, Oellermann, and Ruiz [3])
A graph G is randomly Cn , n ≥ 5, if and only if

1. G = Kp , where p ≥ n, or

2. G = Cn , or

3. G = K n

2
, n

2
and n is even.

The following is a list of results about randomly 2-regular disconnected
graphs, more specifically randomly 2Cn = Cn ∪ Cn graphs.

Theorem F (see Híc and Pokorný [11])
A graph G is randomly 2C3 if and only if

1. G = Kp , p ≥ 6, or

2. G = Kp1
∪ Kp2

∪ . . . ∪ Kpn
, where n ≥ 2, pi = 3 or pi ≥ 6.

Theorem G (see Híc and Pokorný [11])
A graph G is randomly 2C2n+1 , where n ≥ 2, if and only if

1. G = 2C2n+1 , or

2. G = 2K2n+1 , or

3. G = C2n+1 ∪ K2n+1 , or

4. G = Kp , p ≥ 2(2n + 1).

Theorem H (see Híc and Pokorný [11])
A graph G is randomly 2C4 if and only if

1. G = Kr,s , where 4 ≤ r ≤ s, or

2. G = 2C4 , or

3. G = 2K4 , or

4. G = C4 ∪ K4 , or

5. G = Kp , where p ≥ 8.

Theorem I (see Híc and Pokorný [11])
A graph G is randomly 2C2n , where n ≥ 3, if and only if

(i) G = 2K2n , or

(ii) G = 2C2n , or

(iii) G = 2Kn,n , or

(iv) G = C2n ∪ Kn,n , or

(v) G = C2n ∪ K2n , or
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(vi) G = Kn,n ∪ K2n , or

(vii) G = K2n,2n , or

(viii) G = Kp , p ≥ 4n.

This paper deals with randomly 2-regular graphs H , where H = Cn ∪Cm ,
n 6= m (both components of H are circuits).

All the terms used in this paper can be found in [9]. Especially, if H is a
subgraph of G, we will use G − H = 〈V (G) − V (H)〉 to denote the induced
subgraph of the graph G with the vertex set V (G) − V (H).3. Results
Lemma 1
Let G be a disconnected randomly Cn ∪ Cm graph, where 3 ≤ n < m. Then G

has two components. Moreover, one of the components has n vertices and the
other one has m vertices.

Proof. First, we will prove that G has two components.
a) Let G have k components, where k > 2. Let us construct a subgraph H

of G which consists of three edges which belong to three different components
of G. The subgraph H must be isomorphic to some subgraph of Cn ∪ Cm .
However, the subgraph H cannot be extended to Cn ∪ Cm , a contradiction.

b) Let G have two components. Now we will prove that one of the com-
ponents of G has n vertices and the other one has m vertices. We will discuss
four different cases.

1. Obviously none of the components has less than n vertices. Moreover,
one of the components has at least m vertices.

2. Let one of the components of G have k vertices, k > m. Let us construct
a subgraph H1 = Pm−2 ∪ P3 of the component. Let H2 be a subgraph of the
other component of G which is isomorphic to P2 . Then H1 ∪ H2 should be
isomorphic to a subgraph of Cn ∪Cm , but it cannot be extended to Cn ∪Cm ,
a contradiction. Thus none of the components of G has more then m vertices.

3. Let both components of G have m vertices. Let us construct a sub-
graph H1 = Pn−⌊n

2
⌋ ∪ P⌊m

2
⌋ of the first component of G and a subgraph

H2 = Pm−⌊m

2
⌋ ∪ P⌊n

2
⌋ of the second component of G. Then H1 ∪ H2 must be

isomorphic to a subgraph of Cn ∪Cm , but it cannot be extended to Cn ∪Cm ,
a contradiction.

4. Let one of the components of G has k vertices, where n < k < m.
According to parts 1 and 2 of this proof the other component of G has m

vertices. Let us construct a subgraph F = Pk∪Pn of G, where Pk is a subgraph
of the component of G with k vertices. Then F ought to be isomorphic to a
subgraph of Cn ∪Cm , but it cannot be extended to Cn ∪Cm , a contradiction.
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According to a) and b), G has two components. Moreover, one of them has

n vertices and the other one has m vertices.

Lemma 2
Let G be a disconnected randomly Cn ∪ Cm graph, where 3 ≤ n < m. Then

(i) G = Cn ∪ Cm , or

(ii) G = Kn ∪ Cm , or

(iii) G = K n

2
, n

2
∪ Cm , where n is even.

Proof. Let G be a disconnected randomly Cn ∪ Cm graph. According to
Lemma 1, G has two components with n and m vertices. Obviously, one of the
components is randomly Cn and the other one is randomly Cm . According to
Theorem D and Theorem E, the first component can be Cn , Kn , or K n

2
, n

2
,

where n is even, and the other component can be Cm , Km , or K m

2
, m

2
, where

m is even. We will prove that the second component can be neither Km , nor
K m

2
, m

2
. Let us construct a subgraph F = Cn of this component. Then F is

also a subgraph of G which is isomorphic to a subgraph of Cn ∪ Cm , but it
cannot be extended to Cn ∪ Cm , a contradiction.

Lemma 3
Let G be a connected randomly Cn ∪Cm graph, where 3 ≤ n < m. If |V (G)| >

m + n, then G is a complete graph.

Proof. Let H be a subgraph of G isomorphic to Cn . Let G′ = G − H .
Obviously G′ is randomly Cm . We will prove that G′ is complete. Since
|V (G′)| > m, according to Theorem B, G′ = Kp , p > m. Now we will prove
that G′′ = 〈V (H)〉 is complete, too. Let H ′ = Cn be a subgraph of G′. If
G′′′ = G − H ′, then G′′ ⊆ G′′′. According to Theorem B, G′′′ is complete.
Then G′′ is complete, too. Finally, we will prove that for every u ∈ V (G′),
v ∈ V (G′′) the graph G contains the edge {u, v}. Let us choose u − v path on
m vertices. Since both G′ and G′′ are complete and G is connected, the path
always exists and can be extended to a graph which is isomorphic to Cn ∪ Cm

only if we add the edge {u, v} to the path. Since both u and v are arbitrary
vertices, G is complete.

Lemma 4
Let G be a connected randomly Cn ∪ Cm graph, where 4 ≤ n < m, |V (G)| =
m + n, and both m and n are even. If G contains a proper subgraph which is
isomorphic to K m+n

2
, m+n

2

, then G is a complete graph.

Proof. Let V (K m+n

2
, m+n

2

) = {u1, u2, . . . , u m+n

2

} ∪ {v1, v2, . . . , vm+n

2

}. Let

{ui, uj} ∈ E(G) and {ui, uj} 6∈ E(K m+n

2
, m+n

2

). Let vk , vt be arbitrary vertices
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that belong to the different partition set than ui and uj . Let us construct
the path vk, ui, uj , vs, us, . . . , vr, ur, vt of the length m. Since G is randomly
Cn ∪ Cm , the path can be extended to Cm only if we add the edge {vk, vt}.
Since both vk and vt are arbitrary vertices, {vk, vt} ∈ E(G) for every k, t. If
we use a similar method with the edge {vi, vj} ∈ E(G), we will prove that G

is a complete graph.

Lemma 5
Let G be a connected randomly Cn ∪ Cm graph, where 3 ≤ n < m, |V (G)| =
m + n. Then

(i) G = K m+n

2
, m+n

2

if m and n are even, or

(ii) G = Km+n .

Proof. Let H be a subgraph of G isomorphic to Cn . Let G′ = G − H .
Obviously G′ is randomly Cm . We will discuss three cases.

1. If m is odd, then according to Theorem E we have G′ = Cm or G′ = Km .
We will prove that G′ cannot be Cm . Assume the contrary. Let G′ be iso-
morphic to Cm . Then V (G′) = {v1, v2, . . . , vm} and E(G′) = {{vi, vi+1}; i =
1, 2, . . . , m− 1}∪{{vm, v1}}. Since G is connected, there exists an edge {u, v},
where u ∈ V (H), v ∈ V (G′). Without loss of generality we may assume that
v = v1 . Let us construct the path u, v1, v2, . . . , vm−1 . This path can be ex-
tended to Cm only by adding the edge {vm−1, u}. Now let us construct the
path vm, vm−1, u, v1, v2, . . . , vm−3 . This path can be extended to Cm only by
adding {vm−3, vm}. So G′ is not isomorphic to Cm , a contradiction. Then
G′ = Km . If we choose a subgraph Cn of G′ and we use similar ideas that we
used in the proof of Lemma 3, we will prove that G is complete.

2. Similarly, if n is odd, then G is complete, too.
3. Let both m and n be even. According to Theorem E we have G′ =

Cm , G′ = Km , or G′ = K m

2
, m

2
. It is easy to prove that G′ cannot be Cm .

In case G′ = Km we can prove that G is complete. Let us consider that
G′ = K m

2
, m

2
. Let G′′ = 〈V (H)〉. Note that G is randomly Cn ∪ Cm . If

we choose a subgraph H ′ = Cm of G′, then according to Theorem E it must
be G′′ = Cn, or G′′ = Kn, or G′′ = K n

2
, n

2
. Using similar ideas as in the

part 1 of this proof we can prove that G′′ cannot be Cn . If G′′ = Kn , then
G is complete. Now let us assume that G′′ = K n

2
, n

2
. Let the vertex sets

of G′ and G′′ be V (G′) = {u1, u2, . . . , u m

2
} ∪ {v1, v2, . . . , vm

2
} and V (G′′) =

{w1, w2, . . . , wn

2
} ∪ {t1, t2, . . . , tn

2
}. As G is a connected randomly Cm ∪ Cn

graph, there exists at least one edge which connects a vertex of G′ with a
vertex of G′′. Let us denote this edge {ui, wj}. We will prove that for every
r ∈ {1, 2, . . . , m

2
} and s ∈ {1, 2, . . . , n

2
}, {vr, ts} ∈ E(G). Let us consider a

path of the length m in G′ and G′′ that starts in vr , ends in ts , and contains the
edge {ui, wj}. This path always exists. Since G is randomly Cm∪Cn , the path
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can be extended to Cm only by adding the edge {vr, ts}. Since r and s were
arbitrary, we proved that every vertex from {v1, v2, . . . , vm

2
} is connected with

every vertex from {t1, t2, . . . , tn

2
}. If we repeat a similar procedure with the edge

{vr, ts} we can prove that every vertex from {u1, u2, . . . , u m

2
} is connected with

every vertex from {w1, w2, . . . , wn

2
}. It means that if G is randomly Cn ∪ Cm

and both m and n are even, then K m+n

2
, m+n

2

⊆ G ⊆ Km+n . According to

Lemma 4, G = K m+n

2
, m+n

2

or G = Km+n .

The following theorem summarizes the characterization of randomly Cn ∪
Cm graphs. It is easy to prove that each of the graphs that are mentioned
in the theorem is randomly Cn ∪ Cm . The rest of the theorem follows from
Lemma 1-5.

Theorem 1
A graph G is randomly Cn ∪ Cm , where 3 ≤ n < m if and only if

(i) G = Cn ∪ Cm , or

(ii) G = Kn ∪ Cm , or

(iii) G = K n

2
, n

2
∪ Cm where n is even, or

(iv) G = K m+n

2
, m+n

2

where both m and n are even, or

(v) G = Kp , where p ≥ m + n.Conlusion
In the paper a characterization of randomly H graphs where H = Cn ∪Cm

is given. The case of 2-regular randomly H graphs, where H is a 2-regular
graph which contains more than two components, remains open.Aknowledgement
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