Annales Academiae Paedagogicae Cracoviensis

Folia 45

Studia Mathematica VI

Pavel Hic, Milan Pokorný
Randomly $C_{n} \cup C_{m}$ graphs

Abstract

A graph G is said to be a randomly H graph if and only if any subgraph of G without isolated vertices, which is isomorphic to a subgraph of H, can be extended to a subgraph F of G such that F is isomorphic to H. In this paper the problem of randomly H graphs, where $H=C_{n} \cup C_{m}, m \neq n$, is discussed.

1. Introduction

In 1951 Ore [12] studied arbitrarily traceable graphs, which were later referred to as randomly eulerian graphs. This concept was later extended by Chartrand and White [5], and Erickson [8]. In 1968 Chartrand and Kronk [2] introduced and characterized the concept of randomly hamiltonian graphs. Analogous questions were studied in [4], [6], [7], and [12].

In 1986 Chartrand, Oellermann, and Ruiz [3] generalized these concepts and introduced the term 'randomly H graph' as follows: Let G be a graph containing a subgraph H without isolated vertices. Then G is called a randomly H graph if whenever F is a subgraph of G without isolated vertices that is isomorphic to a subgraph of H, then F can be extended to a subgraph H_{1} of G such that H_{1} is isomorphic to H.

The graph G shown in Figure 1 is not randomly P_{4} since the subgraph F of G cannot be extended to a subgraph of G isomorphic to P_{4}, while the graph $K_{3,3}$ is randomly P_{4} as well as randomly C_{4}.

Figure 1

[^0]
124 Pavel Hic, Milan Pokorný

Every nonempty graph is randomly K_{2}, while every graph G without isolated vertices is a randomly G graph. K_{n} is randomly H for every $H \subseteq K_{n}$. The graph $K_{3,3}$ is randomly H for every subgraph H of $K_{3,3}$ (see [3], Theorem 1).

The requirement that both H and F are without isolated vertices follows from [3]. That is why we consider that both H and F are free of isolated vertices.

2. Preliminaries

The general question is 'For what classes of graphs H is it possible to characterize all those graphs G that are randomly H ?'.

In [10] the characterization of randomly $K_{r, s}$ graphs was given, but in terms of H-closed graphs. In [1] Alavi, Lick, and Tian studied randomly complete n-partite graphs and characterized them.

The problem of characterization of randomly H graphs, where H is r-regular graph on p vertices, was given by Tomasta and Tomová (see [14]). In general, the characterization of such graphs seems to be difficult. However, there exist several results for some special values of r and p.

Theorem A (see Sumner [13])
Let H be a 1 -regular graph on $2 p$ vertices. A graph G on $2 p$ vertices is randomly H (perfect matchable) if and only if

1. $G=K_{2 p}$, or
2. $G=K_{p, p}$, or
3. $G=H$.

This is a list of results about randomly 2-regular connected graphs, which means randomly C_{n} graphs.

Theorem B (see Tomasta and Tomová [14])
Let G be a p-vertex graph which is randomly $C_{n}, n>4, p>n$. Then $G=K_{p}$.
Theorem C (see Chartrand, Oellermann, and Ruiz [3])
A graph G is randomly C_{3} if and only if each component of G is a complete graph of order at least 3.

Theorem D (see Chartrand, Oellermann, and Ruiz [3] and also Híc [10])
A graph G is randomly C_{4} if and only if

1. $G=K_{p}$, where $p \geq 4$, or
2. $G=K_{r, s}$, where $2 \leq r \leq s$.

Theorem E (see Chartrand, Oellermann, and Ruiz [3])
A graph G is randomly $C_{n}, n \geq 5$, if and only if

1. $G=K_{p}$, where $p \geq n$, or
2. $G=C_{n}$, or
3. $G=K_{\frac{n}{2}, \frac{n}{2}}$ and n is even.

The following is a list of results about randomly 2-regular disconnected graphs, more specifically randomly $2 C_{n}=C_{n} \cup C_{n}$ graphs.

Theorem F (see Híc and Pokorný [11])
A graph G is randomly $2 C_{3}$ if and only if

1. $G=K_{p}, p \geq 6$, or
2. $G=K_{p_{1}} \cup K_{p_{2}} \cup \ldots \cup K_{p_{n}}$, where $n \geq 2$, $p_{i}=3$ or $p_{i} \geq 6$.

Theorem G (see Híc and Pokorný [11])
A graph G is randomly $2 C_{2 n+1}$, where $n \geq 2$, if and only if

1. $G=2 C_{2 n+1}$, or
2. $G=2 K_{2 n+1}$, or
3. $G=C_{2 n+1} \cup K_{2 n+1}$, or
4. $G=K_{p}, p \geq 2(2 n+1)$.

Theorem H (see Híc and Pokorný [11])
A graph G is randomly $2 C_{4}$ if and only if

1. $G=K_{r, s}$, where $4 \leq r \leq s$, or
2. $G=2 C_{4}$, or
3. $G=2 K_{4}$, or
4. $G=C_{4} \cup K_{4}$, or
5. $G=K_{p}$, where $p \geq 8$.

Theorem I (see Híc and Pokorný [11])
A graph G is randomly $2 C_{2 n}$, where $n \geq 3$, if and only if
(i) $G=2 K_{2 n}$, or
(ii) $G=2 C_{2 n}$, or
(iii) $G=2 K_{n, n}$, or
(iv) $G=C_{2 n} \cup K_{n, n}$, or
(v) $G=C_{2 n} \cup K_{2 n}$, or
(vi) $G=K_{n, n} \cup K_{2 n}$, or
(vii) $G=K_{2 n, 2 n}$, or
(viii) $G=K_{p}, p \geq 4 n$.

This paper deals with randomly 2-regular graphs H, where $H=C_{n} \cup C_{m}$, $n \neq m$ (both components of H are circuits).

All the terms used in this paper can be found in [9]. Especially, if H is a subgraph of G, we will use $G-H=\langle V(G)-V(H)\rangle$ to denote the induced subgraph of the graph G with the vertex set $V(G)-V(H)$.

3. Results

Lemma 1

Let G be a disconnected randomly $C_{n} \cup C_{m}$ graph, where $3 \leq n<m$. Then G has two components. Moreover, one of the components has n vertices and the other one has m vertices.

Proof. First, we will prove that G has two components.
a) Let G have k components, where $k>2$. Let us construct a subgraph H of G which consists of three edges which belong to three different components of G. The subgraph H must be isomorphic to some subgraph of $C_{n} \cup C_{m}$. However, the subgraph H cannot be extended to $C_{n} \cup C_{m}$, a contradiction.
b) Let G have two components. Now we will prove that one of the components of G has n vertices and the other one has m vertices. We will discuss four different cases.

1. Obviously none of the components has less than n vertices. Moreover, one of the components has at least m vertices.
2. Let one of the components of G have k vertices, $k>m$. Let us construct a subgraph $H_{1}=P_{m-2} \cup P_{3}$ of the component. Let H_{2} be a subgraph of the other component of G which is isomorphic to P_{2}. Then $H_{1} \cup H_{2}$ should be isomorphic to a subgraph of $C_{n} \cup C_{m}$, but it cannot be extended to $C_{n} \cup C_{m}$, a contradiction. Thus none of the components of G has more then m vertices.
3. Let both components of G have m vertices. Let us construct a subgraph $H_{1}=P_{n-\left\lfloor\frac{n}{2}\right\rfloor} \cup P_{\left\lfloor\frac{m}{2}\right\rfloor}$ of the first component of G and a subgraph $H_{2}=P_{m-\left\lfloor\frac{m}{2}\right\rfloor} \cup P_{\left\lfloor\frac{n}{2}\right\rfloor}$ of the second component of G. Then $H_{1} \cup H_{2}$ must be isomorphic to a subgraph of $C_{n} \cup C_{m}$, but it cannot be extended to $C_{n} \cup C_{m}$, a contradiction.
4. Let one of the components of G has k vertices, where $n<k<m$. According to parts 1 and 2 of this proof the other component of G has m vertices. Let us construct a subgraph $F=P_{k} \cup P_{n}$ of G, where P_{k} is a subgraph of the component of G with k vertices. Then F ought to be isomorphic to a subgraph of $C_{n} \cup C_{m}$, but it cannot be extended to $C_{n} \cup C_{m}$, a contradiction.

According to a) and b), G has two components. Moreover, one of them has n vertices and the other one has m vertices.

Lemma 2
Let G be a disconnected randomly $C_{n} \cup C_{m}$ graph, where $3 \leq n<m$. Then
(i) $G=C_{n} \cup C_{m}$, or
(ii) $G=K_{n} \cup C_{m}$, or
(iii) $G=K_{\frac{n}{2}, \frac{n}{2}} \cup C_{m}$, where n is even.

Proof. Let G be a disconnected randomly $C_{n} \cup C_{m}$ graph. According to Lemma 1, G has two components with n and m vertices. Obviously, one of the components is randomly C_{n} and the other one is randomly C_{m}. According to Theorem D and Theorem E , the first component can be C_{n}, K_{n}, or $K_{\frac{n}{2}, \frac{n}{2}}$, where n is even, and the other component can be C_{m}, K_{m}, or $K_{\frac{m}{2}, \frac{m}{2}}$, where m is even. We will prove that the second component can be neither K_{m}, nor $K_{\frac{m}{2}, \frac{m}{2}}$. Let us construct a subgraph $F=C_{n}$ of this component. Then F is also a subgraph of G which is isomorphic to a subgraph of $C_{n} \cup C_{m}$, but it cannot be extended to $C_{n} \cup C_{m}$, a contradiction.

Lemma 3
Let G be a connected randomly $C_{n} \cup C_{m}$ graph, where $3 \leq n<m$. If $|V(G)|>$ $m+n$, then G is a complete graph.

Proof. Let H be a subgraph of G isomorphic to C_{n}. Let $G^{\prime}=G-H$. Obviously G^{\prime} is randomly C_{m}. We will prove that G^{\prime} is complete. Since $\left|V\left(G^{\prime}\right)\right|>m$, according to Theorem $\mathrm{B}, G^{\prime}=K_{p}, p>m$. Now we will prove that $G^{\prime \prime}=\langle V(H)\rangle$ is complete, too. Let $H^{\prime}=C_{n}$ be a subgraph of G^{\prime}. If $G^{\prime \prime \prime}=G-H^{\prime}$, then $G^{\prime \prime} \subseteq G^{\prime \prime \prime}$. According to Theorem $\mathrm{B}, G^{\prime \prime \prime}$ is complete. Then $G^{\prime \prime}$ is complete, too. Finally, we will prove that for every $u \in V\left(G^{\prime}\right)$, $v \in V\left(G^{\prime \prime}\right)$ the graph G contains the edge $\{u, v\}$. Let us choose $u-v$ path on m vertices. Since both G^{\prime} and $G^{\prime \prime}$ are complete and G is connected, the path always exists and can be extended to a graph which is isomorphic to $C_{n} \cup C_{m}$ only if we add the edge $\{u, v\}$ to the path. Since both u and v are arbitrary vertices, G is complete.

Lemma 4
Let G be a connected randomly $C_{n} \cup C_{m}$ graph, where $4 \leq n<m,|V(G)|=$ $m+n$, and both m and n are even. If G contains a proper subgraph which is isomorphic to $K_{\frac{m+n}{2}, \frac{m+n}{2}}$, then G is a complete graph.

Proof. Let $V\left(K_{\frac{m+n}{2}, \frac{m+n}{2}}\right)=\left\{u_{1}, u_{2}, \ldots, u_{\frac{m+n}{2}}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{\frac{m+n}{2}}\right\}$. Let $\left\{u_{i}, u_{j}\right\} \in E(G)$ and $\left\{u_{i}, u_{j}^{2}\right\} \notin E\left(K_{\frac{m+n}{2}, \frac{m+n}{2}}\right)$. Let v_{k}, v_{t} be arbitrary vertices
that belong to the different partition set than u_{i} and u_{j}. Let us construct the path $v_{k}, u_{i}, u_{j}, v_{s}, u_{s}, \ldots, v_{r}, u_{r}, v_{t}$ of the length m. Since G is randomly $C_{n} \cup C_{m}$, the path can be extended to C_{m} only if we add the edge $\left\{v_{k}, v_{t}\right\}$. Since both v_{k} and v_{t} are arbitrary vertices, $\left\{v_{k}, v_{t}\right\} \in E(G)$ for every k, t. If we use a similar method with the edge $\left\{v_{i}, v_{j}\right\} \in E(G)$, we will prove that G is a complete graph.

Lemma 5
Let G be a connected randomly $C_{n} \cup C_{m}$ graph, where $3 \leq n<m,|V(G)|=$ $m+n$. Then
(i) $G=K_{\frac{m+n}{2}, \frac{m+n}{2}}$ if m and n are even, or
(ii) $G=K_{m+n}$.

Proof. Let H be a subgraph of G isomorphic to C_{n}. Let $G^{\prime}=G-H$. Obviously G^{\prime} is randomly C_{m}. We will discuss three cases.

1. If m is odd, then according to Theorem E we have $G^{\prime}=C_{m}$ or $G^{\prime}=K_{m}$. We will prove that G^{\prime} cannot be C_{m}. Assume the contrary. Let G^{\prime} be isomorphic to C_{m}. Then $V\left(G^{\prime}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $E\left(G^{\prime}\right)=\left\{\left\{v_{i}, v_{i+1}\right\} ; i=\right.$ $1,2, \ldots, m-1\} \cup\left\{\left\{v_{m}, v_{1}\right\}\right\}$. Since G is connected, there exists an edge $\{u, v\}$, where $u \in V(H), v \in V\left(G^{\prime}\right)$. Without loss of generality we may assume that $v=v_{1}$. Let us construct the path $u, v_{1}, v_{2}, \ldots, v_{m-1}$. This path can be extended to C_{m} only by adding the edge $\left\{v_{m-1}, u\right\}$. Now let us construct the path $v_{m}, v_{m-1}, u, v_{1}, v_{2}, \ldots, v_{m-3}$. This path can be extended to C_{m} only by adding $\left\{v_{m-3}, v_{m}\right\}$. So G^{\prime} is not isomorphic to C_{m}, a contradiction. Then $G^{\prime}=K_{m}$. If we choose a subgraph C_{n} of G^{\prime} and we use similar ideas that we used in the proof of Lemma 3, we will prove that G is complete.
2. Similarly, if n is odd, then G is complete, too.
3. Let both m and n be even. According to Theorem E we have $G^{\prime}=$ $C_{m}, G^{\prime}=K_{m}$, or $G^{\prime}=K_{\frac{m}{2}, \frac{m}{2}}$. It is easy to prove that G^{\prime} cannot be C_{m}. In case $G^{\prime}=K_{m}$ we can prove that G is complete. Let us consider that $G^{\prime}=K_{\frac{m}{2}, \frac{m}{2}}$. Let $G^{\prime \prime}=\langle V(H)\rangle$. Note that G is randomly $C_{n} \cup C_{m}$. If we choose a subgraph $H^{\prime}=C_{m}$ of G^{\prime}, then according to Theorem E it must be $G^{\prime \prime}=C_{n}$, or $G^{\prime \prime}=K_{n}$, or $G^{\prime \prime}=K_{\frac{n}{2}, \frac{n}{2} \text {. Using similar ideas as in the }}$ part 1 of this proof we can prove that $G^{\prime \prime}{ }^{\prime 2}$ cannot be C_{n}. If $G^{\prime \prime}=K_{n}$, then G is complete. Now let us assume that $G^{\prime \prime}=K_{\frac{n}{2}, \frac{n}{2}}$. Let the vertex sets of G^{\prime} and $G^{\prime \prime}$ be $V\left(G^{\prime}\right)=\left\{u_{1}, u_{2}, \ldots, u_{\frac{m}{2}}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{\frac{m}{2}}\right\}$ and $V\left(G^{\prime \prime}\right)=$ $\left\{w_{1}, w_{2}, \ldots, w_{\frac{n}{2}}\right\} \cup\left\{t_{1}, t_{2}, \ldots, t_{\frac{n}{2}}\right\}$. As G is a connected randomly $C_{m} \cup C_{n}$ graph, there exists at least one edge which connects a vertex of G^{\prime} with a vertex of $G^{\prime \prime}$. Let us denote this edge $\left\{u_{i}, w_{j}\right\}$. We will prove that for every $r \in\left\{1,2, \ldots, \frac{m}{2}\right\}$ and $s \in\left\{1,2, \ldots, \frac{n}{2}\right\}, \quad\left\{v_{r}, t_{s}\right\} \in E(G)$. Let us consider a path of the length m in G^{\prime} and $G^{\prime \prime}$ that starts in v_{r}, ends in t_{s}, and contains the edge $\left\{u_{i}, w_{j}\right\}$. This path always exists. Since G is randomly $C_{m} \cup C_{n}$, the path
can be extended to C_{m} only by adding the edge $\left\{v_{r}, t_{s}\right\}$. Since r and s were arbitrary, we proved that every vertex from $\left\{v_{1}, v_{2}, \ldots, v_{\frac{m}{2}}\right\}$ is connected with every vertex from $\left\{t_{1}, t_{2}, \ldots, t_{\frac{n}{2}}\right\}$. If we repeat a similar procedure with the edge $\left\{v_{r}, t_{s}\right\}$ we can prove that every vertex from $\left\{u_{1}, u_{2}, \ldots, u_{\frac{m}{2}}\right\}$ is connected with every vertex from $\left\{w_{1}, w_{2}, \ldots, w_{\frac{n}{2}}\right\}$. It means that if G is randomly $C_{n} \cup C_{m}$
 Lemma 4, $G=K_{\frac{m+n}{2}, \frac{m+n}{2}}$ or $G=K_{m+n}$.

The following theorem summarizes the characterization of randomly $C_{n} \cup$ C_{m} graphs. It is easy to prove that each of the graphs that are mentioned in the theorem is randomly $C_{n} \cup C_{m}$. The rest of the theorem follows from Lemma 1-5.

Theorem 1
A graph G is randomly $C_{n} \cup C_{m}$, where $3 \leq n<m$ if and only if
(i) $G=C_{n} \cup C_{m}$, or
(ii) $G=K_{n} \cup C_{m}$, or
(iii) $G=K_{\frac{n}{2}, \frac{n}{2}} \cup C_{m}$ where n is even, or
(iv) $G=K_{\frac{m+n}{2}, \frac{m+n}{2}}$ where both m and n are even, or
(v) $G=K_{p}$, where $p \geq m+n$.

Conclusion

In the paper a characterization of randomly H graphs where $H=C_{n} \cup C_{m}$ is given. The case of 2-regular randomly H graphs, where H is a 2-regular graph which contains more than two components, remains open.

Acknowledgement

Research partially supported by VEGA grant No. 1/4001/07.

References

[1] Y. Alavi, D.R. Lick, S.L. Tian, Randomly complete n-partite graphs, Math. Slovaca 39 (1989), no. 3, 241-250.
[2] G. Chartrand, H.V. Kronk, Randomly traceable graphs, SIAM J. Appl. Math. 16 (1968), 696-700.
[3] G. Chartrand, O.R. Oellermann, S. Ruiz, Randomly H graphs, Math. Slovaca 36 (1986), no. 2, 129-136.
[4] G. Chartrand, H.V. Kronk, D.R. Lick, Randomly hamiltonian digraphs, Fund. Math. 65 (1969), 223-226.
[5] G. Chartrand, A.T. White, Randomly traversable graphs, Elem. Math. 25 (1970), 101-107.
[6] G. Chartrand, D.R. Lick, Randomly Eulerian diagraphs, Czechoslovak Math. J. 21(96) (1971), 424-430.
[7] G.A. Dirac, C. Thomassen, Graphs in which every finite path is contained in a circuit, Math. Ann. 203 (1973), 65-75.
[8] D.B. Erickson, Arbitrarily traceable graphs and digraphs, J. Combinatorial Theory Ser. B 19 (1975), no. 1, 5-23.
[9] F. Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Mass.Menlo Park, Calif. - London. 1969.
[10] P. Híc, A characterization of $K_{r, s}$-closed graphs, Math. Slovaca 39 (1989), no. 4, 353-359.
[11] P. Híc, M. Pokorný, Randomly $2 C_{n}$ graphs, in: Tatra Mountains Mathematical Publications, Bratislava (in print).
[12] O. Ore, A problem regarding the tracing of graphs, Elemente der Math. 6 (1951), 49-53.
[13] D.P. Sumner, Randomly matchable graphs, J. Graph Theory 3 (1979), no. 2, 183-186.
[14] P. Tomasta, E. Tomová, On H-closed graphs, Czechoslovak Math. J. 38(113) (1988), no. 3, 404-419.

Department of Mathematics and Computer Science
Faculty of Education
Trnava University
Priemyselná 4
SK-918 43 Trnava
Slovak Republic
E-mail: phic@truni.sk
E-mail: mpokorny@truni.sk

Received: 20 November 2006; final version: 16 May 2007; available online: 23 July 2007.

[^0]: AMS (2000) Subject Classification: 05C75.

