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The paper gives a general construction of all continuous solutions

of inequality (1) fulfilling one of conditions (5) or (26). This paper is a
continuation of [3].
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In the paper [3] we considered the problem of existence of the continuous
solutions of the functional inequality

ψ[f(x)] ≤ G(x, ψ(x)), (1)

where ψ is an unknown function, in the case where continuous solutions of the
corresponding functional equation

ϕ[f(x)] = G(x, ϕ(x)) (2)

depend on an arbitrary function. In particular we proved there Theorems 1
and 5 quoted below.

In the present paper we shall give other descriptions of the general contin-
uous solution of (1) which are more convenient to study, for example, solutions
of (1) which are Lipschitzian or possess some asymptotic property (see [2], [1]).
We shall also adapt some results from [3] to a more general class of continuous
solutions of inequality (1).

We start with reminding some notations and assumptions from [3]. Let
I = (ξ, a), where ξ < a ≤ ∞. We assume that

(i) the function f : I −→ R is continuous and strictly increasing in I . More-
over, ξ < f(x) < x for all x ∈ I .

Remark 1

Hypothesis (i) implies that limn→∞ fn(x) = ξ for every x ∈ I . Here fn denotes
the n-th iterate of f .

AMS (2000) Subject Classification: 39B62.
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As to the function G we assume:

(ii) G: Ω −→ R is continuous in an open set Ω ⊂ I × R;

(iii) for every x ∈ I the set

Ωx := {y : (x, y) ∈ Ω} (3)

is a non-empty open interval and

G(x,Ωx) ⊂ Ωf(x). (4)

Let J ⊂ I be an open subinterval such that ξ ∈ clJ . We shall consider
solutions ψ of inequality (1) and solutions ϕ of equation (2) such that their
graphs lie in Ω, i.e.,

ψ(x), ϕ(x) ∈ Ωx for x ∈ J ⊂ I. (5)

The class of these solutions will be denoted by Ψ(J) and Φ(J), respectively.
Moreover, we denote Ik := [fk+1(x0), f

k(x0)] for a fixed x0 ∈ I and k ∈ N∪{0}.
Finally, we consider the sequence {gk} defined by the recursive formula:

{

g0(x, y) = y,

gk+1(x, y) = G(fk(x), gk(x, y)), k ∈ N ∪ {0}.
(6)

x ]`y"d0z fRbVh d0a0{|dR}
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Let us assume (i)-(iii). It is known (see [4]) that then continuous solutions
of equation (2) depend on an arbitrary function. It means that for any x0 ∈ I

and an arbitrary continuous function ϕ0: I0 −→ R fulfilling the conditions

ϕ0(x) ∈ Ωx for x ∈ I0 , (7)

ϕ0[f(x0)] = G(x0, ϕ0(x0)) (8)

there exists exactly one continuous solution ϕ ∈ Φ((ξ, x0]) of equation (2) ex-
tending ϕ0, i.e.,

ϕ(x) = ϕ0(x) for x ∈ I0 .

A corresponding result for solutions of inequality (1) has been proved in [3]:

Theorem 1

Let assumptions (i)-(iii) be fulfilled. Then for any x0 ∈ I and for an arbitrary

continuous function ψ0: I0 −→ R fulfilling the conditions

ψ0[f(x0)] ≤ G(x0, ψ0(x0)), (9)

ψ0(x) ∈ Ωx , x ∈ I0 (10)
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there exists a continuous solution ψ ∈ Ψ((ξ, x0]) of inequality (1) such that

ψ(x) = ψ0(x) for x ∈ I0 . (11)

This solution is given by the formula

ψ[fk(x)] = λk [f
k(x)] + gk(x, ψ0(x)) for x ∈ I0 , k ∈ N ∪ {0}, (12)

where λk : Ik −→ R is an arbitrary sequence of continuous functions fulfilling

the conditions:

λ0(x) = 0, x ∈ I0 , (13)

λk[f
k(x)] + gk(x, ψ0(x)) ∈ Ωfk(x) , x ∈ I0 , k ∈ N ∪ {0}, (14)

λk[f
k(x)] + gk(x, ψ0(x)) ≤ G(f−k(x), λk−1[f

k−1(x)] + gk−1(x, ψ0(x))),

x ∈ I0 , k ∈ N,
(15)

λk[f
k(x0)] + gk(x0, ψ0(x0)) = λk−1[f

k(x0)] + gk−1(f(x0), ψ0[f(x0)]),

k ∈ N.
(16)

Moreover, all continuous solutions ψ ∈ Ψ((ξ, x0]) of inequality (1) may be

obtained in this manner.

Now, we shall prove the following corollary from Theorem 1.

Theorem 2

Let assumptions (i)-(iii) be fulfilled. Then for any x0 ∈ I and for an arbitrary

continuous function ψ0: I0 −→ R fulfilling (9) and (10) there exists a continuous

solution ψ ∈ Ψ((ξ, x0]) of inequality (1) such that (11) holds. This solution is

given by the formula

ψ(x) =

{

ψ0(x), x ∈ I0 ,

Mk(ψ0, λ)(x), x ∈ Ik , k ∈ N,
(17)

where the functional sequence of continuous functions Mk(ψ0, λ) is defined by

the recurrence
{

M1(ψ0, λ)(x) = λ(x) +G(f−1(x), ψ0[f
−1(x)]), x ∈ I1 ,

Mk+1(ψ0, λ)(x) = λ(x) +G(f−1(x),Mk(ψ0, λ)[f
−1(x)]), x ∈ Ik+1

(18)

and λ: (ξ, f(x0)] −→ (−∞, 0] is an arbitrary continuous function fulfilling the

conditions:

Mk(ψ0, λ)(x) ∈ Ωx , x ∈ Ik , k ∈ N, (19)

λ[f(x0)] +G(x0, ψ0(x0)) = ψ0[f(x0)]. (20)

Moreover, all continuous solutions ψ ∈ Ψ((ξ, x0]) of inequality (1) may be

obtained in this manner.
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Proof. We fix an x0 ∈ I and an arbitrary continuous function ψ0: I0 −→ R

fulfilling (9) and (10). Moreover, we take a continuous function λ: (ξ, f(x0)] −→
(−∞, 0] fulfilling (19), (20) and define the function ψ: (ξ, x0] −→ R by formula
(17). Condition (19) implies that the sequence Mk(ψ0, λ) (and, consequently,
the function ψ) is well defined. Now, we define the sequence λk: Ik −→ R of
continuous functions by formula (13) and

λk(x) := λ(x) +G(f−1(x), ψ[f−1(x)]) − gk(f
−k(x), ψ[f−k(x)]),

x ∈ Ik , k ∈ N.
(21)

It is obvious that (21) implies that ψ may be represented also by formula (12).
Moreover, condition (19) implies (14). We have also the estimate

λk[f
k(x)] + gk(x, ψ0(x)) = λk[f

k(x)] +G(fk−1(x), ψ[fk−1(x)])

≤ G(fk−1(x), ψ[fk−1(x)])

= G(fk−1(x), λk−1 [f
k−1(x)] + gk−1(x, ψ0(x))),

x ∈ I0 , k ∈ N,

which implies (15). Finally from (20) we obtain (16) for k = 1 and, by virtue
of the equalities

λk[f
k(x0)] + gk(x0, ψ0(x0))

= λ[fk(x0)] +G(fk−1(x0), ψ[fk−1(x0)])

= λ[fk−1(f(x0))] +G(fk−2(f(x0)), ψ[fk−2(f(x0))])

= λk−1[f
k−1(f(x0))] + gk−1(f(x0), ψ0[f(x0)])

= λk−1[f
k(x0)] + gk−1(f(x0), ψ0[f(x0)]),

we have (16) for k ≥ 2. Thus, by virtue of Theorem 1, formula (12) (and,
consequently, formula (17)) defines a continuous solution ψ ∈ Ψ((ξ, x0]) of
inequality (1).

On the other hand, let us assume that ψ ∈ Ψ((ξ, x0]) is a continuous
solution of (1). It is sufficient to put

ψ0(x) := ψ(x) for x ∈ I0 , (22)

λ(x) := ψ(x) −G(f−1(x), ψ[f−1(x)]) for x ∈ (ξ, f(x0)]. (23)

Let us notice that (19) and (20) hold. Moreover, it follows from (1) that the
function λ takes nonpositive values only. It is obvious that the solution ψ may
be represented by formula (17). We may prove it by simple induction.

Indeed, formulas (22) and (23) imply that for x ∈ I1 :

ψ(x) = λ(x) +G(f−1(x), ψ[f−1(x)]) = λ(x) +G(f−1(x), ψ0[f
−1(x)])

= M1(ψ0, λ)(x).

Thus, if we assume that for an arbitrarily chosen integer k > 1 we have ψ(x) =
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Mk(ψ0, λ)(x) for x ∈ Ik , then from (23) we obtain for x ∈ Ik+1 :

ψ(x) = λ(x) +G(f−1(x), ψ[f−1(x)]) = λ(x) +G(f−1(x),Mk(ψ0, λ)[f
−1(x)])

= Mk+1(ψ0, λ)(x).

Consequently, ψ is of the form (17) and this ends the proof of the theorem.

�0]`y"d0z fRbVh d0a0{�dR}
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We assume additionally that:

(iv) for every x ∈ I the function G(x, ·) is invertible,

(v) the function f fulfils the condition f(I) = I ,

(vi) for every x ∈ I , with Ωx defined by (3) we have

G(x,Ωx) = Ωf(x) . (24)

Thanks to these assumptions we may extend the definition (6) to negative
indices by putting

g−k−1(x, y) := G−1(f−k−1(x), g−k(x, y)), k ∈ N ∪ {0}, (25)

where G−1(x, ·) denotes the inverse of the function G(x, ·). It is obvious (by
virtue of (4) and (24)) that the sequences (6) and (25) are well defined. We
may also consider intervals Ik for k ∈ Z.

If we assume (i)-(vi), then for an arbitrary x0 ∈ I every continuous function
ϕ0: I0 −→ R fulfilling (7), (8) may be extended to a continuous solution ϕ ∈
Φ(I) of equation (2). For inequality (1) the following theorem has been also
formulated in [3].

Theorem 3

Let assumptions (i)-(vi) be fulfilled. Then, for any x0 ∈ I and for an arbitrary

continuous function ψ0: I0 −→ R fulfilling (9) and (10) there exists a continuous

solution ψ ∈ Ψ(I) of inequality (1) such that (11) holds. This solution is given

by formulas (12) and

ψ[f−k(x)] = lk[f
−k(x)] + g−k(x, ψ0(x)) for x ∈ I0 , k ∈ N,

where λk: Ik −→ R, lk: I−k −→ R are arbitrary sequences of continuous func-

tions fulfilling conditions (13)-(16) and, additionally, the following conditions

l0(x) = 0, x ∈ I0 ,

lk[f
−k(x)] + g−k(x, ψ0(x)) ∈ Ωf−k(x) , x ∈ I0 , k ∈ N,
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lk+1[f
−k+1(x)] + g−k+1(x, ψ0(x)) ≤ G(f−k(x), lk[f

−k(x)] + g−k(x, ψ0(x))),

x ∈ I0 , k ∈ N,

lk+1[f
−k+1(x0)] + g−k+1(x0, ψ0(x0)) = lk[f

−k+1(x0)] + g−k(f(x0), ψ0[f(x0)]),

k ∈ N.

Moreover, we may obtain in this way all continuous solutions ψ ∈ Ψ(I) of

inequality (1).

Theorems 2 and 3 also imply the following theorem.

Theorem 4

Under assumptions (i)-(vi) for any x0 ∈ I and for an arbitrary continuous

function ψ0: I0 −→ R fulfilling the conditions (9), (10), there exists a continuous

solution ψ ∈ Ψ(I) of inequality (1) such that (11) holds. This solution is given

by formulas (17) and

ψ(x) := Pk(ψ0, λ)(x), x ∈ I−k , k ∈ N,

where the functional sequences of continuous functions Mk(ψ0, λ), Pk(ψ0, λ),
are defined by formula (18) and by

{

P1(ψ0, λ)(x) = G−1(x, ψ0[f(x)] − λ[f(x)]), x ∈ I−1 ,

Pk+1(ψ0, λ)(x) = G−1(x, Pk(ψ0, λ)[f(x)]), x ∈ I−k−1 , k ∈ N

and λ: I −→ (−∞, 0] is an arbitrarily chosen continuous function fulfilling con-

ditions (19), (20) together with

ψ0(x) − λ(x) ∈ Ωx , x ∈ I0 ,

Pk(ψ0, λ)(x) ∈ Ωx , x ∈ I−k , k ∈ N.

Moreover, all continuous solutions ψ ∈ Ψ(I) of inequality (1) may be obtained

in this manner.

The proof of the above theorem runs analogously to that of Theorem 2 and
is therefore omitted.

�"]`�9��h a�cZ�0{0f0z b

Here we shall characterize continuous solutions ψ of inequality (1) which
fulfil, for arbitrarily chosen x0 ∈ I , the additional condition

ψ[f(x)] ∈ G(x,Ωx), x ∈ (ξ, x0]. (26)

We replace (iv) by a stronger assumption

(vii) For every x ∈ I the function G(x, ·) is strictly increasing.
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In the paper [3] we considered continuous solutions ψ of (1) which fulfil the
following condition:

L
ψ
k [f(x)] ∈ G(x,Ωx), x ∈ (ξ, x0], x0 ∈ I, k ∈ N ∪ {0}, (27)

where the sequence {Lψk } was defined by the recurrence

{

L
ψ
0 (x) = ψ(x),

L
ψ
k+1(x) = G−1(x, Lψk [f(x)]), k ∈ N ∪ {0}.

It is obvious, by virtue of (27), that the above sequence is well defined.
The following theorem has been proved in [3].

Theorem 5

Let assumptions (i)-(iii) and (vii) be fulfilled. Then for any x0 ∈ I and for an

arbitrary continuous function ψ0: I0 −→ R fulfilling (9), (10) and, moreover,

the condition

ψ0[f(x0)] ∈ G(x0,Ωx0
) (28)

there exists a continuous solution ψ ∈ Ψ((ξ, x0]) of inequality (1) fulfilling (11)
and (27). This solution is given by the formula

ψ[fk(x)] = gk(x, γk(x) + ψ0(x)) for x ∈ I0 , k ∈ N ∪ {0}, (29)

where {γk} is an arbitrary sequence of continuous functions defined in I0 and

fulfilling the conditions:

γ0(x) = 0, x ∈ I0 ,

{γk} is decreasing in I0 ,

γk(x) + ψ0(x) ∈ Ωx , for x ∈ (f(x0), x0], k ∈ N ∪ {0},

γk[f(x0)] + ψ0[f(x0)] ∈ G(x0,Ωx0
), k ∈ N,

gk(x0, γk(x0) + ψ0(x0)) = gk−1(f(x0), γk−1[f(x0)] + ψ0[f(x0)]), k ∈ N.

Moreover, all continuous solutions ψ ∈ Ψ((ξ, x0]) of inequality (1), fulfilling

(27) may be obtained in this manner.

If we replace in the above theorem condition (27) by (26) then we obtain:

Theorem 6

Let assumptions (i)-(iii) and (vii) be fulfilled. Then for any x0 ∈ I and for an

arbitrary continuous function ψ0: I0 −→ R fulfilling (9), (10), (28), there exists

a continuous solution ψ ∈ Ψ((ξ, x0]) of inequality (1) fulfilling (11) and (26).
This solution is given by the formula
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ψ(x) =

{

ψ0(x), x ∈ I0 ,

Rk(ψ0, γ)(x), x ∈ Ik , k ∈ N,
(30)

where the sequence {Rk(ψ0, γ)} of continuous functions is defined recursively

by



















R1(ψ0, γ)(x) = G(f−1(x), γ[f−1(x)] + ψ0[f
−1(x)]),

x ∈ I1 ,

Rk+1(ψ0, γ)(x) = G(f−1(x), γ[f−1(x)] +Rk(ψ0, γ)[f
−1(x)]),

x ∈ Ik+1 , k ∈ N,

(31)

and γ: (ξ, x0] −→ (−∞, 0] is an arbitrary continuous function fulfilling the con-

ditions:

γ(x) +Rk(ψ0, γ)(x) ∈ Ωx , x ∈ Ik , k ∈ N ∪ {0}, (32)

ψ0[f(x0)] = G(x0, γ(x0) + ψ0(x0)). (33)

Moreover, all continuous solutions ψ ∈ Ψ((ξ, x0]) of inequality (1) fulfilling (26)
may be obtained in this manner.

Proof. Similarly as in the proof of Theorem 2 we fix an x0 ∈ I and an
arbitrary continuous function ψ0: I0 −→ R fulfilling (9), (10) and (28). More-
over, let γ: (ξ, x0] −→ (−∞, 0] be a continuous function fulfilling (32), (33) and
define a function ψ: (ξ, x0] −→ R by formula (30). Condition (32) implies that
the sequence {Rk(ψ0, γ)} is well defined. It is also clear that the following
equalities

Rk+1(ψ0, γ)[f
k+1(x0)] = Rk(ψ0, γ)[f

k(x0)], k ∈ N, (34)

hold. Thus (34) together with (33) imply that the function ψ is well defined.
Since Rk(ψ0, γ) are continuous functions (by the continuity of the given func-
tions f , γ, ψ0, G), so is ψ.

It is obvious that ψ may be represented by the following form, equivalent
to (30),

ψ[f(x)] = G(x, γ(x) + ψ(x)), x ∈ (ξ, x0]. (35)

Equality (35) implies condition (26) and, moreover, we obtain that ψ fulfils
inequality (1) by virtue of (vii) and the fact that γ takes nonpositive values
only.

On the other hand let us assume that ψ ∈ Ψ((ξ, x0]) is a continuous solution
of (1) that fulfils (26). It is sufficient to define ψ0 by (22) and to put

γ(x) := G−1(x, ψ[f(x)]) − ψ(x), x ∈ (ξ, x0]. (36)

Let us notice that (9), (10), (28), (32) and (33) hold. It is obvious that the
solution ψ may be represented by (35) and, consequently, by (30). This ends
the proof of the theorem.
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Remark 2

If we are confined to solutions ψ of inequality (1) fulfilling (27), then formulas
(29) and (30) are equivalent. Indeed, if we define solution ψ fulfilling (27) by
formula (30) then we may define the sequence {γk} from Theorem 5 by the
formula

γk(x) = L
ψ
k (x) − ψ0(x), x ∈ I0 , k ∈ N.

Conversely, if we define a solution ψ by formula (29), then we may define
the function γ by (36) and the functional sequence {Rk(ψ0, γ)} of continuous
functions by the recurrent formula (31).

Remark 3

It is known (see [3]) that contrary to the situation with continuous solutions of
equation (2) in I , a continuous function ψ0 fulfilling (9), (10) and (28) cannot
be extended uniquely to a continuous solution ψ of inequality (1) fulfilling (26).
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