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Another description of confinuous solutions

of a nonlinear functional inequality

Abstract. The paper gives a general construction of all continuous solutions
of inequality (1) fulfilling one of conditions (5) or (26). This paper is a
continuation of [3].

1. Introduction

In the paper [3] we considered the problem of existence of the continuous
solutions of the functional inequality

Pf ()] < Ga,¢(2)), (1)

where ¢ is an unknown function, in the case where continuous solutions of the
corresponding functional equation

plf ()] = Gz, ¢(x)) (2)

depend on an arbitrary function. In particular we proved there Theorems 1
and 5 quoted below.

In the present paper we shall give other descriptions of the general contin-
uous solution of (1) which are more convenient to study, for example, solutions
of (1) which are Lipschitzian or possess some asymptotic property (see [2], [1]).
We shall also adapt some results from [3] to a more general class of continuous
solutions of inequality (1).

We start with reminding some notations and assumptions from [3]. Let
I = (£, a), where £ < a < co. We assume that

(i) the function f:I — R is continuous and strictly increasing in I. More-
over, £ < f(x) < x for all z € I.

REMARK 1
Hypothesis (i) implies that lim, .. f™(z) = £ for every « € I. Here f™ denotes
the n-th iterate of f.
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As to the function G we assume:
(ii) G:Q — R is continuous in an open set Q C I x R;

(iii) for every x € I the set
Qp:={y: (z,y) € (3)
is a non-empty open interval and

G(l‘,Qx) C Qf(z) (4)

Let J C I be an open subinterval such that & € c1J. We shall consider
solutions ¥ of inequality (1) and solutions ¢ of equation (2) such that their
graphs lie in €, i.e.,

(), p(x) € Uy forxe JCI. (5)

The class of these solutions will be denoted by ¥(J) and ®(J), respectively.
Moreover, we denote Iy, := [f*+1(x), f*(z0)] for a fixed 2o € I and k € NU{0}.
Finally, we consider the sequence {gi} defined by the recursive formula:

{ 9o(z,y) =y,

g1 (2.) = GUF* (@), gu(@y), k€ NU{O}. ©)

2. Solutions of (1) in the interval (&, o]

Let us assume (i)- (iii). It is known (see [4]) that then continuous solutions
of equation (2) depend on an arbitrary function. It means that for any xzg € I
and an arbitrary continuous function ¢g: Iy — R fulfilling the conditions

wo(x) € Q, for x € Iy, (7)
wolf(x0)] = G(z0, o(x0)) (8)

there exists exactly one continuous solution ¢ € ®((, zo]) of equation (2) ex-
tending ¢y, i.e.,

o(x) = po(x) forxz e 1y.
A corresponding result for solutions of inequality (1) has been proved in [3]:
THEOREM 1

Let assumptions (i)-(iii) be fulfilled. Then for any xo € I and for an arbitrary
continuous function g: Iy — R fulfilling the conditions

Yolf(20)] < G(o, Yo(w0)), 9)
Yo(z) €y,  z €D (10)
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there exists a continuous solution ¥ € V((§,xo]) of inequality (1) such that
P(z) = Po(x) forzely. (11)

This solution is given by the formula
VI @) = M @) + ge(@ vo(@))  forzedo, keNU{0},  (12)

where Ag: [, — R is an arbitrary sequence of continuous functions fulfilling
the conditions:

)\0(1’) =0, zely, (13)

MelfF ()] + gr (2,00 () € Qpr(a) 5 zx€ly, ke NU{0}, (14)

A [F5 ()] + gr (2, 00 (2)) < G(fF(@), Me—a [F57 1 (@)] + g1 (2,900 (2))), (15)
r€ly, keEN,

e[ ¥ (20)] + gr(z0, ¥o(20)) = Me—1[f*(20)] + gr—1(f (20), Yo f (z0)]), (16)
ke N.

Moreover, all continuous solutions v € U((&,xzo]) of inequality (1) may be
obtained in this manner.

Now, we shall prove the following corollary from Theorem 1.

THEOREM 2

Let assumptions (i)-(iii) be fulfilled. Then for any xo € I and for an arbitrary
continuous function g: Iy — R fulfilling (9) and (10) there exists a continuous
solution 1 € V((&,x0]) of inequality (1) such that (11) holds. This solution is
given by the formula

Wz) = {z/Jo(x), xely,

My(tho,\)(z),  x €I, kEN, (17)

where the functional sequence of continuous functions My (1o, A) is defined by
the recurrence

{ My (o, \)(z) = Nz) + G(f (), volf (@), v el
Myey1 (3o, N (2) = Az) + G(f 7 (2), Mi (oo, If ' (@)]), 2 € Tea

and X: (&, f(xo)] — (—00,0] is an arbitrary continuous function fulfilling the
conditions:

(18)

Mk(’(/)o,)\)(l‘) EQw, x €Iy, k‘EN, (19)
Alf (z0)] + G(zo, Yo(w0)) = Yol f (z0)]. (20)

Moreover, all continuous solutions v € U((&,xzo]) of inequality (1) may be
obtained in this manner.
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Proof. We fix an g € I and an arbitrary continuous function 1g: Iy — R
fulfilling (9) and (10). Moreover, we take a continuous function A: (¢, f(xo)] —
(=00, 0] fulfilling (19), (20) and define the function : (£, z9] — R by formula
(17). Condition (19) implies that the sequence My (1o, \) (and, consequently,
the function ) is well defined. Now, we define the sequence Ay: I, — R of
continuous functions by formula (13) and

Ae(@) = M) + G(f (@), v[f H(@)]) — gr(f (@), ¥Lf * (@),

21
rz €I, keN. ( )

It is obvious that (21) implies that ¢ may be represented also by formula (12).
Moreover, condition (19) implies (14). We have also the estimate

M5 (@)] + g (@, vo(2)) = M[f*(@)] + G ), o[ (2)])
< G(fF ), 0l @)
= G(* (@), A [ (@)] + g (2, 0(2))),
rely, keN,

which implies (15). Finally from (20) we obtain (16) for £k = 1 and, by virtue
of the equalities

Ae[f*(0)] + gr(zo, Yo(x0))
FF(o)] + G (o), [ (o))
FEHF (@o))] + G(FF2(f (0)), wLf* 2 (f(0))])
k-1 [P (F(@0))] + gr—1(f (o), Yol f (w0)])
= X1 [F*(20)] + gr—1(f (0), Yol f (0))),

we have (16) for & > 2. Thus, by virtue of Theorem 1, formula (12) (and,
consequently, formula (17)) defines a continuous solution @ € ¥((&,xg]) of
inequality (1).

On the other hand, let us assume that ¢ € ¥((£,z0]) is a continuous
solution of (1). It is sufficient to put

Yo(x) == P(x) for z € Iy, (22)

Na) = (@) = G(f~ (@), v[f T (@)])  for z € (&, f(ao)]. (23)
Let us notice that (19) and (20) hold. Moreover, it follows from (1) that the
function A takes nonpositive values only. It is obvious that the solution v may
be represented by formula (17). We may prove it by simple induction.
Indeed, formulas (22) and (23) imply that for = € I :

U(@) = ANaz) + G(f 7 (2), w17 (@)]) = M) + G(F(2), ol f (2)])
= M (%o, A) ().

Thus, if we assume that for an arbitrarily chosen integer k > 1 we have ¢(z) =
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M (o, A)(x) for « € I, then from (23) we obtain for x € Ij41:
U(x) = Mx) + G(f (@), ¥ [ (@)]) = M) + G(f (@), Mi(vo, VIF " (2)])
= My11(to, M) ().

Consequently, v is of the form (17) and this ends the proof of the theorem.

3. Solutions of (1) in the interval 1

We assume additionally that:
(iv) for every x € I the function G(z,-) is invertible,
(v) the function f fulfils the condition f(I) = I,

(vi) for every = € I, with Q, defined by (3) we have

G(x, Qz) = Qf(ac) . (24)

Thanks to these assumptions we may extend the definition (6) to negative
indices by putting

g—k—l(-’If, y) = G_l(f_k_l(x)’g—k(xvy))’ keNuU {0}7 (25)

where G~1(z,-) denotes the inverse of the function G(z,-). It is obvious (by
virtue of (4) and (24)) that the sequences (6) and (25) are well defined. We
may also consider intervals Iy for k € Z.

If we assume (i)- (vi), then for an arbitrary xog € I every continuous function
wo: o — R fulfilling (7), (8) may be extended to a continuous solution ¢ €
®(I) of equation (2). For inequality (1) the following theorem has been also
formulated in [3].

THEOREM 3

Let assumptions (i)-(vi) be fulfilled. Then, for any x¢ € I and for an arbitrary
continuous function g: Iy — R fulfilling (9) and (10) there exists a continuous
solution v € W(I) of inequality (1) such that (11) holds. This solution is given
by formulas (12) and

VI @) = W[f @) + g-r(z,90(2))  forzelo, kEN,

where A\g: I, — R, I [_ — R are arbitrary sequences of continuous func-
tions fulfilling conditions (13)-(16) and, additionally, the following conditions

lo(x) =0, z € Iy,

lk[fik(x)}—’_g*k(x,w()(l')) GQf*’“(af:)a erOa kGN,
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ler[f 51 @)] 4 g—pr (@, 00 (2) < G(fF (@), Welf ~*(@)] + gk (@, ¥0())),

rely, keN,
L1 [F 7R (20)] 4 g— k1 (0, Yo(x0)) = W[~ (@0)] + g (f (0), tholf (x0)]),
k € N.

Moreover, we may obtain in this way all continuous solutions ¢ € U(I) of
inequality (1).

Theorems 2 and 3 also imply the following theorem.

THEOREM 4

Under assumptions (i)-(vi) for any xo € I and for an arbitrary continuous
function vg: I — R fulfilling the conditions (9), (10), there exists a continuous
solution v € W(I) of inequality (1) such that (11) holds. This solution is given
by formulas (17) and

¢(x) = Pk(’(/)o,)\)(l‘), T e I_k, ke N,

where the functional sequences of continuous functions My (1o, A), Pr(to, A),
are defined by formula (18) and by

{ Pr(o, \)(z) = G (@, volf ()] = Alf(2)]), z €1,
Pr1(tho, (@) = G (=, Pi(tho, V[ (), rel g, keN

and A: I — (—00, 0] is an arbitrarily chosen continuous function fulfilling con-
ditions (19), (20) together with

Yo(z) — A(x) € Qy x€ly,
Pk(Qbo,)\)(.’E) GQI, rel , keN.

Moreover, all continuous solutions ¢ € W(I) of inequality (1) may be obtained
in this manner.

The proof of the above theorem runs analogously to that of Theorem 2 and
is therefore omitted.

L. Main resulf

Here we shall characterize continuous solutions ¢ of inequality (1) which
fulfil, for arbitrarily chosen zy € I, the additional condition

Y[f(2)] € G(z,Qy), x € (&, x0]. (26)
We replace (iv) by a stronger assumption

(vii) For every x € I the function G(z,-) is strictly increasing.
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In the paper [3] we considered continuous solutions ¢ of (1) which fulfil the
following condition:

LY[f(2) € G(x,Q%),  z€ (&), zo €1, ke NU{0}, (27)

where the sequence {L%} was defined by the recurrence

{ LY (z) = (),
LY (@) = G V(2 LY[f(@)]),  keNu{o}.

Tt is obvious, by virtue of (27), that the above sequence is well defined.
The following theorem has been proved in [3].

THEOREM 5
Let assumptions (i)-(iil) and (vii) be fulfilled. Then for any x¢ € I and for an
arbitrary continuous function vg: In — R fulfilling (9), (10) and, moreover,
the condition

Yolf (o)l € G(zo, o) (28)

there exists a continuous solution v € U((&, xo]) of inequality (1) fulfilling (11)
and (27). This solution is given by the formula

U (@)] = gr(z, () +o(z))  forzely, ke NU{0},  (29)

where {7y} is an arbitrary sequence of continuous functions defined in Iy and
fulfilling the conditions:

Yo(z) =0, xely,
{7} is decreasing in Iy,
Yi(x) + o(z) € Qp for z € (f(xo),z0], k € NU{0},
Welf (zo)] + Polf (w0)] € G20, ), K EN,

gk (w0, 7%(0) + Yo(w0)) = gr—1(f(w0), ve-11f (z0)] + Yo[f (0)]), keN.

Moreover, all continuous solutions ¥ € ¥((§,xo]) of inequality (1), fulfilling
(27) may be obtained in this manner.

If we replace in the above theorem condition (27) by (26) then we obtain:

THEOREM 6

Let assumptions (1)-(iil) and (vii) be fulfilled. Then for any xo € I and for an
arbitrary continuous function ¢o: Iy — R fulfilling (9), (10), (28), there exists
a continuous solution ¢ € U((&,xo]) of inequality (1) fulfilling (11) and (26).
This solution is given by the formula
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¢($) _ {%(f), z € I, (30)

Ry, (vo,v)(x), z€ly, keN,
where the sequence {Ri(Yo,7v)} of continuous functions is defined recursively
by

Ri(¢0,7) (@) = G(f~ (@), 7 [~ (@)] + %ho[f~H(@)]),

el

Ripy1(vo,7)(2) = G(f (@), v [f = (@)] + Ri(vo, ) [f~()]),
S Ik+1 , keN,

(31)

and 7y: (&, 9] — (—00,0] is an arbitrary continuous function fulfilling the con-
ditions:

v(z) + Rk (¢o,v)(z) € Qyp, x €Iy, ke NU{0}, (32)
Yol f(x0)] = G(x0,7(w0) + Yo(z0))- (33)

Moreover, all continuous solutions ¥ € W((&,x0]) of inequality (1) fulfilling (26)
may be obtained in this manner.

Proof. Similarly as in the proof of Theorem 2 we fix an x¢y € I and an
arbitrary continuous function vg: [y — R fulfilling (9), (10) and (28). More-
over, let v: (§,29] — (—00, 0] be a continuous function fulfilling (32), (33) and
define a function v: (¢, 29] — R by formula (30). Condition (32) implies that
the sequence {Ry(o,7)} is well defined. It is also clear that the following
equalities

Ris1 (o, NI (@o)] = Ri(vo,M[fF(x0)l,  keN, (34)

hold. Thus (34) together with (33) imply that the function ¢ is well defined.
Since Ry (o,7y) are continuous functions (by the continuity of the given func-
tions f, v, 1o, G), so is .

It is obvious that ¥ may be represented by the following form, equivalent
to (30),

YIf(@)] =Gz, (@) + (@), € (& ol (35)

Equality (35) implies condition (26) and, moreover, we obtain that 1 fulfils
inequality (1) by virtue of (vii) and the fact that + takes nonpositive values
only.

On the other hand let us assume that ¢ € ¥((, z¢]) is a continuous solution
of (1) that fulfils (26). It is sufficient to define 1) by (22) and to put

V(@) = G N @ y[f (@) —9(z),  x € (& ol (36)

Let us notice that (9), (10), (28), (32) and (33) hold. It is obvious that the
solution ¥ may be represented by (35) and, consequently, by (30). This ends
the proof of the theorem.
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REMARK 2

If we are confined to solutions 1 of inequality (1) fulfilling (27), then formulas
(29) and (30) are equivalent. Indeed, if we define solution ¢ fulfilling (27) by
formula (30) then we may define the sequence {74} from Theorem 5 by the
formula

(z) = LY (z) — ho(x), ze€ly, keN.

Conversely, if we define a solution ¢ by formula (29), then we may define
the function 7 by (36) and the functional sequence {Rx(10o,7)} of continuous
functions by the recurrent formula (31).

REMARK 3

It is known (see [3]) that contrary to the situation with continuous solutions of
equation (2) in I, a continuous function g fulfilling (9), (10) and (28) cannot
be extended uniquely to a continuous solution ¢ of inequality (1) fulfilling (26).
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