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tional 
al
ulus and diffusive stressAbstra
t. The main ideas of fractional calculus are recalled. A quasi-static

uncoupled theory of diffusive stresses based on the anomalous diffusion
equation with fractional derivatives is formulated.

It is well known that integrating by parts n− 1 times the calculation of the
n-fold primitive of a function f(t) can be reduced to the calculation of a single
integral of the convolution type

Inf(t) =
1

(n − 1)!

t
∫

0

(t − τ)n−1f(τ) dτ, (1)

where n is a positive integer.
The Laplace transform rule for an integral (1) can be found in every text-

book on this subject

L{Inf(t)} =
1

sn
L{f(t)},

where s is the transform variable.
The Riemann–Liouville fractional integral is introduced as a natural gener-

alization of the convolution type form (1):

Iαf(t) =
1

Γ(α)

t
∫

0

(t − τ)α−1f(τ) dτ, α > 0,

where Γ(α) is the gamma function. The Laplace transform rule for the frac-
tional integral reads

L{Iαf(t)} =
1

sα
L{f(t)}.

The Riemann–Liouville derivative of the fractional order α is defined as
left-inverse to the fractional integral Iα [15, 6]
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Dα

RLf(t) = DnIn−αf(t)

=























dn

dtn

[

1

Γ(n − α)

t
∫

0

(t − τ)n−α−1f(τ) dτ

]

, n − 1 < α < n,

dn

dtn
f(t), α = n

and for its Laplace transform it requires the knowledge of the initial values of
the fractional integral In−αf(t) and its derivatives of the order k = 1, 2, . . . ,

n − 1:

L{Dα
RLf(t)} = sαL{f(t)} −

n−1
∑

k=0

DkIn−αf(0+)sn−1−k, n − 1 < α < n.

An alternative definition of the fractional derivative was proposed by Ca-
puto [2, 3]:

Dα
Cf(t) = In−αDnf(t) =

=























1

Γ(n − α)

t
∫

0

(t − τ)n−α−1 dnf(τ)

dτn
dτ, n − 1 < α < n,

dn

dtn
f(t), α = n.

For its Laplace transform rule the Caputo fractional derivative requires the
knowledge of the initial values of the function f(t) and its integer derivatives
of order k = 1, 2, . . . , n − 1:

L{Dα
Cf(t)} = sαL{f(t)} −

n−1
∑

k=0

Dkf(0+)sα−1−k, n − 1 < α < n.

The Caputo fractional derivative is a regularization in the time origin for
the Riemann–Liouville fractional derivative by incorporating the relevant initial
conditions [5]. In this paper we shall use the Caputo fractional derivative
omitting the index C. The major utility of this type fractional derivative is
caused by the treatment of differential equations of fractional order for physical
applications, where the initial conditions are usually expressed in terms of a
given function and its derivatives of integer (not fractional) order, even if the
govering equation is of fractional order [11].

The definitions of space-fractional differential operators can be found in
[15, 6, 1]. The cumbersome aspects of these operators disappear when one
computes their Fourier transforms.

The space-fractional derivative of order β is defined as a pseudo-differential
operator with the following rule for the Fourier transform [8]:
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F

{

dβf(x)

d|x|β
}

= −|ξ|βF {f(x)} ,

where ξ is the transform variable. For the Fourier transform of fractional
Laplacian one has [15]

F
{

(−∆)
β
2 f(x)

}

= |ξ|βF {f(x)} .

If the function f(x) depends only on the radial coordinate r = |x|, then
in the two-dimensional case we can obtain the corresponding formula for the
Hankel transform

H
{

(−∆)
β

2 f(r)
}

= |ξ|βH{f(r)} .

A quasi-static uncoupled theory of diffusive stress is governed by the equi-
librium equation in terms of displacements [12]

µ∆u + (λ + µ)graddiv u = βcKgrad c,

the stress-strain-concentration relation

σ = 2µe + (λ tr e− βcKc)I,

and the time-fractional diffusion equation

∂αc

∂tα
= a ∆ c, 0 ≤ α ≤ 2, (2)

where u is the displacement vector, σ the stress tensor, e the linear strain
tensor, c the concentration, a the diffusivity coefficient, λ and µ are Lamé
constants, K = λ + 2

3
µ, βc is the diffusion coefficient of volumetric expansion,

I denotes the unit tensor.
If a bounded solid is considered, the corresponding boundary conditions

should be given; for unbounded medium

lim
|x|→∞

u(x, t) = 0,

lim
|x|→∞

c(x, t) = 0.

Equation (2) should also be subject to initial conditions

t = 0 : c = P (x), 0 < α ≤ 2,

t = 0 :
∂c

∂t
= W (x), 1 < α ≤ 2.

The most suitable method to solve the obtained system of equations is the
method of integral transforms. For classical domains the exponential, sine and
cosine Fourier transforms and the Hankel transform with respect to spatial
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coordinates can be used. The Laplace transform with respect to time is also
extensively employed.

In a two-dimensional medium in an axially symmetric case equation (2) has
the form

∂αc

∂tα
= a

(

∂2c

∂r2
+

1

r

∂c

∂r

)

.

We choose the initial conditions

t = 0 : c = p
δ(r)

2πr
, 0 < α ≤ 2,

t = 0 :
∂c

∂t
= 0, 1 < α ≤ 2,

where δ(r) is the Dirac delta function.
The nonzero components of the stress tensor expressed in terms of displace-

ment potential read [9]

σrr + σθθ = − 2µ∆Φ,

σrr − σθθ = 2µ

(

∂2Φ

∂r2
− 1

r

∂Φ

∂r

)

.

The displacement potential is determined from the equation

∆Φ = mc, m =
1 + ν

1 − ν

βc

3
,

where ν is the Poisson ratio.
We present results corresponding to α = 1

2
and obtained using the Laplace

transform with respect to time t and the Hankel transform with respect to
polar coordinate r:

c =
p

4π
3

2 a
√

t

∞
∫

0

exp

(

−u2 − ρ2

8u

)

du

u
,

σrr = − 2µm
p

π
3

2 a
√

tρ2

∞
∫

0

e−u2

[

1 − exp

(

− ρ2

8u

)]

du,

σθθ = − 2µm
p

π
3

2 a
√

t

∞
∫

0

e−u2

[(

1

4u
+

1

ρ2

)

exp

(

− ρ2

8u

)

− 1

ρ2

]

du,

where the similarity variable

ρ =
r√
a t

α
2

has been chosen.
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It should be noted that in two-dimensional case the fundamental solution

to a Cauchy problem for equation (2) in the case α = 1

2
has the logarithmical

singularity at the origin (in contrast to nonsingular solution of classical diffusion
equation in the case α = 1).

Additional insights into applications of fractional calculus in continuum
mechanics and physics as well as extensive literature on the subject can be
found in [10, 13, 4, 7, 14].Referen
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