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Abstra
t. There are diverse domination properties considered in linear pro-
gramming, game theory, semigroup theory and graph theory. In this
paper we present a class of conjunctions which dominate each triangular
conorm. Moreover, we give the characterization of such conjunctions.1. Introdu
tion

The notion of domination was introduced by R.M. Tardiff [11]. in the case
of triangle functions. It was generalized by B. Schweizer and A. Sklar [10] to
the class of associative binary operations with common domain (and common
unit element) in order to construct Cartesian products of probabilistic metric
spaces. The domination of t-norms is also used in construction of fuzzy equiv-
alence relations [1] and fuzzy orderings [2]. The domination between aggrega-
tion operations is useful in investigation of aggregation procedures preserving
T -transitivity of fuzzy relations [8].

Furthermore, the characterization of the relation of domination in a class
of operations is a solution of a functional inequality in the class of functions.
This inequality is a natural generalization of the equation of bisymmetry. Con-
cerning reflexivity of domination, one can obtain the equation of bisymmetry.

Some particular problems of domination were recently examined (Drew-
niak et al. [4], Drewniak, Król [5]). The characterization of all t-seminorms
dominating each triangular conorm was given by P. Sarkoci (cf. [9]).

In this paper at first, in Section 2, we recall definitions of binary operations
which will be used in the sequel. Next, we recall the notion of domination
concerning two binary operations (Section 3). In Section 4 we describe the class
of conjunctions which dominate each triangular conorm. Section 5 contains the
characterization of such conjunctions.
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onjun
tions and disjun
tions
In this section we recall definitions of binary operations which will be used

in the sequel.

Definition 1 (cf. [3])
A conjunction (disjunction) is any increasing binary operation

C: [0, 1]2 −→ [0, 1] (D: [0, 1]2 −→ [0, 1] )

fulfilling

C(0, 0) = C(0, 1) = C(1, 0) = 0, C(1, 1) = 1

(D(0, 1) = D(1, 0) = D(1, 1) = 1, D(0, 0) = 0 ).

Example 1
The operation C: [0, 1]2 −→ [0, 1] given by formula

C(x, y) =

{

max(x, y) if (x, y) ∈ [1
2
, 1]2,

min(x, y) otherwise

is a conjunction.

Definition 2 (cf. [3])
A t-seminorm (t-semiconorm) is any increasing binary operation T (S): [0, 1]2 →
[0, 1] with neutral element 1 (0).

Remark 1
An operation is a t-seminorm (t-semiconorm) iff it is a conjunction (disjunction)
with the neutral element 1 (0).

Remark 2
Any t-seminorm T and t-semiconorm S fulfils

T (x, y) ≤ min(x, y); S(x, y) ≥ max(x, y), x, y ∈ [0, 1].

Example 2
The operation T : [0, 1]2 −→ [0, 1] given by formula

T (x, y) =

{

0 if x ∈ [0, 1

4
], y ∈ [0, 1

2
],

min(x, y) otherwise

is a t-seminorm.

Remark 3
The conjunction from Example 1 is not a t-seminorm.
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Definition 3 ([7], Definitions 1.1, 1.13)
An associative, commutative and increasing operation T (S): [0, 1]2 −→ [0, 1]
is called a t-norm (t-conorm), if it has the neutral element e = 1 (e = 0).

Remark 4
An operation is a t-norm (t-conorm) iff it is an associative, commutative
t-seminorm (t-semiconorm).

By an order isomorphism we can obtain a new operation from a given one.

Theorem 1 (cf. [7], p. 38)
Let us consider an increasing binary operation F : [0, 1]2 −→ [0, 1], a bijection
ϕ: [0, 1] −→ [0, 1] and

Fϕ(x, y) = ϕ−1(F (ϕ(x), ϕ(y))), x, y ∈ [0, 1].

If ϕ is increasing and F is a t-norm (t-conorm), t-seminorm (t-semiconorm)
or conjunction (disjunction) then Fϕ remains a t-norm (t-conorm), t-seminorm
(t-semiconorm) or conjunction (disjunction), respectively.

If ϕ is decreasing and F is a t-norm (t-conorm), t-seminorm (t-semiconorm)
or conjunction (disjunction) then Fϕ changes ϕ into a t-conorm (t-norm),
t-semiconorm (t-seminorm) or disjunction (conjunction), respectively.3. Notion of domination

Now we recall the notion of domination concerning two binary operations.

Definition 4 (cf. [11])
Let F, G: [0, 1]2 −→ [0, 1]. Operation F dominates operation G (F ≫ G), iff

F (G(a, b), G(c, d)) ≥ G(F (a, c), F (b, d))

for a, b, c, d ∈ [0, 1].

Lemma 1 ([4])
The operation F = min dominates every increasing operation. Every increasing
operation dominates G = max.

New examples of domination can be obtained from given ones by order
isomorphisms.

Lemma 2 ([8], Proposition 4.2)
Let us consider increasing binary operations F, G: [0, 1]2 −→ [0, 1], a bijection
ϕ: [0, 1] −→ [0, 1] and

Fϕ(x, y) = ϕ−1(F (ϕ(x), ϕ(y))), x, y ∈ [0, 1]. (1)
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If ϕ is increasing, then F ≫ G ⇔ Fϕ ≫ Gϕ . If ϕ is decreasing, then F ≫
G ⇔ Fϕ ≪ Gϕ .

Using the decreasing bijection ϕ(x) = 1−x, x ∈ [0, 1] in (1) we can consider
dominations for dual operations.

Corollary 1
We have F ≫ G ⇔ F ′ ≪ G′, where

F ′(x, y) = 1 − F (1 − x, 1 − y), x, y ∈ [0, 1].4. Domination in the 
lass of 
onjun
tions and disjun
tions
In this section we describe the class of conjunctions which dominate each

triangular conorm.

Theorem 2 ([9])
A t-seminorm C dominates the class of all t-conorms iff

C(x, y) ∈ {0, x, y} for any x, y ∈ [0, 1]. (2)

Corollary 2
If a t-seminorm C dominates every t-semiconorm then it fulfils (2).

Corollary 3
If a t-seminorm C dominates every disjunction then it fulfils (2).

In Theorem 2 one cannot replace a t-seminorm by an arbitrary conjunction.
This is illustrated by the following counterexample.

Example 3
The operation given by the formula

C(x, y) =

{

max(x, y) if (x, y) ∈ [1
8
, 1]2,

min(x, y) otherwise

is a commutative and associative conjunction with the neutral element 1

8
such

that C(x, y) ∈ {x, y} ⊂ {0, x, y} for any x, y ∈ [0, 1]. It does not dominate the
t-conorm SP , where SP (x, y) = x + y − xy, x, y ∈ [0, 1]. Indeed, for x = 0.3,
y = 0.4, u = 0.6, v = 0.2 we have

C(SP (x, y), SP (u, v)) = C(SP (0.3, 0.4), SP (0.6, 0.2)) = C(0.58, 0.68)

= 0.68.



Some remarks on the domination between 
onjun
tions and disjun
tions 71
On the other hand we have

SP (C(x, u), C(y, v)) = SP (C(0.3, 0.6), C(0.4, 0.2)) = SP (0.6, 0.4)

= 0.76.

It means, that C does not dominate the t-conorm SP .

This is why we add an additional assumption concerning a conjunction.

Theorem 3
If C ≤ min is a conjunction fulfilling (2), then it dominates every t-conorm.

Proof. Let C ≤ min be a conjunction fulfilling (2), S be a t-conorm and
x, y, u, v ∈ [0, 1]. We denote

L = C(S(x, y), S(u, v)), R = S(C(x, u), C(y, v)).

If C(x, u) = C(y, v) = 0, then we get R = S(0, 0) = 0 ≤ L. If C(x, u) = 0 and
C(y, v) = min(y, v) > 0, we have

R = S(0, min(u, v)) = min(u, v) = C(y, v) ≤ L.

Similarly in the case C(y, v) = 0 and C(x, y) = min(x, y) > 0. Let C(x, y) =
min(x, y) > 0 and C(y, v) = min(y, v) > 0. At first we observe that by Re-
mark 2, L ≥ C(min(x, u), min(y, v)) ≥ C(x, u) 6= 0. So we have two possibili-
ties L = S(x, y) or L = S(u, v). In both cases we have

L ≥ S(min(x, u), min(y, v)) = R.

Thus C dominates every triangular conorm.

Simple computations show the following lemma.

Lemma 3
Let C: [0, 1]2 −→ [0, 1] be an increasing operation. Then C ≤ min and C fulfils
(2) iff

C(x, y) ∈ {0, min(x, y)} for any x, y ∈ [0, 1]. (3)

Directly from Lemma 3 and Theorem 3 we obtain the following result.

Theorem 4
If C is a conjunction fulfilling the condition (3), then it dominates every t-co-
norm.

The next example shows that there exist binary operations which fulfil
the assumptions of Theorem 4 but are not t-seminorms, so they do not fulfil
conditions used in Theorem 2.
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Example 4
By Theorem 4 the operation C: [0, 1]2 −→ [0, 1] given by formula

C(x, y) =

{

min(x, y) if x ∈ [1
2
, 1], y ∈ [3

4
, 1],

0 otherwise

dominates any t-conorm.

By duality (cf. Theorem 1, Corollary 1) we obtain analogous results for
disjunctions which are dominated by any t-norm.

Theorem 5
If D is a disjunction fulfilling the condition

D(x, y) ∈ {max(x, y), 1} for any x, y ∈ [0, 1],

then it is dominated by every t-norm.5. Chara
terization of a 
lass of 
onjun
tion dominating any t-
onorm
Conjunctions from Theorem 4 can be characterized in a way used for uni-

norms (cf. [6]).

Theorem 6
If C is a conjunction fulfilling (3), then there exists a decreasing function
gC : [0, 1] −→ [0, 1] such that

C(x, y) =











0 if y < gC(x),

min(x, y) if y > gC(x),

0 or min(x, y) if y = gC(x).

(4)

Moreover, for s ∈ [0, 1] let Bs = {x : gC(x) = s}, as = inf Bs, bs = supBs . If
as < bs , then there exists cs ∈ [as, bs] such that

C(x, s) =











0 if x < cs ,

min(x, s) if x > cs ,

0 or min(x, s) if x = cs .

(5)

Proof. Define gC(x) = supAx , where Ax = {y ∈ [0, 1] : C(x, y) = 0}. Of
course Ax is non-empty because C(x, 0) ≤ C(1, 0) = 0, so 0 ∈ Ax .

Next we prove, that gC is decreasing. First we note, that gC(0) = 1, because
C(0, 1) = 0.

Let x < y. If gC(x) = 1 then gC(x) ≥ gC(y). If gC(x) < 1 then C(x, t) =
min(x, t) for all t > gC(x). So, by the monotonicity of C we have C(y, t) ≥
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C(x, t) = min(x, t) > 0. Therefore C(y, t) = min(y, t) for all t > gC(x). It
means, that gC(y) ≤ gC(x).

Now, let s ∈ [0, 1] be such that as < bs . Let cs = sup{x : C(x, s) = 0}.
We prove that cs ∈ [as, bs]. If cs < as , then as > 0 and s < 1. Let t ∈ (cs, as).
Then by the monotonicity of the function gC and by definition of the set Bs

we obtain gC(cs) ≥ gC(t) > s and by (4), C(t, s) = 0, which leads to a
contradiction. If cs > bs then bs < 1 and s > 0. Let t ∈ (bs, cs). Then,
by the monotonicity of the function gC and by definition of the set Bs, we
obtain gC(cs) ≤ gC(t) < s and by (4), C(t, s) = min(t, s) > 0, which leads to a
contradiction. So, cs ∈ [as, bs].

Directly by the definition of the point cs and (3) we obtain (5).

0 1

1

as bs

s

q

q

cs

0

min

Figure. Structure of operation
(4), (5) and graph of gC

Theorem 7
Let g: [0, 1] −→ [0, 1] be a decreasing function. If C: [0, 1]2 −→ [0, 1] is the
operation given by (4) with gC = g and by (5) in intervals of constant values of
function g and C(1, 1) = 1, then the operation C is a conjunction fulfilling (3).

Proof. Directly by (4) we obtain (3). Moreover, C(1, 1) = 1 and C(0, 0) =
C(0, 1) = C(1, 0) = 0, because min(x, 0) = 0 for all x ∈ [0, 1].

Let x, y, z ∈ [0, 1] and x < y.
If y ≤ g(z), then x < g(z) and C(z, x) = 0 ≤ C(z, y).
If x ≥ g(z), then y > g(z) and C(z, y) = min(z, y) ≥ min(z, x) ≥ C(z, x).
Otherwise, we have C(z, y) = min(z, y) ≥ 0 = C(z, x).
Thus operation C is increasing with respect to the second variable. To prove

the monotonicity with respect to the first variable we consider a few cases.
If C(x, z) = min(x, z), then z ≥ g(x). By monotonicity of g we have

z ≥ g(y) and by (4) and (5) we have C(y, z) = min(y, z) ≥ min(x, z) = C(x, z).
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Otherwise, we have C(x, z) = 0 ≤ C(y, z). It means that the operation C

is increasing with respect to the second variable.

Corollary 4
Let g: [0, 1] −→ [0, 1] be a decreasing function. The operation C: [0, 1]2 −→ [0, 1]
given by

C(x, y) =

{

0 if y < g(x),

min(x, y) if y ≥ g(x)

is a conjunction fulfilling (3).

Remark 5
By duality (cf. Theorem 1, Corollary 1) we may obtain a similar characteriza-
tion of disjunctions which are dominated by any t-norm.Referen
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