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Riemann integrability of a nowhere continuous

multifunction

Abstract. 'We present an example of the Riemann integrable multifunc-
tion which is discontinuous at each point with respect to the Hausdorff
metric. The constructed multifunction is neither lower nor upper semi-
continuous.

1. Introduction

The Riemann integral for multifunctions with compact convex values was
investigated by A. Dinghas [3] and M. Hukuhara [4]. Some properties of Rie-
mann integral of multifunctions with convex closed bounded values may be
found in [5]. The Riemann integrability of multifunctions with compact convex
values was presented in [6].

Our main goal is to show that the continuity for almost all x € [a,b] of a
bounded multifunction is not a necessary condition for the Riemann integra-
bility. The same example shows also that the monotonicity does not imply the
almost everywhere continuity of multifunctions.

2. Basic definitions

Let X be a real Banach space. Denote by ¢lb(X) the set of all nonempty
convex closed bounded subsets of X. For given A, B € clb(X), we set
A+B={a+b| a€ A, be B},
A ={Xa] a € A} for A\ >0
and
A+ B=cl(A+B),

where cl A means the closure of A in X. It is easy to see that (clb(X), —T—, 3
satisfies the following properties
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MA T B) = 1 AB,
A+ WA = A T pA,
A(pA) = (An)A,

1-A=A

for each A, B € ¢lb(X) and \,u > 0. If A, B,C € clb(X), then the equality

Afc=B1icC implies A = B, thus ¢/b(X) with addition 1 satisfies the
cancellation law (see [1, Theorem II-17] and [8, Corollary 2.3]).
clb(X) is a metric space with the Hausdorf{f metric h defined by the relation

h(A, B) = max{e(A4, B),e(B, A)},

where e(A, B) = sup,c 4 d(a, B) and d(a, B) = infyep ||a—b||. The metric space
(clb(X),h) is complete (see e.g. [1, Theorem II-3]). Moreover, the Hausdorff
metric h is translation invariant since

h(A+ C,B+C)=h(A+C,B+C)=h(A,B)
(cf. [7, Lemma 3], [2, Lemma 2.2]) and positively homogeneous
h(A, AB) = Ah(A, B)
for all A, B,C € clb(X) and A > 0 (cf. [2, Lemma 2.2]).

LEMMA 1
Let X be a normed vector space. If A, B,C € clb(X) and A C B C C, then

WB,C) < h(A,C)  and  h(A,B) < h(4,0).
Proof. Since e(B,C) =0 and d(c, B) < d(c, A), ¢ € C, we have
h(B,C) = e(C, B) < e(C, A) = h(A,C).
The proof of the second inequality is analogous.

Let F' be a multifunction defined on the interval [a, b] with nonempty convex
closed bounded values in X. A set A = {zg,21,...,2Zn}, where a = g <
x1 < ... < xp, = b, is said to be a partition of [a,b]. For a given partition
A = {zo,z1,...,Tn} we set §(A) = max{z; —x;—1|i=1,...,n}. A’is said
to be a subpartition of A if A’ is a partition of the same interval and A C A’.
For the partition A and for a system 7 = (71,...,7,) of intermediate points
Ti € [xi—1, ;] we create the Riemann sum

*

S(A,T) = (21 — 20)F(11) + .. + (@0 — 2n_1)F(10).
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If for every sequence ((A”,7")), where A” = {zf,x7,..., 2} } are parti-
tions of [a,b] such that lim, .o 6(A”) =0 and 7 = (7{,..., 7} ) are systems

of intermediate points (77 € [z¥_1,zY]), the sequence of the Riemann sums

(S(A¥,7Y)) tends to the same limit I with respect to the Hausdorff metric,

then F' is said to be Riemann integrable over [a,b] and I =: ffF(w) dzx. Ob-
viously, if the limit I exists, then I € clb(X).

LEMMA 2
Let X be a real Banach space and F': [a,b] — clb(X). Then the following con-
ditions are equivalent:

(i) F is Riemann integrable on [a,b];

(ii) for each € > 0 there exists 6 > 0 such that for every partition A satis-
fying 6(A) < 8, for every subpartition A’ of A and for all corresponding
systems T, 7' of intermediate points, the inequality

h(S(A,71),S(A", 7)) <€
18 satisfied.

The easy proof is omitted. The completeness of (clb(X), h) is needed only
in the proof of sufficiency.

We say that a multifunction F: [a,b] — clb(X) is increasing if
F(s) C F(t)
holds true for all a < s <t <b.

PROPOSITION 1
An increasing multifunction F:[a,b] — clb(X) is right-hand side lower semi-
continuous at each point of the interval [a,b).

Proof. Let tg € [a,b) and let U be an open subset of X such that
F(to) N U # 0. Since F(ty) C F(t) when t > to, F(t) N U # 0 for each
t € [to,b] which implies the right-hand side lower semi-continuity of F at ¢ .

PROPOSITION 2
An increasing multifunction F':[a,b] — clb(X) is left-hand side upper semi-
continuous at each point of the interval (a,b].

Proof. Let to € (a,b] and let U be an open subset of X such that
F(tp) C U. Since F(t) C F(to) for t € [a,to], F(t) C U for the same t
and F is left-hand side upper semi-continuous at tg .

For an increasing multifunction F': [a,b] — clb(X) and for each partition
A ={z,x1,...,2n} of [a,b] we may create two sums
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*

S(A) = (21 — 20)F(x1) + .. + (0 — Tn_1)F(2n)
and

s(A) = (21 — 20)F(20) + -+ + (@ — Tn_1)F(n_1).

3. Main results

Let Y be a Banach space defined as the set of all bounded functions
2:[0,1] — R with the norm |[z|| = sup,¢(o 1) [z(?)]-
Let F:[0,1] — 2Y be a multifunction with values defined as follows

F(t) := {x:[0,1] — [0,1]| z(s) = 0 for all s > ¢}, te€0,1),
F1):={z €Y | z:[0,1] — [0,1]}.

In particular, F(0) is equal to {x:[0,1] — [0,1] | 2(s) = 0 for each s € (0, 1]}.
It is not difficult to see that the set F'(t) is an element of ¢/b(Y') for all ¢ € [0, 1].
Now we consider some properties of the multifunction F'.

REMARK 1

F is increasing on [0, 1]. Indeed, let s < ¢t and s,t € [0,1]. If t = 1, then F(s) C
F(1) for all s € [0,1]. Assume that ¢t < 1 and « € F'(s). We have z(u) = 0 for
all u > s and, in particular, for all u > ¢t. Consequently F(s) C F(¢).

REMARK 2

By Proposition 1 and Remark 1 the multifunction F' is right-hand side lower
semi-continuous at each point of [0,1). We shall show that it is not left-hand
side lower semi-continuous in (0, 1]. Let tg € (0, 1]. Define z(t) = 1 for ¢t € [0, to]
and z(t) = 0 for ¢t € (to,1], if to € (0,1). Let S(z,%) be an open ball in ¥
centered at z with the radius 3. Of course S(z, 3) N F(ty) # 0. Now take an

2
arbitrary s € [0,tp). If y € F'(s), then

1> flz—yll= sup [2z(u) —y(u)]= sup |z(u)—y(u)|=1
u€[0,1] w€(s,to)

Consequently, |z —y|| = 1 and y & S(, 1), i.e., S(z, 1) N F(s) = 0 for all
0<s< to -

REMARK 3

By Proposition 2 and Remark 1 the multifunction F' is left-hand side upper
semi-continuous at each point of the interval (0, 1]. We will show that F' is not
right-hand side upper semi-continuous in [0, 1). Indeed, let ¢y € [0,1) and let U
be an open set defined by U =, crun{y €Y lly — 2| < +}. It is clear that
F(to) C U, but F(t) ¢ U for each t > to. It is sufficient to choose z € F(t)
such that z(u) = 1 for u € [tg,t]. Thus for each z € F(to)
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|z =zl = sup |z(u) —z(u)] =1
w€to,t]

and consequently z ¢ U.

REMARK 4
F' is non-continuous at each point of the interval [0,1] with respect to the
Hausdorff metric.

By Remark 2 it follows that h(F(s), F(t)) = 1 for all s,t € [0
0 <s<t<1 Thus h(F(s),F(t)) =1if s # t and lim;_,; h(F(s), F
for all s € [0,1].

, 1] such that
1) =1

THEOREM 1
The multifunction F defined by formulas

F(t) :=={x:[0,1] — [0,1] | z(s) =0 for all s > t}, te0,1)
and
F1):={z€Y| «:[0,1] — [0,1]}

is Riemann integrable on [0,1].

Proof. Let € > 0 and let A = {tg,11,...,t,} be an arbitrary partition of
[0, 1] such that 6(A) < e. Tt is sufficient (see Lemma 2) to show that for each
subpartition A’ and for each systems of intermediate points 7, 7/ corresponding
to A, A/, respectively,

h(S(A,7),S(A", 7)) < 2e.
At first we are going to show that

s(A) ={z:[0,1] — [0,1] | x(¢) € [0,1 — t&] for t € (tg—1,tk], 1)
ke{l,...,n} and z(0) € [0,1]},
S(A) ={y:[0,1] —[0,1] | y(t) € [0,1 — tp—1] for ¢ € (tp—1, %],
ke {l,...,n} and y(0) € [0,1]}.

Let us take a € s(A). We can find n sequences (a}), such that a} €
(tk—tp—1)F(tk—1), and >} _, af — aif v — oo. Obviously a¥(t) € [0, tx, —tx_1]
for t < ty_1 and af(t) = 0if t > tx—1. Summing up over k € {1,...,n} we
have

(2)

n n n

o<(Zaz><t>:Zaz<t>= S < S (-t =1—t

k=1 k=1 j=k+1 j=k+1
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for each t € (tx—1,tx] and

n

0 < < Za%) (0) = zn:aZ(O) < Y (tk —tk,1) =1.
k=1 k

k=1 =1

Thus )",_, af belong to the right-hand side of (1) which is a closed set, so a
also belongs there.

Conversely, let a belongs to the right-hand side of (1). We define functions
b:[0,1] — [0,1], bg:[0,1] — [0, 1], k € {0, ...,n — 1}, by formulas

a(t), t=0,
b(t) = a(t) , tE(tk_1,tk], k=1,...,n—1,
1—tg
0, t e (tnfl,l]
and
b(t t 0,t
bk(t)z ()’ E[ ’ k]v

0, te (tk,l].

Obviously, by, € F(tk) for each k € {O —.,n—1}
For t € (tj_1,t;], where j € {1,...,n — 1}, we have

[(t1 —to)bo + ...+ (tn — tn—1)bn_1](t)
= [(tj+1 — )b +.o 4 (ty — th—1)bn—1](2)
= [(tjr1 —t;)b+ ...+ (tn — th—1)b](t)
= (1—1;)b(t)
= a(t),

and for u € (t,—1,t,] the equality
[(t1 — to)bo + .-+ (tn — tn—1)bn—1](u) = 0 = a(u)
holds. Moreover
[(t1 — to)bo + - .-+ (tn — th—1)bn-1](0) = b(0) = a(0).

Thus a € s(A) and the proof of (1) is complete.
The equality (2) can be established similarly.
Since F' is increasing (by Remark 1) the following inclusions are valid

s(A) C S(A, 1) C S(A). (3)
We will show that
s(A) C S(A', 7)) C S(A). (4)
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There is no loss of generality in assuming that A’ = A U {u}, where u €
(tn-1,1) and 7" = (71,...,Tnt1), where 7, € [ti—1,:], @ € {1,...,n — 1},
Tn € [tn—1,u], Thy1 € [u,1]. By definitions of s(A), S(A) and S(A',7') we
have

s(A) = (h — to>F<to> oot (s — ta—2) F(tn_2)
~1) T (tn —u)F(ty—1)

(tn—1 —tn—2)F(Tn-1)

(tn — u)F(Tnt1)

= S(A/,’T/)

C (t —to)F(t) & ... (tn1 — tn2)F(tn_1)

*

F (= ta ) F(tn) + (tn — w)F(tn)
= 5(A).

Now, by Lemma 1, (3) and (4) we have
h(S(A,7),S(A", 7)) < h(S(A,7),S(A)) +h(S(A),S(A", "))
< 21 (S(A),5(2)).
We are going to show that
e (S(A), 5(A)) = 5(A).
Let zg, yo: [0, 1] — [0, 1] be defined by
1, t=0, 1, t=0,
t) = t) =
zo(?) { L—tp, te (tp-1,trl, yo(®) { L—tp—1, t€ (tp—1,ts]

Obviously g € s(A) and yo € S(A).
In order to see that

190 = @oll = d (yo, 5(A)) (5)
suppose that z € s(A). Then for ¢t = 0 we have
Yo(t) —a(t) =1—x(t) 2 0=yo(t) — zo(t)
and if t € (tg_1,tx], we obtain
yo(t) —x(t) =1 —tp—1 —x(t) > 1 —tp—1 — (1 — tr) = yo(t) — zo(t).
Hence

llyo = [l = [lyo — o[
for each = € s(A), which completes the proof of (5).
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Now for each y € S(A) we will find « € s(A) such that
lyo = woll = lly — =ll = d(y, s(A)). (6)
Let = be defined by

a(t) = {

lyo(t) — zo(t)] > |y(t) — zo(t)] = |y(t) — x(t)]
if y(t) € [zo(t),yo(t)] and
lyo(t) — xo(t)| > 0 = [y(t) — z(t)]

for y(t) € [0,20(t)). Thus [|yo — xo|| > ||y — || and (6) holds.
By (5) and (6) we obtain

zo(t), y(t) € [zo(t), yo(t)],
Yy t)’ y(t) € [07x0(t))'
It is clear that

e(S(A),s(A)) = [lyo — zoll = sup |yo(t) — zo(t)]
tefo,1]

_ oty = 6(A
peox e = ko1 = 3(4)

<e
and
h(S(A,7),S(A", 7)) < 2,

which completes the proof.
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