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lterative roots of homeomorphisms possessing

periodic points

Abstract. In this paper we give necessary and sufficient conditions for the
existence of orientation-preserving iterative roots of a homeomorphism
with a nonempty set of periodic points. We also give a construction
method for these roots.

1. Introduction

The problem of the existence of iterative roots of a given function F, i.e., the
solution of the following equation G™ = F', where m > 2 is an integer, has been
considered for nearly two hundred years (see for example [1], [10], [12], [14],
[15], [25]). There are also some results for some homeomorphisms of the unit
circle S, e.g., homeomorphisms with an irrational rotation number (see [18],
[24]), for the identity function (see [11]) and for some other homeomorphisms
with a rational rotation number (see [16], [19], [20]). In particular, [16] relates
the existence of an iterative root of F' to the existence of an iterative root of
Fiper py where Per F' 1= {z € S'| 3k € N FF(z) = z}. More precisely, an
orientation-preserving homeomorphism F: S! — S* such that F"(z) = z for
z € Per I, has an iterative root of order m if and only if there exists an iterative
root 1: Per F' — Per F' of order m of Fjpe,r such that

(i) ® preserves orientation;

(ii) for any connected component (u,v) of S'\ PerF, ((u),¢(v)) and
(u,v) are both increasing (or both decreasing) arcs of F™.

— E a— .
Recall that an arc (u,v) , where u,v € Per F and (u,v) NPer F' = {), is called
E ——
increasing (resp. decreasing) arc of F™ if there is an & € (u,v) such that
- -

F™(x) € (z,v) (resp. F"(z) € (u,z) ).

This paper answers the question when iterative roots of the function Fipe,r
exist and generalizes results from [20]. For this purpose we apply the method
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which is used for the construction of the iterative roots of a homeomorphism
with an irrational rotation number (i.e., the method that uses a solution of
some Schroder equation, see [18]).

2. Preliminaries

We begin with recalling some definitions and notations. For any u,w, z € S*
there exist unique t1,5 € (0, 1) such that we?™ = 2, we?™2 = y. Define

u<w=z ifandonly if 0 <t <tg

(see [2]). Some properties of this relation can be found in [3], [4] and [5].

We say that a function F: A — S', where A C S!, preserves orientation
if for any u,w,z € A such that u < w < z we have F(u) < F(w) < F(z).

For every orientation-preserving homeomorphism F: S* — S there exists
a unique (up to translation by an integer) homeomorphism f:R — R, called
the lift of F, such that F' (e?"i¥) = ¢>™/(@) and f(z + 1) = f(z) + 1 for all
x € R. Moreover, the limit

a(F) = lim @)

n— o0 n

(mod 1), reR

always exists and does not depend on z and the choice of f. This number is
called the rotation number of F (see [9]). It appears that a homeomorphism
F:S' — S preserves orientation if and only if f is a strictly increasing
function (see for example [4]). Moreover, a(F’) is a rational number if and only
if Per F' # ) (see for example [9)]).

Let us introduce a classification of orientation-preserving homeomorphisms.
Namely, for n € N and ¢ € {0,1...,n — 1} such that ged(¢g,n) = 1 denote by
Fy.n the set of all orientation-preserving homeomorphisms F of the circle with
aF) = %. From now on writing F' € F, ,, without any additional assumptions
on ¢ and n, we mean that the numbers ¢ and n are such that n € N, ¢ €
{0,...,n— 1} and ged(g,n) = 1.

- =
Finally, for any distinct u, z € S* put (u,2) = {w € S| u < w < 2z} (such
—_— —

a set is said to be an open arc) and (u,z) := (u,z) U{u}.
REMARK 1
If F € Fyp, then Per F = {z € S'| F"(z) = 2} and n is the minimal
number such that F"(z) = z for z € Per F'. In fact, notice that a(F") =
na(F) (mod 1) = 0. Therefore F™ has a fixed point (see [9], Ch. 3, §3). The
assertion follows from the fact that every two periodic points of an orientation-
preserving homeomorphism have the same period (see for example [17], p. 16).
Now suppose that F™(z) = z foranm € {1,...,n—1} and a z € Per F. Then
mZ (mod 1) = 0. Thus n divides m, a contradiction.
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For any F' € F,,, define the following set
Mp:={uePerF|IwePerF, w#u: (u,w) NPerF = P}.

Such a set is F-invariant (i.e., F(Mp) = Mp). It may happen that Mp = 0 (if
Per F = S'), Mp = Per F (for example, if Per F is finite) or ) ¢ Mp G Per F
(for example, if int(Per F') # ()). Moreover, if Mg # (), then S'\ Per F' # .
Since Per F is closed, we have that S1\ Per F is a sum of pairwise disjoint open

B —
arcs. Denote the family of these arcs by Ap . For every (u,w) € Ap, where
u,w € Per F, put [ ((u, w) ) := u and observe that [ maps bijectively Ar onto
M. Setting I,, := 7 (u) for u € Mg we have

S'\PerF= | L.
uEMp

For the convenience of the reader we recall the relevant, slightly modified
material from [21].

PROPOSITION 1
——
Let F € Fy,, be such that Per F # S* and let I € Ap. Then (z,F"(z)) CI

for every z € I or (F"(z),z) C I for every z € I.
_— _—
Moreover, if (z,F™(z)) C1I (resp. (F™(2),z) C I) for a z € I, then
(21, F"(z1)) C F(I) (resp. (F"(z1),21) C F(I)) for all z1 € F(I).
We also recall a sketch of the proof. Assume z € I € Ap. Then F"(z) € I
_— _—
and z # F"(z). Therefore (z,F"(z)) C I or (F"(z),z) CI. Suppose that

T . . .
(z, F*(z)) C I. Since F preserves orientation we have

(F"(2), FHD(z)) ¢ T foralll € Z.

Moreover, (J;cz (F"(2), FUAY (%)) = 1. Now fix u € I. We may assume

u # F™(z) for | € Z. Then u € (F™(z), F"U*Y(z)) for some j € Z.

Hence F"(u) € (F"UTY(2), F"0+2(2)) | as F preserves orientation. This
———

gives (u, F™(u)) C 1.

_—
For the second assertion suppose that (z, F"(z)) C I for an z € I. Let
z1 € F(I) be fixed. Then there exists a zo € I such that F(z9) = 21 and

(20, F™(20)) C I. Hence (z1,F"(z1)) = F((zO,F”(zo))) C F(I). This
ends the sketch of the proof.

Now we present some results concerning the Schréder equation

Yo = s, (1)
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where s € S' and F:S' — S! is an orientation-preserving homeomorphism
with a rational rotation number. It is a known fact (see for example [9], [17]
or [22]) that if F' is a homeomorphism with an irrational rotation number
and s = €2™*() then (1) has a continuous solution 9: S* — S'. If F is a
homeomorphism with a rational rotation number and such that card(Per F') <
Ng, then the only continuous solutions of (1) are constant functions. Of course,
in this case s =1 (see Theorem 4.1 in [7]). On the other hand, it follows from
Theorem 4.2 in [7] that, if F' is an orientation-preserving homeomorphism such
that Per F = S' and F # idg1, then there exists a constant s # 1 for which
(1) has a homeomorphic and orientation-preserving solution ¢: S' — S*. The
following theorem generalizes the results from Theorem 4.2 in [7].

THEOREM 1
Letn > 1 and F € Fy, . There exists an orientation-preserving continuous
mapping ¢: Per F — S' such that

Y(F(z)) = 2™y (), z € Per F. (2)
The solution of (2) depends on an arbitrary function.

The proof of the above theorem is based on Theorem 4.2 from [7] and the
following observation.

LEMMA 1
For any F € Fy, , where n > 1, with Per F # S there exist infinitely many

homeomorphisms F € F,, such that Per F = S and F(z) = F(z) for z €
Per F.

Proof. Fix F € F,,, such that Per F # S'. Define the equivalence relation
on Mp:

p~q < dkeZ p:Fk(q).

By E. denote the set of class representatives. In other words, we decompose
M onto cycles of F'. Let ¢, x: Ipkp) — Iprt1(y) for all p € Eo and k €
{0,...,n — 2} be arbitrary orientation-preserving homeomorphisms. Put

Opn-1(z) == ¢;(1) o (/5;& 0...0 qb;}ld(z), 2 € Ipn-1(p) . (3)

It is easy to see that ¢p,—1:Ipn-1() — I, for p € E. are orientation-
preserving homeomorphisms. Let z € S\ Per F. There exist a unique p € E..
and k € {0,...,n — 1} such that z € Ipx(, . Set

$(2) 7= Pp,(2)-
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and observe that ¢ maps S! \ Per F onto S* \ Per F and

Gpn—10...00p0(2), k=0,
Gp k=10 ... 0Pp0 O Ppn_10...00¢,1(2), k #£0.

This and (3) give ¢"(z) = z for z € S* \ Per F.

Now we show that ¢ preserves orientation. To do this, observe that for
every z € I, where p € Mp, we have ¢(2) € Ip(,). Fix u,w,z € S1\ Per F
such that u < w < z. Notice that if {u,w,z} C I, for a p € Mp, then the
definition of ¢ gives ¢p(u) < p(w) < ¢(z). Now assume that there exist distinct
p,q € My such that exactly one element from the set {u,w, z} belongs to I,
and the rest of them belong to I, . In view of Lemma 2 in [4], it is sufficient to

— —_—
consider only the case: (z,u) C I, and w € I;. Hence (¢(2),d(u)) C Ipep
and ¢(w) € Ipg). Since Ip)NIpp) = 0, we have ¢(u) < ¢p(w) < ¢(z). Finally,
let card(Mp) > 3 and let v € I,,w € I; and z € I;, where p,q,t € My are
such that p # ¢ # t # p. The arcs I,, I, and I are pairwise disjoint, so we
have p < ¢ < t. Hence F'(p) < F(q) < F(t). On the other hand, ¢(u) € Iy,
d(w) € Ipg) and ¢(z) € Ipw). Thus ¢(u) < d(w) < ¢(2), as Ipey,), Irg) and
Ir(4) are pairwise disjoint arcs.

Define the function F: §* — S* as follows:

s [F(2), z € Per F,
(2) := {d)(z), z € SY\ PerF.

o) = {

Clearly, Fisa surjection. To show that Fis an orientation-preserving home-
omorphism it is sufficient to prove that it preserves orientation. Similarly as
above fix u,w,z € S! such that v < w < z. By virtue of Lemma 2 in [4] it is
enough to consider three cases:

(i) card(Per F) > 3 and u,w,z € Per F or u,w,z € S*\ Per F' (this one is
clear).

(ii) u,z € Per F and w € S'\ Per F. There exists a p € Mg N ( ,z) such
——
that w € I, and F(w) = ¢(w) € Ipwp). Thus F(p) € (F(u), F(z)) .
S AN . .
Consequently, I,y C (F(u), F(2)) . Finally, F(u) < F(w) < F(z), as
F‘|PerF =F.

(iii) u,2 € S\ Per F and w € Per F. In this case it may happen that u, z € I,
forap e Mp or u € I, and z € I, for some p,q € Mp, p # q. Suppose
that u,z € I, for a p € Mp. Then (z,u) C I, and w ¢ I,. Hence
——=—— N N
(F(2),F(u)) = (¢(2),6(u)) C Ipp) and F(w) = F(w) ¢ Ipp. Thus

F(u) < F(w) < F(z). Now suppose that u € I, and z € I, for some
p,q € Mp,p#q. Thenp <u < wandw < z < p. A similar reasoning to
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this in (ii) yields F(p) < F(u) < F(w) and F(w) < F(2) < F(p). Hence,
by Lemma 1 in [3], we obtain F(u) < F(w) < F(z).
Finally, notice that F‘O(Z) = Flo(z), where O(z) := {z,F(z),..., F"(2)}

for z € Per F. Thus a(F) = a(F). Consequently, F e Fyn , and the proof is
completed.

Now we give the proof of Theorem 1. To do this fix F' € F, ., , where n > 1.
Notice that if Per F' = S!, then, in view of Theorem 4.2 in [7], there exist an
orientation-preserving homeomorphism (depending on an arbitrary function)
P: St — Stand a ¢’ € {1,...,n — 1} with ged(q’,n) = 1 such that

Y(F(2) = 5 p(z),  ze St

The equality a(F) = %’ follows from the fact that the homeomorphism

conjugates F' and the rotation R(z) = e2™% 2 and 1) is an orientation-preserving
homeomorphism (see Theorem 1 in [8]). Henceforth assume that Per F' # S?.
Let F' be an orientation-preserving homeomorphism, which exists by Lemma 1,
and let 1&: 5! — S be an orientation-preserving homeomorphic solution of

BE() = 2T0E(z), ze s
Put ¢ := 1ﬁ|perp . Observe that ¢: Per F — S is the desired solution of (2).

DEFINITION 1
Given F € Fg , put

M= {p e Mp| (2, F"(z)) C1,for ze Ip}
and
Mg = {p e Mp| (F™(2),z) C I, for z € Ip}.
Notice that M} N M5z = 0. Indeed, if p € M} N M5, then for any 2 € I,

—— ———
we would have (F"(z2),z) C I, and (z,F"(z)) C I,. Hence S' = I,, a
contradiction.

REMARK 2
From Proposition 1 we get M} U M5 = Mp and F(M}) € M} . This
inclusion and the fact that /\/lJFr C Per F yield

MG = F'HF(MR)) € F(Mp).
Thus for any F € F,.,, , we have M} UMy = Mp and F(M}) = M.

Since for all F' € F, ,, the sets Per F, My, M} and M}, are invariant sets
of F we have the following result.
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REMARK 3
Let F € Fyn,n>1, ¢:Per F — S! be an orientation-preserving continuous
solution of (2) and let X € {Per F, Mp , M}, My}. Then

P(X) = ey (X).

3. Main results

Here we give necessary and sufficient conditions for the existence of orienta-
tion-preserving continuous iterative roots of order m > 2 of a mapping F €
Fqn - Throughout this section we will assume that n > 1. We begin with the
following observation.

LEMMA 2
Let m > 2 be an integer and let F' € Fy,, . Suppose that the equation

GM(z) = F(z), z2€8! (4)

has an orientation-preserving continuous solution. Then there are an orienta-
tion-preserving continuous solution of (2) and a j € {0,...,m — 1} such that

o)+

(X)) = (X)), (5)
where X € {Per F, Mp, M}, Mp}.

Proof. Since G satisfies (4), we have a(F) = ma(G) (mod 1). This yields
% =a(G) foraj €{0,...,m—1}. Theorem 1 implies the existence of an
orientation-preserving continuous solution of the following equation

»(G(2)) = ™

a(F)+j
m

¥(2), z € PerG. (6)
Thus
BG™(2) = $(F () = 2T0Wy(z), 5 € PerG.

Hence and from the fact that Per ¥ = Per G implies Mp = M, we get that
1 is a solution of (2) satisfying (5) for X € {Per F, Mp}. Moreover, a(G) =

a(F)+j q+jn

’
g /. [ m
m T onl? where q = ged(g+jin,m) l:= ged(g+jn,m)

and ged(q’,nl) =1, so

—_—
G € Fyni. Hence, if Per F # S, then p € Mg gives (z,G"(z)) C I, for
every z € I,,. Since

GH™(2) e I, and (GH"(2),G*HUnl()) c I,  for ke Z,

we have (2,G"™(z))" C I,. Consequently, p € M} . Whence M{ C M} .
Similarly, Mg C M5, so Mp\ Mp = M} C ME = Mg\ Mg . Finally,
Mt = M and My = M. In view of the above facts and Remark 3 equality
(5) holds for X € {Per F, Mp , M% M3}
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COROLLARY 1

Let F € Fyp. If G:S' — St is an orientation-preserving homeomorphism
satisfying (4) for an integer m > 2, then Mp = Mg, M = ME and My =
Mg .

Now suppose that F' € F,,, is such that Per F # S, m > 1 is an integer
and :Per F — S' is an orientation-preserving continuous solution of (2)
satisfying (5) for X = Per F' and a j € {0,...,m — 1}. This fact yields equality
(5) for X = Mp. Indeed, put

h(2) =1 (e%i“fﬁ“ w(z)) . zePeaF (7)

It is easy to see that h,:Per F' — Per F' is an orientation-preserving home-

omorphism. Notice that z € Per '\ Mg # () if and only if there exist a
—

w € Per F'\ {2z} and 2z, € (z,w) NPerF for n € N such that z, — z as

n — oo. This is equivalent to h;l(zn) — hil(z) as n — oo and h;l(zn) €

(hil(z),hqzl(w)) N Per F', which gives hil(z) € Per F\ Mp or equivalently
2 € hy(Per F\ Mp). Hence hy(Mp) = Mp.

However, (5) with X = Per F' does not imply (5) for X € {M%, Mz}
An example of a function F' € Fj 5 such that Per FF = Mp = {1,i,—1, —i},
M = {1,—1} may be given. Put ¥(z) = z for z € Per F. Then ¢ is a
solution of (2) satisfying (5) for m = 2, j = 0 and X € {Per F, Mr}, but
eQTrii/\/lJFr # M. Therefore assume subsidiarily that (5) holds for X = ME
and introduce the equivalence relation p on Mp:

(pg)€p < k€L q=Hjp), pgeMp, (8)

where Hy := thMF and h, is given by (7). Let W, be the set of class repre-
sentatives of p.

Notice that (5) with X = M} yields [p], C MF or [p], C M5 for all
peEW,.

DEFINITION 2

Let F € F,, be such that Per F # S', m > 1 be an integer, ¢:Per F —
S! be an orientation-preserving continuous solution of (2) satisfying (5) for
X € {PerF,M}} and a j € {0,...,m — 1} and let W, be the set of class
representatives of the relation p given by (8). Put

!

m’ = ged(q + jn,m), 1:= M and n' = nl. (9)
m
Let (2p,k)kez for p € W, be sequences such that the points zp gn/4r € IH;(I,)
forr € {0,...,1—1} and d € {0,...,m’ — 1} are arbitrary fixed and such that
Hy(p) = zpr =< Zpnigr < oo = Zp (mr—tynrir < F"(2pr), ifp€ ME
or (10)
Hy(p) < F™(2p,r) < 2p(m/—1yn'gr = oo = Zpnir < 2Zpr,  if p € Mp
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and the remaining points are given by
Zp ktm = F(Zpyk), keZ, pe Wp. (11)

Now we show that the above sequences are well defined and we prove some
of their properties.

LEMMA 3
Under assumptions of Definition 2, for alli € Z and p € W, there exist unique
s€{0,...,m' =1}, 7" €{0,...,1—1} and k € Z such that z, ; = F*(2p snryrr).
Moreover,

{Zp,dn’—i-'r‘}dEZ C IH:p(p)’ pE Wp , e {0, . ,n' — 1}, (12)
and for any p € W, , [pl, C M} (resp. [pl, C M3 ) if and only if

Zp,an’4+r = Zpbn/+r = Zp.cn/+r (7“6813- Zp,en/4r = Zpbn/+r = Zp,an’-i—r) (13)

for anyr €{0,...,n" — 1} and all a,b,c € Z such that a < b < c.

Proof. Fix p € W, and i € Z. Write ¢ = dn' + r, where d € Z and
ref0,...,n —=1}. Ifde {0,...,m — 1} and r € {0,...,1 — 1}, then by
Definition 2, s = d, ' = r, k = 0 and obviously zp gn/4+r € Thy () -

Suppose that d € Z\ {0,...,m' — 1} and r € {0,...,l — 1}. Put ¢t = [%}
([x] denotes the integer part of z), k = tn, s = d —tm’ and ' = r. Notice that
d=tm'+s,s€{0,...,m' —1} and by (11),

t
r n(zp,snurr) = Zp,sn/+r+mtn = Zp (tm'+s)n/+r — Zp,dn’+r - (14)

Since F'"(I,) = I, for u € Mp and zp sp/4r € IHZZ)(p)’ by (14) we have
Zp,dn/+r € IHZZ) () -

Finally assume that d € Z and r € {l,...,n' — 1}. As ged(g,n) = 1 and
m’ = ged(q + jn,m) we have ged(m’,n) = 1. Hence there exists a unique
be{l,...,n— 1} such that m'b = 1 (mod n). Set a, := [%], 7/ =r —a,l and
k, := a,;b(mod n). Thus m'k, = a, (mod n) which, in view of the fact that
r =a.l + 1/, gives mk, + 1" = r(mod n’) and, in consequence,

mk, +7 =xn’ +r for some x € Z. (15)

This time put ¢, := [d_ﬂ, k=k.+t,nand s=d—x —t,m'. Then

m/’

Fkr+t7.n (Zp7snl+/r./) = Zp, (d— k7'7n+/7.177.)n’+7“’+k‘,«m = Zp,dn’+r -

Since r’ € {0,...,l — 1} and d — x € Z, we obtain 2, (4_z)n/4r € IH;/(p) . To
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prove Zp dn'+r € Iy (p) it is enough to show that Fk(HZ;/ (p)) = H,(p). Notice
that from (7),

Hy'(2) = Y 2™ Y(2)) = F(z), z € Mp.
This, (15) and the fact that Hi”'(p) = p yield

Fre(HY (p)) = HP™ " (p) = HZ™ 7 (p) = HI(p).

The proof of the remaining part of the lemma runs in the same way as the
proof of the second assertion of Lemma 7 in [20] (it is enough to take Hy (p),
r1, and k; instead of ary _(iyrirg), B (r) and p,, respectively).

Let (zpx)rez , where p € W, , be the family of sequences given by (10) and
(11). Define the following families of arcs:

_—
Zp.ky Zp,ktn’ p€M+

LM;:{””’*")’ f’ fork€Z, peW,. (16)
(Zpktn’s 2pk) 5 pE My

From Lemma 3 it follows that
F(Lp,k) = Lp k+m, keZ, pe w,.

LEMMA 4
Under assumptions of Definition 2 if for any p € W, the sequences (2p k)kez
are given by (10) and (11) and {Lp i }rez are the families of arcs defined by
(16), then

U Lp,an+r = Ly (p) » ref{0,...,n" —1}. (17)
dez

Proof. Fixr € {0,...,n' —1} and suppose that p € W, N M}.. From (13)

we have 2 dn'4r € (2p,(d—1)n/+r 2p,(d+1)n/+r) for d € Z. Hence by (12) and
(16),

Lp,dn’+r - <Zp,(d71)n’+r7 Zp,(dJrl)n’JrT) C IHL)(p) ) deZ.
Thus

U Lp,dn’+7‘ C IHL)(p) .
dez

To prove the converse inclusion fix z € I HI,(p) - By Lemma 4 in [21] (see
also Remark 3 in [20]) we have

Ty = | (F (2p,0), FET (2,0))
keZ
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Hence z € (FFom(z, ), FFotDn (5 1)) for a kg € Z. On the other hand, by
(11) and (13),

<Fk0n(zp,r);F(kOJrl)n(zp,r)) = <Zp,k0nm+raZp,(k0+1)nm+7‘)

’
m

U Lp,konm+sn’+7'
s=0

C U L;D,kn’-i-’!‘ .
kEZ

This ends the proof.

THEOREM 2

Let F € Fy,, be such that Per F # S, m > 2 be an integer and let 1: Per F —
S be an orientation-preserving continuous solution of (2) satisfying (5) for
X € {Per F, M}} and a j € {0,...,m—1}. Suppose that W, is the selector of
p given by (8), (zp,x)kez for p € W, are the families of sequences given by (10)
and (11) and {Lyk},c; for p € W, are the families of arcs defined by (16). If
Gpi:Lpx — Lpgy1 for k € {0,1,...,m —2} and p € W, are orientation-
preserving surjections, then there exists a unique orientation-preserving home-
omorphism G : S* — St satisfying (4) and such that

GiL,,=Gpk forpe W, and k € {0,1,...,m —2}.

Moreover, a(G) = LE2.

Proof. Some parts of the proof of this theorem are similar to the proof
of Theorem 5 from [20]. Here we give only the sketch of these parts. For
the details we refer the reader to [20]. Fix p € W, and orientation-preserving
surjections Gy : Ly — Lp k41 for k € {0,1,...,m — 2}. Put

Gpm—1 ::FOG;éoG;;%o...oGi;in_Q. (18)
For the remaining integers k there exist unique d € Z \ {0} and an r €
{0,1,...,m — 1} such that &k = md + r. For such k’s define

Gy = Gpmasr = F1oGyro F . (19)

It might be shown that Gp i (Lpx) = Lpr+1 for k € Z and Gpp: Ly —
Ly 141 for k € Z are orientation-preserving surjections.

Now fix z € S* \ Per F. There exist a p € W, and an r € {0,...,n’ — 1},
where n’ is determined by (9), such that z € IH;,(p)' By (17), z € Lp dn/4r
for some d € Z. Notice that such a d is unique. Indeed, the assumption
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Ly.cn'4r N Ly an'+r # 0 for some ¢,d € Z, ¢ # d, contradicts (13). Define a
function G: S' \ Per F — S1\ Per F as follows:

é(z) = Gpan4r(2); 2€ Lpdn'4r, pEW,, de€Z, r€{0,...,n —1}. (20)

Notice that for every u € Mp there exist unique p € W, and r € {0,...,n'—1}
such that u = HJ (p). Therefore by (20), (17) and the properties of Gy, ;. we
have

G(Iu) = G(IH,E)(p)) =G ( U Lp,dn’+7'> = U Ly dntr1 = H;+1(p)
dez deZ

=T,

(if r + 1 = n’ we use the equality Hgl (p) = p).
It is casy to see that G:S!\ Per F — S1\ PerF is a surjection. By
induction it can be proved that G satisfies

G"™(z)=F(z), zeS'"\PerF. (21)

Moreover, using the same method as in the proof of Theorem 5 in [20] (the proof

of 1°) it can be shown that G preserves orientation on every I, for p € Mp.
We are now in a position to define the solution of (4). Namely, put

G, z€ S\ PerF,
G(2) = { hy (2), z € Per F, (22)

where h, is defined by (7). It is easy to see that G maps S' onto itself.
Furthermore, setting F' = hy, and ¢ = G and repeating the same argument as
in the proof of Lemma 1 (i.e., the proof of the fact that F preserves orientation)
one can obtain that G preserves orientation. Since S' is a closed set, it follows
that G is an orientation-preserving homeomorphism. Moreover, (7) and (21)
imply that G satisfies (4).

It remains to show that a(G) = From Lemma 1 there exists an

q+tijn
orientation-preserving homeomorphism G such that a(G) = o(@), G(z) = G(z)
for 2 € Per F = Per G and Per G = S'. From Theorem 4.2 in [7] it follows that
G is conjugated to a rotation. On the other hand, by (22), G(2) = hy(2) for
z € Per F. By (7) we get that G is conjugated to R(z) = e>™m' 2, z € SL.
Hence o(G) = L% (see Theorem 1 in [8]), and the assertion follows.

REMARK 4

Suppose that F € F,, is such that Per F' # S'. Then every continuous and
a(F)+jn
mn

orientation-preserving solution G of (4) with «(G) = , where j €
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{0,...,m — 1}, may be obtained by the method described in the proof of
Theorem 2. Indeed, suppose that G: S* — S! is a solution of (4) for an inte-
ger m > 2. Then a(G) = W for a j € {0,...,m — 1}. Furthermore, by
(4), Per F = Per G, Ar = Ag and, by Corollary 1, Mp = Mg, ME = M
and My = M. Lemma 2 implies that there exists an orientation-preserving
continuous mapping v: Per F — S! satisfying (6). Put hy = G|per ¢ and
Hy = G|pmg - By (6), hy satisfies (7) and Hy, = hap| pq,- Notice that

Gly) =law) = Imyw), P EMa. (23)

Let p be the relation on Mg = Mp given by (8) and let W, be its selector.
Fixpe W,, z,0 € I, and put

Zpk = Gk(zp,o), ke Z\{0}. (24)

Obviously, (z.x)kez satisfies (11). Moreover, (23) and the fact that H" =
idpp , where n’ is given in (9), yield

_ dn’+r _
Zp,dn’+r = G (Zp70) € IHi”'/+T(p) - IHIZ(ZU)’

(25)
deZ, re{0,...,n —1}.

By Definition 1, since n’ is the minimal number such that G" (2) = =z for
B —

z € PerG and M} = ME, we have (zp0,2pn/) CI,, if p € M} and

(zpnrs 2p0) C Ip, if p € Mg . Hence in view of (24), (25) and the fact

that G preserves orientation we get

(zp(arvyn+r 2pdntr) Clayy,  (vesp. (zpdnitr; 2p,(a+1n+r) C Iay )
fordeZ,re{0,....,n  —1} and p € /\/lg (resp. p € M;). Consequently,
Hy(p) = 2zpr < 2pnitr <o = 2Zp (m'— D/ gr < am'n’ (zp,r) = F"™(2p,r)
(vesp. Hy(p) = F™(2p,r) = G (2p0) < Zp (m/ =i = o = Zpnidr = Zpr)-
Let {Lp i }rez be defined by (16). Notice that
G(Lpr) = Lprt1, kel (26)

Now put
prk = G‘L
From (4), (26) and (27) we have

peW,, keZ. (27)

Dk’

Fir,o=Gpm-1°Gpm-—20...0G,10Gy0, peW,,

thus (18) holds. Furthermore, (4) implies GoF' = FoG. Thus GoF* = FFoG
for any k € Z. From this, (26) and (27) we get (19).
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Theorem 2 and Remark 4 solve the problem of the existence of iterative
roots of homeomorphisms having the set of periodic points different from the
whole circle. Notice that if ' € F,, is such that Per ¥ = S, then taking
G := hy , where hy is defined by (7), we get G™ = F. To sum up, we have
obtained the following result.

THEOREM 3

Let m > 2 be an integer and let F € Fy, . Equation (4) has orientation-
preserving and continuous solution if and only if an orientation-preserving con-
tinuous solution v:Per ' — St of (2) satisfies (5) for X € {Per F, ML} and
for a j € {0,...,m — 1}. Moreover, if Per I # S, then for all ¢ and j
satisfying (5) for X € {Per F, Mt} there exist infinitely many solutions of (4).

The following remark results from the above theorem. It answers the ques-
tion of the existence of the iterative roots of the mapping Fipe;p, where
F:S8' — S! is an orientation-preserving homeomorphism having periodic
points.

REMARK 5
Let m > 2 be an integer and let F' € F;, . The mapping Fipe, p: Per I —
Per I’ has continuous and orientation-preserving iterative roots of order m if
and only if some orientation-preserving continuous solution v: Per F — S of
(2) satisfies

27riM

m(Per F) = ¢(Per F)
for some j € {0,...,m —1}.

We conclude with an observation concerning homeomorphisms with a finite
and non-empty set of periodic points.

THEOREM 4

Suppose that F € Fq,, is such that 1 < card (Per F) =: Np < oo and m > 2
is an integer. Let moreover 1, and 1y be orientation-preserving continuous
solutions of (2) satisfying (5) for X € {Per F, M}} and a j € {0,...,m — 1}
and let hy, , hy,: Per F — Per F' be defined by (7). Then hy, (2) = hy,(2) for
z € PerF.

In the proof of Theorem 4 we will use the following proposition, which is a
slightly modified Theorem 3 from [21] (see also Theorem 2 in [20]).

PROPOSITION 2

Suppose that F: S' — S is an orientation-preserving homeomorphism such
that 1 < card (Per F)) =: Np < co. Let zg € Per F be an arbitrary element and
let z1,...,2np—1 € Per F satisfy the following condition:

Argz—p<A1“gzp—+17 pe{0,...,Nrp —2}.
20 20
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Then o(F) = L, where 0 < g <n and ged(q,n) = 1, if and only if

F(Zp) :Z(p—i-kpq) (mod Np)» pE {Oa-H;NF*]-}a

where kp := %

Proof of Theorem 4. In view of Theorem 2 there exist orientation-preser-
ving homeomorphisms G; and G2 such that PerG; = Per F, G = F and

a(G;) = % = Z—l, for i € {1,2}, where ¢’ := q;—j,” and m’, n/ are given in (9).
Moreover, G;(z) = hy,(z) for z € Per F and i € {1,2}. Let zo,...,2np-1 €
Per F be defined as in Proposition 2 and let K := &£ = kg, = kqg,. By

n
Proposition 2 we have

hy, (2p) = G1(2p) = 2(p+K¢q') (mod Np) = Ga(2p)
= hwz (ZP)

for every p € {0,..., Np — 1}. Thus the assertion follows.

The property described in Theorem 4 does not have to occur for homeo-
morphisms with infinitely many periodic points. For example, let F(z) = ez
for z € S! and let m = 2. Then F € Fiz2, M; = () and Per F = S'. Put
Y1(2) = 2 for z € S* and 1y (e>™%) = 2™ for € (0,1), where

(@) —222 + 2z, z €(0,3),
2@ -3 +2(e—3)+ 4, ze (L)

Notice that 9, and 12 satisfy (2) and (5) for X € {Per F, M}} and j = 0, but
hlbl # hwz :
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