Annales Academiae Paedagogicae Cracoviensis

Folia 45

Pawet Solarz
Iterative roots of homeomorphisms possessing periodic points

Abstract. In this paper we give necessary and sufficient conditions for the existence of orientation-preserving iterative roots of a homeomorphism with a nonempty set of periodic points. We also give a construction method for these roots.

1. Introduction

The problem of the existence of iterative roots of a given function F, i.e., the solution of the following equation $G^{m}=F$, where $m \geq 2$ is an integer, has been considered for nearly two hundred years (see for example [1], [10], [12], [14], [15], [25]). There are also some results for some homeomorphisms of the unit circle S^{1}, e.g., homeomorphisms with an irrational rotation number (see [18], [24]), for the identity function (see [11]) and for some other homeomorphisms with a rational rotation number (see [16], [19], [20]). In particular, [16] relates the existence of an iterative root of F to the existence of an iterative root of $F_{\mid \mathrm{Per} F}$, where Per $F:=\left\{z \in S^{1} \mid \exists k \in \mathbb{N} F^{k}(z)=z\right\}$. More precisely, an orientation-preserving homeomorphism $F: S^{1} \longrightarrow S^{1}$ such that $F^{n}(z)=z$ for $z \in \operatorname{Per} F$, has an iterative root of order m if and only if there exists an iterative root ψ : Per $F \longrightarrow$ Per F of order m of $F_{\mid \operatorname{Per} F}$ such that
(i) ψ preserves orientation;
(ii) for any connected component $\overrightarrow{(u, v)}$ of $S^{1} \backslash \operatorname{Per} F, \overrightarrow{(\psi(u), \psi(v))}$ and $\overrightarrow{(u, v)}$ are both increasing (or both decreasing) arcs of F^{n}.

Recall that an $\operatorname{arc} \overrightarrow{(u, v)}$, where $u, v \in \operatorname{Per} F$ and $\overrightarrow{(u, v)} \cap \operatorname{Per} F=\emptyset$, is called increasing (resp. decreasing) arc of F^{n} if there is an $x \in \overrightarrow{(u, v)}$ such that $F^{n}(x) \in \overrightarrow{(x, v)}$ (resp. $\left.F^{n}(x) \in \overrightarrow{(u, x)}\right)$.

This paper answers the question when iterative roots of the function $F_{\mid \operatorname{Per} F}$ exist and generalizes results from [20]. For this purpose we apply the method

[^0]
78 Pawet Solarz

which is used for the construction of the iterative roots of a homeomorphism with an irrational rotation number (i.e., the method that uses a solution of some Schröder equation, see [18]).

2. Preliminaries

We begin with recalling some definitions and notations. For any $u, w, z \in S^{1}$ there exist unique $t_{1}, t_{2} \in\langle 0,1)$ such that $w e^{2 \pi \mathrm{i} t_{1}}=z$, $w e^{2 \pi \mathrm{i} t_{2}}=u$. Define

$$
u \prec w \prec z \quad \text { if and only if } 0<t_{1}<t_{2}
$$

(see [2]). Some properties of this relation can be found in [3], [4] and [5].
We say that a function $F: A \longrightarrow S^{1}$, where $A \subset S^{1}$, preserves orientation if for any $u, w, z \in A$ such that $u \prec w \prec z$ we have $F(u) \prec F(w) \prec F(z)$.

For every orientation-preserving homeomorphism $F: S^{1} \longrightarrow S^{1}$ there exists a unique (up to translation by an integer) homeomorphism $f: \mathbb{R} \longrightarrow \mathbb{R}$, called the lift of F, such that $F\left(e^{2 \pi \mathrm{i} x}\right)=e^{2 \pi \mathrm{i} f(x)}$ and $f(x+1)=f(x)+1$ for all $x \in \mathbb{R}$. Moreover, the limit

$$
\alpha(F):=\lim _{n \rightarrow \infty} \frac{f^{n}(x)}{n}(\bmod 1), \quad x \in \mathbb{R}
$$

always exists and does not depend on x and the choice of f. This number is called the rotation number of F (see [9]). It appears that a homeomorphism $F: S^{1} \longrightarrow S^{1}$ preserves orientation if and only if f is a strictly increasing function (see for example [4]). Moreover, $\alpha(F)$ is a rational number if and only if $\operatorname{Per} F \neq \emptyset$ (see for example [9]).

Let us introduce a classification of orientation-preserving homeomorphisms. Namely, for $n \in \mathbb{N}$ and $q \in\{0,1 \ldots, n-1\}$ such that $\operatorname{gcd}(q, n)=1$ denote by $\mathcal{F}_{q, n}$ the set of all orientation-preserving homeomorphisms F of the circle with $\alpha(F)=\frac{q}{n}$. From now on writing $F \in \mathcal{F}_{q, n}$ without any additional assumptions on q and n, we mean that the numbers q and n are such that $n \in \mathbb{N}, q \in$ $\{0, \ldots, n-1\}$ and $\operatorname{gcd}(q, n)=1$.

Finally, for any distinct $u, z \in S^{1}$ put $\overrightarrow{(u, z)}:=\left\{w \in S^{1} \mid u \prec w \prec z\right\}$ (such a set is said to be an open arc) and $\overrightarrow{\langle u, z)}:=\overrightarrow{(u, z)} \cup\{u\}$.

Remark 1

If $F \in \mathcal{F}_{q, n}$, then $\operatorname{Per} F=\left\{z \in S^{1} \mid F^{n}(z)=z\right\}$ and n is the minimal number such that $F^{n}(z)=z$ for $z \in \operatorname{Per} F$. In fact, notice that $\alpha\left(F^{n}\right)=$ $n \alpha(F)(\bmod 1)=0$. Therefore F^{n} has a fixed point (see [9], Ch. 3, §3). The assertion follows from the fact that every two periodic points of an orientationpreserving homeomorphism have the same period (see for example [17], p. 16). Now suppose that $F^{m}(z)=z$ for an $m \in\{1, \ldots, n-1\}$ and a $z \in \operatorname{Per} F$. Then $m \frac{q}{n}(\bmod 1)=0$. Thus n divides m, a contradiction.

For any $F \in \mathcal{F}_{q, n}$ define the following set

$$
\mathcal{M}_{F}:=\{u \in \operatorname{Per} F \mid \exists w \in \operatorname{Per} F, w \neq u: \overrightarrow{(u, w)} \cap \operatorname{Per} F=\emptyset\} .
$$

Such a set is F-invariant (i.e., $F\left(\mathcal{M}_{F}\right)=\mathcal{M}_{F}$). It may happen that $\mathcal{M}_{F}=\emptyset$ (if Per $F=S^{1}$), $\mathcal{M}_{F}=\operatorname{Per} F$ (for example, if Per F is finite) or $\emptyset \nsubseteq \mathcal{M}_{F} \nsubseteq \operatorname{Per} F$ (for example, if $\operatorname{int}(\operatorname{Per} F) \neq \emptyset$). Moreover, if $\mathcal{M}_{F} \neq \emptyset$, then $S^{1} \backslash \operatorname{Per} F \neq \emptyset$. Since Per F is closed, we have that $S^{1} \backslash \operatorname{Per} F$ is a sum of pairwise disjoint open arcs. Denote the family of these arcs by \mathcal{A}_{F}. For every $\overrightarrow{(u, w)} \in \mathcal{A}_{F}$, where $u, w \in \operatorname{Per} F$, put $l(\overrightarrow{(u, w)}):=u$ and observe that l maps bijectively \mathcal{A}_{F} onto \mathcal{M}_{F}. Setting $I_{u}:=l^{-1}(u)$ for $u \in \mathcal{M}_{F}$ we have

$$
S^{1} \backslash \operatorname{Per} F=\bigcup_{u \in \mathcal{M}_{F}} I_{u}
$$

For the convenience of the reader we recall the relevant, slightly modified material from [21].

Proposition 1
Let $F \in \mathcal{F}_{q, n}$ be such that $\operatorname{Per} F \neq S^{1}$ and let $I \in \mathcal{A}_{F}$. Then $\overrightarrow{\left(z, F^{n}(z)\right)} \subset I$ for every $z \in I$ or $\overrightarrow{\left(F^{n}(z), z\right)} \subset I$ for every $z \in I$.

Moreover, if $\overrightarrow{\left(z, F^{n}(z)\right)} \subset I$ (resp. $\left.\overrightarrow{\left(F^{n}(z), z\right)} \subset I\right)$ for $a z \in I$, then $\overrightarrow{\left(z_{1}, F^{n}\left(z_{1}\right)\right)} \subset F(I)\left(\right.$ resp. $\left.\overrightarrow{\left(F^{n}\left(z_{1}\right), z_{1}\right)} \subset F(I)\right)$ for all $z_{1} \in F(I)$.

We also recall a sketch of the proof. Assume $z \in I \in \mathcal{A}_{F}$. Then $F^{n}(z) \in I$ and $z \neq F^{n}(z)$. Therefore $\overrightarrow{\left(z, F^{n}(z)\right)} \subset I$ or $\overrightarrow{\left(F^{n}(z), z\right)} \subset I$. Suppose that $\overrightarrow{\left(z, F^{n}(z)\right)} \subset I$. Since F preserves orientation we have

$$
\overrightarrow{\left(F^{l n}(z), F^{n(l+1)}(z)\right)} \subset I \quad \text { for all } l \in \mathbb{Z}
$$

Moreover, $\bigcup_{l \in \mathbb{Z}} \overrightarrow{\left\langle F^{l n}(z), F^{(l+1) n}(z)\right)}=I$. Now fix $u \in I$. We may assume $u \neq F^{l n}(z)$ for $l \in \mathbb{Z}$. Then $u \in \overrightarrow{\left(F^{n j}(z), F^{n(j+1)}(z)\right)}$ for some $j \in \mathbb{Z}$. Hence $F^{n}(u) \in \overrightarrow{\left(F^{n(j+1)}(z), F^{n(j+2)}(z)\right)}$, as F preserves orientation. This gives $\overrightarrow{\left(u, F^{n}(u)\right)} \subset I$.

For the second assertion suppose that $\overrightarrow{\left(z, F^{n}(z)\right)} \subset I$ for an $z \in I$. Let $z_{1} \in F(I)$ be fixed. Then there exists a $z_{0} \in I$ such that $F\left(z_{0}\right)=z_{1}$ and $\overrightarrow{\left(z_{0}, F^{n}\left(z_{0}\right)\right)} \subset I$. Hence $\overrightarrow{\left(z_{1}, F^{n}\left(z_{1}\right)\right)}=F\left(\overrightarrow{\left(z_{0}, F^{n}\left(z_{0}\right)\right)}\right) \subset F(I)$. This ends the sketch of the proof.

Now we present some results concerning the Schröder equation

$$
\begin{equation*}
\psi \circ F=s \psi, \tag{1}
\end{equation*}
$$

80 Pawet Solarz

where $s \in S^{1}$ and $F: S^{1} \longrightarrow S^{1}$ is an orientation-preserving homeomorphism with a rational rotation number. It is a known fact (see for example [9], [17] or [22]) that if F is a homeomorphism with an irrational rotation number and $s=e^{2 \pi \mathrm{i} \alpha(F)}$, then (1) has a continuous solution $\psi: S^{1} \longrightarrow S^{1}$. If F is a homeomorphism with a rational rotation number and such that $\operatorname{card}(\operatorname{Per} F) \leq$ \aleph_{0}, then the only continuous solutions of (1) are constant functions. Of course, in this case $s=1$ (see Theorem 4.1 in [7]). On the other hand, it follows from Theorem 4.2 in [7] that, if F is an orientation-preserving homeomorphism such that Per $F=S^{1}$ and $F \neq \mathrm{id}_{S^{1}}$, then there exists a constant $s \neq 1$ for which (1) has a homeomorphic and orientation-preserving solution $\psi: S^{1} \longrightarrow S^{1}$. The following theorem generalizes the results from Theorem 4.2 in [7].

Theorem 1

Let $n>1$ and $F \in \mathcal{F}_{q, n}$. There exists an orientation-preserving continuous mapping ψ : Per $F \longrightarrow S^{1}$ such that

$$
\begin{equation*}
\psi(F(z))=e^{2 \pi \mathrm{i} \alpha(F)} \psi(z), \quad z \in \operatorname{Per} F . \tag{2}
\end{equation*}
$$

The solution of (2) depends on an arbitrary function.
The proof of the above theorem is based on Theorem 4.2 from [7] and the following observation.

Lemma 1

For any $F \in \mathcal{F}_{q, n}$, where $n>1$, with $\operatorname{Per} F \neq S^{1}$ there exist infinitely many homeomorphisms $\hat{F} \in \mathcal{F}_{q, n}$ such that $\operatorname{Per} \hat{F}=S^{1}$ and $\hat{F}(z)=F(z)$ for $z \in$ Per F.

Proof. Fix $F \in \mathcal{F}_{q, n}$ such that $\operatorname{Per} F \neq S^{1}$. Define the equivalence relation on \mathcal{M}_{F} :

$$
p \sim q \Longleftrightarrow \exists k \in \mathbb{Z} \quad p=F^{k}(q)
$$

By E_{\sim} denote the set of class representatives. In other words, we decompose \mathcal{M}_{F} onto cycles of F. Let $\phi_{p, k}: I_{F^{k}(p)} \longrightarrow I_{F^{k+1}(p)}$ for all $p \in E_{\sim}$ and $k \in$ $\{0, \ldots, n-2\}$ be arbitrary orientation-preserving homeomorphisms. Put

$$
\begin{equation*}
\phi_{p, n-1}(z):=\phi_{p, 0}^{-1} \circ \phi_{p, 1}^{-1} \circ \ldots \circ \phi_{p, n-2}^{-1}(z), \quad z \in I_{F^{n-1}(p)} . \tag{3}
\end{equation*}
$$

It is easy to see that $\phi_{p, n-1}: I_{F^{n-1}(p)} \longrightarrow I_{p}$ for $p \in E_{\sim}$ are orientationpreserving homeomorphisms. Let $z \in S^{1} \backslash \operatorname{Per} F$. There exist a unique $p \in E_{\sim}$ and $k \in\{0, \ldots, n-1\}$ such that $z \in I_{F^{k}(p)}$. Set

$$
\phi(z):=\phi_{p, k}(z) .
$$

and observe that ϕ maps $S^{1} \backslash \operatorname{Per} F$ onto $S^{1} \backslash \operatorname{Per} F$ and

$$
\phi^{n}(z)= \begin{cases}\phi_{p, n-1} \circ \ldots \circ \phi_{p, 0}(z), & k=0 \\ \phi_{p, k-1} \circ \ldots \circ \phi_{p, 0} \circ \phi_{p, n-1} \circ \ldots \circ \phi_{p, k}(z), & k \neq 0 .\end{cases}
$$

This and (3) give $\phi^{n}(z)=z$ for $z \in S^{1} \backslash \operatorname{Per} F$.
Now we show that ϕ preserves orientation. To do this, observe that for every $z \in I_{p}$, where $p \in \mathcal{M}_{F}$, we have $\phi(z) \in I_{F(p)}$. Fix $u, w, z \in S^{1} \backslash \operatorname{Per} F$ such that $u \prec w \prec z$. Notice that if $\{u, w, z\} \subset I_{p}$ for a $p \in \mathcal{M}_{F}$, then the definition of ϕ gives $\phi(u) \prec \phi(w) \prec \phi(z)$. Now assume that there exist distinct $p, q \in \mathcal{M}_{F}$ such that exactly one element from the set $\{u, w, z\}$ belongs to I_{p} and the rest of them belong to I_{q}. In view of Lemma 2 in [4], it is sufficient to consider only the case: $\overrightarrow{(z, u)} \subset I_{p}$ and $w \in I_{q}$. Hence $\overrightarrow{(\phi(z), \phi(u))} \subset I_{F(p)}$ and $\phi(w) \in I_{F(q)}$. Since $I_{F(q)} \cap I_{F(p)}=\emptyset$, we have $\phi(u) \prec \phi(w) \prec \phi(z)$. Finally, let $\operatorname{card}\left(\mathcal{M}_{F}\right) \geq 3$ and let $u \in I_{p}, w \in I_{q}$ and $z \in I_{t}$, where $p, q, t \in \mathcal{M}_{F}$ are such that $p \neq q \neq t \neq p$. The $\operatorname{arcs} I_{p}, I_{q}$ and I_{t} are pairwise disjoint, so we have $p \prec q \prec t$. Hence $F(p) \prec F(q) \prec F(t)$. On the other hand, $\phi(u) \in I_{F(p)}$, $\phi(w) \in I_{F(q)}$ and $\phi(z) \in I_{F(t)}$. Thus $\phi(u) \prec \phi(w) \prec \phi(z)$, as $I_{F(p)}, I_{F(q)}$ and $I_{F(t)}$ are pairwise disjoint arcs.

Define the function $\hat{F}: S^{1} \longrightarrow S^{1}$ as follows:

$$
\hat{F}(z):= \begin{cases}F(z), & z \in \operatorname{Per} F, \\ \phi(z), & z \in S^{1} \backslash \operatorname{Per} F .\end{cases}
$$

Clearly, \hat{F} is a surjection. To show that \hat{F} is an orientation-preserving homeomorphism it is sufficient to prove that it preserves orientation. Similarly as above fix $u, w, z \in S^{1}$ such that $u \prec w \prec z$. By virtue of Lemma 2 in [4] it is enough to consider three cases:
(i) $\operatorname{card}(\operatorname{Per} F) \geq 3$ and $u, w, z \in \operatorname{Per} F$ or $u, w, z \in S^{1} \backslash \operatorname{Per} F$ (this one is clear).
(ii) $u, z \in \operatorname{Per} F$ and $w \in S^{1} \backslash \operatorname{Per} F$. There exists a $p \in \mathcal{M}_{F} \cap \overrightarrow{\langle u, z\rangle}$ such that $w \in I_{p}$ and $\hat{F}(w)=\phi(w) \in I_{F(p)}$. Thus $F(p) \in \overrightarrow{\langle F(u), F(z))}$. Consequently, $I_{F(p)} \subset \overrightarrow{(F(u), F(z))}$. Finally, $\hat{F}(u) \prec \hat{F}(w) \prec \hat{F}(z)$, as $\hat{F}_{\mid \text {Per } F}=F$.
(iii) $u, z \in S^{1} \backslash \operatorname{Per} F$ and $w \in \operatorname{Per} F$. In this case it may happen that $u, z \in I_{p}$ for a $p \in M_{F}$ or $u \in I_{p}$ and $z \in I_{q}$ for some $p, q \in \mathcal{M}_{F}, p \neq q$. Suppose that $u, z \in I_{p}$ for a $p \in M_{F}$. Then $\overrightarrow{(z, u)} \subset I_{p}$ and $w \notin I_{p}$. Hence $\overrightarrow{(\hat{F}(z), \hat{F}(u))}=\overrightarrow{(\phi(z), \phi(u))} \subset I_{F(p)}$ and $\hat{F}(w)=F(w) \notin I_{F(p)}$. Thus $\hat{F}(u) \prec \hat{F}(w) \prec \hat{F}(z)$. Now suppose that $u \in I_{p}$ and $z \in I_{q}$ for some $p, q \in \mathcal{M}_{F}, p \neq q$. Then $p \prec u \prec w$ and $w \prec z \prec p$. A similar reasoning to
this in (ii) yields $\hat{F}(p) \prec \hat{F}(u) \prec \hat{F}(w)$ and $\hat{F}(w) \prec \hat{F}(z) \prec \hat{F}(p)$. Hence, by Lemma 1 in [3], we obtain $\hat{F}(u) \prec \hat{F}(w) \prec \hat{F}(z)$.
Finally, notice that $\hat{F}_{\mid O(z)}=F_{\mid O(z)}$, where $O(z):=\left\{z, F(z), \ldots, F^{n-1}(z)\right\}$ for $z \in \operatorname{Per} F$. Thus $\alpha(F)=\alpha(\hat{F})$. Consequently, $\hat{F} \in \mathcal{F}_{q, n}$, and the proof is completed.

Now we give the proof of Theorem 1. To do this fix $F \in \mathcal{F}_{q, n}$, where $n>1$. Notice that if Per $F=S^{1}$, then, in view of Theorem 4.2 in [7], there exist an orientation-preserving homeomorphism (depending on an arbitrary function) $\psi: S^{1} \longrightarrow S^{1}$ and a $q^{\prime} \in\{1, \ldots, n-1\}$ with $\operatorname{gcd}\left(q^{\prime}, n\right)=1$ such that

$$
\psi(F(z))=e^{2 \pi \mathrm{i} \frac{q^{\prime}}{n}} \psi(z), \quad z \in S^{1}
$$

The equality $\alpha(F)=\frac{q^{\prime}}{n}$ follows from the fact that the homeomorphism ψ conjugates F and the rotation $R(z)=e^{2 \pi \mathrm{i} \frac{q^{\prime}}{n}} z$ and ψ is an orientation-preserving homeomorphism (see Theorem 1 in [8]). Henceforth assume that $\operatorname{Per} F \neq S^{1}$. Let \hat{F} be an orientation-preserving homeomorphism, which exists by Lemma 1 , and let $\hat{\psi}: S^{1} \longrightarrow S^{1}$ be an orientation-preserving homeomorphic solution of

$$
\hat{\psi}(\hat{F}(z))=e^{2 \pi \mathrm{i} \alpha(F)} \hat{\psi}(z), \quad z \in S^{1}
$$

Put $\psi:=\hat{\psi}_{\mid \operatorname{Per} F}$. Observe that $\psi: \operatorname{Per} F \longrightarrow S^{1}$ is the desired solution of (2).

Definition 1

Given $F \in \mathcal{F}_{q, n}$ put

$$
\mathcal{M}_{F}^{+}:=\left\{p \in \mathcal{M}_{F} \mid \overrightarrow{\left(z, F^{n}(z)\right)} \subset I_{p} \text { for } z \in I_{p}\right\}
$$

and

$$
\mathcal{M}_{F}^{-}:=\left\{p \in \mathcal{M}_{F} \mid \overrightarrow{\left(F^{n}(z), z\right)} \subset I_{p} \text { for } z \in I_{p}\right\}
$$

Notice that $\mathcal{M}_{F}^{+} \cap \mathcal{M}_{F}^{-}=\emptyset$. Indeed, if $p \in \mathcal{M}_{F}^{+} \cap \mathcal{M}_{F}^{-}$, then for any $z \in I_{p}$ we would have $\overrightarrow{\left(F^{n}(z), z\right)} \subset I_{p}$ and $\overrightarrow{\left(z, F^{n}(z)\right)} \subset I_{p}$. Hence $S^{1}=I_{p}$, a contradiction.

Remark 2
From Proposition 1 we get $\mathcal{M}_{F}^{+} \cup \mathcal{M}_{F}^{-}=\mathcal{M}_{F}$ and $F\left(\mathcal{M}_{F}^{+}\right) \subset \mathcal{M}_{F}^{+}$. This inclusion and the fact that $\mathcal{M}_{F}^{+} \subset \operatorname{Per} F$ yield

$$
\mathcal{M}_{F}^{+}=F^{n-1}\left(F\left(\mathcal{M}_{F}^{+}\right)\right) \subset F\left(\mathcal{M}_{F}^{+}\right)
$$

Thus for any $F \in \mathcal{F}_{q, n}$, we have $\mathcal{M}_{F}^{+} \cup \mathcal{M}_{F}^{-}=\mathcal{M}_{F}$ and $F\left(\mathcal{M}_{F}^{+}\right)=\mathcal{M}_{F}^{+}$.
Since for all $F \in \mathcal{F}_{q, n}$ the sets $\operatorname{Per} F, \mathcal{M}_{F}, \mathcal{M}_{F}^{+}$and \mathcal{M}_{F}^{-}are invariant sets of F we have the following result.

Remark 3
Let $F \in \mathcal{F}_{q, n}, n>1, \psi$: Per $F \longrightarrow S^{1}$ be an orientation-preserving continuous solution of (2) and let $X \in\left\{\operatorname{Per} F, \mathcal{M}_{F}, \mathcal{M}_{F}^{+}, \mathcal{M}_{F}^{-}\right\}$. Then

$$
\psi(X)=e^{2 \pi \mathrm{i} \alpha(F)} \psi(X)
$$

3. Main results

Here we give necessary and sufficient conditions for the existence of orienta-tion-preserving continuous iterative roots of order $m>2$ of a mapping $F \in$ $\mathcal{F}_{q, n}$. Throughout this section we will assume that $n>1$. We begin with the following observation.

Lemma 2
Let $m \geq 2$ be an integer and let $F \in \mathcal{F}_{q, n}$. Suppose that the equation

$$
\begin{equation*}
G^{m}(z)=F(z), \quad z \in S^{1} \tag{4}
\end{equation*}
$$

has an orientation-preserving continuous solution. Then there are an orienta-tion-preserving continuous solution of (2) and $a j \in\{0, \ldots, m-1\}$ such that

$$
\begin{equation*}
e^{2 \pi \mathrm{i} \frac{\alpha(F)+j}{m}} \psi(X)=\psi(X) \tag{5}
\end{equation*}
$$

where $X \in\left\{\operatorname{Per} F, \mathcal{M}_{F}, \mathcal{M}_{F}^{+}, \mathcal{M}_{F}^{-}\right\}$.
Proof. Since G satisfies (4), we have $\alpha(F)=m \alpha(G)(\bmod 1)$. This yields $\frac{\alpha(F)+j}{m}=\alpha(G)$ for a $j \in\{0, \ldots, m-1\}$. Theorem 1 implies the existence of an orientation-preserving continuous solution of the following equation

$$
\begin{equation*}
\psi(G(z))=e^{2 \pi \mathrm{i} \frac{\alpha(F)+j}{m}} \psi(z), \quad z \in \operatorname{Per} G \tag{6}
\end{equation*}
$$

Thus

$$
\psi\left(G^{m}(z)\right)=\psi(F(z))=e^{2 \pi \mathrm{i} \alpha(F)} \psi(z), \quad z \in \operatorname{Per} G
$$

Hence and from the fact that $\operatorname{Per} F=\operatorname{Per} G$ implies $\mathcal{M}_{F}=\mathcal{M}_{G}$, we get that ψ is a solution of (2) satisfying (5) for $X \in\left\{\operatorname{Per} F, \mathcal{M}_{F}\right\}$. Moreover, $\alpha(G)=$ $\frac{\alpha(F)+j}{m}=\frac{q^{\prime}}{n l}$, where $q^{\prime}:=\frac{q+j n}{\operatorname{gcd}(q+j n, m)}, l:=\frac{m}{\operatorname{gcd}(q+j n, m)}$ and $\operatorname{gcd}\left(q^{\prime}, n l\right)=1$, so $G \in \mathcal{F}_{q^{\prime} n l}$. Hence, if $\operatorname{Per} F \neq S^{1}$, then $p \in \mathcal{M}_{G}^{+}$gives $\overrightarrow{\left(z, G^{n l}(z)\right)} \subset I_{p}$ for every $z \in I_{p}$. Since

$$
G^{k l n}(z) \in I_{p} \quad \text { and } \quad \overrightarrow{\left(G^{k l n}(z), G^{(k+1) n l}(z)\right)} \subset I_{p} \quad \text { for } k \in \mathbb{Z}
$$

we have $\overrightarrow{\left(z, G^{n m}(z)\right)} \subset I_{p}$. Consequently, $p \in \mathcal{M}_{F}^{+}$. Whence $\mathcal{M}_{G}^{+} \subset \mathcal{M}_{F}^{+}$. Similarly, $\mathcal{M}_{G}^{-} \subset \mathcal{M}_{F}^{-}$, so $\mathcal{M}_{F} \backslash \mathcal{M}_{F}^{-}=\mathcal{M}_{F}^{+} \subset \mathcal{M}_{G}^{+}=\mathcal{M}_{G} \backslash \mathcal{M}_{G}^{-}$. Finally, $\mathcal{M}_{F}^{+}=\mathcal{M}_{G}^{+}$and $\mathcal{M}_{F}^{-}=\mathcal{M}_{G}^{-}$. In view of the above facts and Remark 3 equality (5) holds for $X \in\left\{\operatorname{Per} F, \mathcal{M}_{F}, \mathcal{M}_{F}^{+}, \mathcal{M}_{F}^{-}\right\}$.

84 Pawet Solarz

Corollary 1
Let $F \in \mathcal{F}_{q, n}$. If $G: S^{1} \longrightarrow S^{1}$ is an orientation-preserving homeomorphism satisfying (4) for an integer $m \geq 2$, then $\mathcal{M}_{F}=\mathcal{M}_{G}, \mathcal{M}_{F}^{+}=\mathcal{M}_{G}^{+}$and $\mathcal{M}_{F}^{-}=$ \mathcal{M}_{G}^{-}.

Now suppose that $F \in \mathcal{F}_{q, n}$ is such that $\operatorname{Per} F \neq S^{1}, m>1$ is an integer and $\psi: \operatorname{Per} F \longrightarrow S^{1}$ is an orientation-preserving continuous solution of (2) satisfying (5) for $X=\operatorname{Per} F$ and a $j \in\{0, \ldots, m-1\}$. This fact yields equality (5) for $X=\mathcal{M}_{F}$. Indeed, put

$$
\begin{equation*}
h_{\psi}(z):=\psi^{-1}\left(e^{2 \pi \mathrm{i} \frac{\alpha(F)+j}{m}} \psi(z)\right), \quad z \in \operatorname{Per} F \tag{7}
\end{equation*}
$$

It is easy to see that h_{ψ} : Per $F \longrightarrow$ Per F is an orientation-preserving homeomorphism. Notice that $z \in \operatorname{Per} F \backslash \mathcal{M}_{F} \neq \emptyset$ if and only if there exist a $w \in \operatorname{Per} F \backslash\{z\}$ and $z_{n} \in \overrightarrow{(z, w)} \cap \operatorname{Per} F$ for $n \in \mathbb{N}$ such that $z_{n} \rightarrow z$ as $n \rightarrow \infty$. This is equivalent to $h_{\psi}^{-1}\left(z_{n}\right) \rightarrow h_{\psi}^{-1}(z)$ as $n \rightarrow \infty$ and $h_{\psi}^{-1}\left(z_{n}\right) \in$ $\overrightarrow{\left(h_{\psi}^{-1}(z), h_{\psi}^{-1}(w)\right)} \cap \operatorname{Per} F$, which gives $h_{\psi}^{-1}(z) \in \operatorname{Per} F \backslash \mathcal{M}_{F}$ or equivalently $z \in h_{\psi}\left(\operatorname{Per} F \backslash \mathcal{M}_{F}\right)$. Hence $h_{\psi}\left(\mathcal{M}_{F}\right)=\mathcal{M}_{F}$.

However, (5) with $X=$ Per F does not imply (5) for $X \in\left\{\mathcal{M}_{F}^{+}, \mathcal{M}_{F}^{-}\right\}$. An example of a function $F \in \mathcal{F}_{1,2}$ such that $\operatorname{Per} F=\mathcal{M}_{F}=\{1, \mathrm{i},-1,-\mathrm{i}\}$, $\mathcal{M}_{F}^{+}=\{1,-1\}$ may be given. Put $\psi(z)=z$ for $z \in \operatorname{Per} F$. Then ψ is a solution of (2) satisfying (5) for $m=2, j=0$ and $X \in\left\{\operatorname{Per} F, \mathcal{M}_{F}\right\}$, but $e^{2 \pi \mathrm{i} \frac{1}{4}} \mathcal{M}_{F}^{+} \neq \mathcal{M}_{F}^{+}$. Therefore assume subsidiarily that (5) holds for $X=\mathcal{M}_{F}^{+}$ and introduce the equivalence relation ρ on \mathcal{M}_{F} :

$$
\begin{equation*}
(p, q) \in \rho \Longleftrightarrow \exists k \in \mathbb{Z} \quad q=H_{\psi}^{k}(p), \quad p, q \in \mathcal{M}_{F} \tag{8}
\end{equation*}
$$

where $H_{\psi}:=h_{\psi_{\mid \mathcal{M}_{F}}}$ and h_{ψ} is given by (7). Let W_{ρ} be the set of class representatives of ρ.

Notice that (5) with $X=\mathcal{M}_{F}^{+}$yields $[p]_{\rho} \subset \mathcal{M}_{F}^{+}$or $[p]_{\rho} \subset \mathcal{M}_{F}^{-}$for all $p \in W_{\rho}$.

Definition 2

Let $F \in \mathcal{F}_{q, n}$ be such that Per $F \neq S^{1}, m>1$ be an integer, $\psi:$ Per $F \longrightarrow$ S^{1} be an orientation-preserving continuous solution of (2) satisfying (5) for $X \in\left\{\operatorname{Per} F, \mathcal{M}_{F}^{+}\right\}$and a $j \in\{0, \ldots, m-1\}$ and let W_{ρ} be the set of class representatives of the relation ρ given by (8). Put

$$
\begin{equation*}
m^{\prime}:=\operatorname{gcd}(q+j n, m), \quad l:=\frac{m}{m^{\prime}} \quad \text { and } \quad n^{\prime}:=n l . \tag{9}
\end{equation*}
$$

Let $\left(z_{p, k}\right)_{k \in \mathbb{Z}}$ for $p \in W_{\rho}$ be sequences such that the points $z_{p, d n^{\prime}+r} \in I_{H_{\psi}^{r}(p)}$ for $r \in\{0, \ldots, l-1\}$ and $d \in\left\{0, \ldots, m^{\prime}-1\right\}$ are arbitrary fixed and such that

$$
\begin{align*}
& H_{\psi}^{r}(p) \prec z_{p, r} \prec z_{p, n^{\prime}+r} \prec \ldots \prec z_{p,\left(m^{\prime}-1\right) n^{\prime}+r} \prec F^{n}\left(z_{p, r}\right), \quad \text { if } p \in \mathcal{M}_{F}^{+} \\
& \text {or } \tag{10}\\
& H_{\psi}^{r}(p) \prec F^{n}\left(z_{p, r}\right) \prec z_{p,\left(m^{\prime}-1\right) n^{\prime}+r} \prec \ldots \prec z_{p, n^{\prime}+r} \prec z_{p, r}, \quad \text { if } p \in \mathcal{M}_{F}^{-}
\end{align*}
$$

and the remaining points are given by

$$
\begin{equation*}
z_{p, k+m}:=F\left(z_{p, k}\right), \quad k \in \mathbb{Z}, p \in W_{\rho} . \tag{11}
\end{equation*}
$$

Now we show that the above sequences are well defined and we prove some of their properties.

Lemma 3

Under assumptions of Definition 2, for all $i \in \mathbb{Z}$ and $p \in W_{\rho}$ there exist unique $s \in\left\{0, \ldots, m^{\prime}-1\right\}, r^{\prime} \in\{0, \ldots, l-1\}$ and $k \in \mathbb{Z}$ such that $z_{p, i}=F^{k}\left(z_{p, s n^{\prime}+r^{\prime}}\right)$. Moreover,

$$
\begin{equation*}
\left\{z_{p, d n^{\prime}+r}\right\}_{d \in \mathbb{Z}} \subset I_{H_{\psi}^{r}(p)}, \quad p \in W_{\rho}, r \in\left\{0, \ldots, n^{\prime}-1\right\} \tag{12}
\end{equation*}
$$

and for any $p \in W_{\rho},[p]_{\rho} \subset \mathcal{M}_{F}^{+}$(resp. $[p]_{\rho} \subset \mathcal{M}_{F}^{-}$) if and only if

$$
\begin{equation*}
z_{p, a n^{\prime}+r} \prec z_{p, b n^{\prime}+r} \prec z_{p, c n^{\prime}+r} \quad\left(\text { resp. } z_{p, c n^{\prime}+r} \prec z_{p, b n^{\prime}+r} \prec z_{p, a n^{\prime}+r}\right) \tag{13}
\end{equation*}
$$

for any $r \in\left\{0, \ldots, n^{\prime}-1\right\}$ and all $a, b, c \in \mathbb{Z}$ such that $a<b<c$.
Proof. Fix $p \in W_{\rho}$ and $i \in \mathbb{Z}$. Write $i=d n^{\prime}+r$, where $d \in \mathbb{Z}$ and $r \in\left\{0, \ldots, n^{\prime}-1\right\}$. If $d \in\left\{0, \ldots, m^{\prime}-1\right\}$ and $r \in\{0, \ldots, l-1\}$, then by Definition 2, $s=d, r^{\prime}=r, k=0$ and obviously $z_{p, d n^{\prime}+r} \in I_{H_{\psi}^{r}(p)}$.

Suppose that $d \in \mathbb{Z} \backslash\left\{0, \ldots, m^{\prime}-1\right\}$ and $r \in\{0, \ldots, l-1\}$. Put $t=\left[\frac{d}{m^{\prime}}\right]$ ($[x]$ denotes the integer part of $x), k=t n, s=d-t m^{\prime}$ and $r^{\prime}=r$. Notice that $d=t m^{\prime}+s, s \in\left\{0, \ldots, m^{\prime}-1\right\}$ and by (11),

$$
\begin{equation*}
F^{t n}\left(z_{p, s n^{\prime}+r}\right)=z_{p, s n^{\prime}+r+m t n}=z_{p,\left(t m^{\prime}+s\right) n^{\prime}+r}=z_{p, d n^{\prime}+r} . \tag{14}
\end{equation*}
$$

Since $F^{t n}\left(I_{u}\right)=I_{u}$ for $u \in \mathcal{M}_{F}$ and $z_{p, s n^{\prime}+r} \in I_{H_{\psi}^{r}(p)}$, by (14) we have $z_{p, d n^{\prime}+r} \in I_{H_{\psi}^{r}(p)}$.

Finally assume that $d \in \mathbb{Z}$ and $r \in\left\{l, \ldots, n^{\prime}-1\right\}$. As $\operatorname{gcd}(q, n)=1$ and $m^{\prime}=\operatorname{gcd}(q+j n, m)$ we have $\operatorname{gcd}\left(m^{\prime}, n\right)=1$. Hence there exists a unique $b \in\{1, \ldots, n-1\}$ such that $m^{\prime} b=1(\bmod n)$. Set $a_{r}:=\left[\frac{r}{l}\right], r^{\prime}=r-a_{r} l$ and $k_{r}:=a_{r} b(\bmod n)$. Thus $m^{\prime} k_{r}=a_{r}(\bmod n)$ which, in view of the fact that $r=a_{r} l+r^{\prime}$, gives $m k_{r}+r^{\prime}=r\left(\bmod n^{\prime}\right)$ and, in consequence,

$$
\begin{equation*}
m k_{r}+r^{\prime}=x n^{\prime}+r \quad \text { for some } x \in \mathbb{Z} \tag{15}
\end{equation*}
$$

This time put $t_{r}:=\left[\frac{d-x}{m^{\prime}}\right], k=k_{r}+t_{r} n$ and $s=d-x-t_{r} m^{\prime}$. Then

$$
\left.F^{k_{r}+t_{r} n}\left(z_{p, s n^{\prime}+r^{\prime}}\right)=z_{p,\left(d-\frac{k_{r} m+r^{\prime}-r}{n^{\prime}-}\right.}\right) n^{\prime}+r^{\prime}+k_{r} m=z_{p, d n^{\prime}+r} .
$$

Since $r^{\prime} \in\{0, \ldots, l-1\}$ and $d-x \in \mathbb{Z}$, we obtain $z_{p,(d-x) n^{\prime}+r^{\prime}} \in I_{H_{\psi}^{r^{\prime}(p)}}$. To
prove $z_{p, d n^{\prime}+r} \in I_{H_{\psi}^{r}(p)}$ it is enough to show that $F^{k_{r}}\left(H_{\psi}^{r^{\prime}}(p)\right)=H_{\psi}^{r}(p)$. Notice that from (7),

$$
H_{\psi}^{m}(z)=\psi^{-1}\left(e^{2 \pi i \frac{q}{n}} \psi(z)\right)=F(z), \quad z \in \mathcal{M}_{F}
$$

This, (15) and the fact that $H_{\psi}^{x n^{\prime}}(p)=p$ yield

$$
F^{k_{r}}\left(H_{\psi}^{r^{\prime}}(p)\right)=H_{\psi}^{m k_{r}+r^{\prime}}(p)=H_{\psi}^{x n^{\prime}+r}(p)=H_{\psi}^{r}(p)
$$

The proof of the remaining part of the lemma runs in the same way as the proof of the second assertion of Lemma 7 in [20] (it is enough to take $H_{\psi}^{r}(p)$, r_{1}, and k_{r} instead of $a_{R_{N_{F}}\left(i+r k^{\prime} q^{\prime}\right)}, R_{l}(r)$ and p_{r}, respectively).

Let $\left(z_{p, k}\right)_{k \in \mathbb{Z}}$, where $p \in W_{\rho}$, be the family of sequences given by (10) and (11). Define the following families of arcs:

$$
L_{p, k}:=\left\{\begin{array}{ll}
\overrightarrow{\left\langle z_{p, k}, z_{p, k+n^{\prime}}\right\rangle}, & p \in \mathcal{M}_{F}^{+}, \tag{16}\\
\overrightarrow{\left\langle z_{p, k+n^{\prime}}, z_{p, k}\right\rangle}, & p \in \mathcal{M}_{F}^{-}
\end{array} \quad \text { for } k \in \mathbb{Z}, p \in W_{\rho} .\right.
$$

From Lemma 3 it follows that

$$
F\left(L_{p, k}\right)=L_{p, k+m}, \quad k \in \mathbb{Z}, p \in W_{\rho} .
$$

Lemma 4
Under assumptions of Definition 2 if for any $p \in W_{\rho}$ the sequences $\left(z_{p, k}\right)_{k \in \mathbb{Z}}$ are given by (10) and (11) and $\left\{L_{p, k}\right\}_{k \in \mathbb{Z}}$ are the families of arcs defined by (16), then

$$
\begin{equation*}
\bigcup_{d \in \mathbb{Z}} L_{p, d n^{\prime}+r}=I_{H_{\psi}^{r}(p)}, \quad r \in\left\{0, \ldots, n^{\prime}-1\right\} . \tag{17}
\end{equation*}
$$

Proof. Fix $r \in\left\{0, \ldots, n^{\prime}-1\right\}$ and suppose that $p \in W_{\rho} \cap \mathcal{M}_{F}^{+}$. From (13) we have $z_{p, d n^{\prime}+r} \in \overrightarrow{\left\langle z_{p,(d-1) n^{\prime}+r}, z_{\left.p,(d+1) n^{\prime}+r\right)}\right)}$ for $d \in \mathbb{Z}$. Hence by (12) and (16),

$$
L_{p, d n^{\prime}+r} \subset \overrightarrow{\left\langle z_{p,(d-1) n^{\prime}+r}, z_{\left.p,(d+1) n^{\prime}+r\right)}\right.} \subset I_{H_{\psi}^{r}(p)}, \quad d \in \mathbb{Z}
$$

Thus

$$
\bigcup_{d \in \mathbb{Z}} L_{p, d n^{\prime}+r} \subset I_{H_{\psi}^{r}(p)}
$$

To prove the converse inclusion fix $z \in I_{H_{\psi}^{r}(p)}$. By Lemma 4 in [21] (see also Remark 3 in [20]) we have

$$
I_{H_{\psi}^{r}(p)}=\bigcup_{k \in \mathbb{Z}} \overrightarrow{\left\langle F^{k n}\left(z_{p, r}\right), F^{(k+1) n}\left(z_{p, r}\right)\right)} .
$$

Hence $z \in \overrightarrow{\left\langle F^{k_{0} n}\left(z_{p, r}\right), F^{\left(k_{0}+1\right) n}\left(z_{p, r}\right)\right)}$ for a $k_{0} \in \mathbb{Z}$. On the other hand, by (11) and (13),

$$
\begin{aligned}
\overrightarrow{\left\langle F^{k_{0} n}\left(z_{p, r}\right), F^{\left(k_{0}+1\right) n}\left(z_{p, r}\right)\right)} & =\overrightarrow{\left\langle z_{p, k_{0} n m+r}, z_{p,\left(k_{0}+1\right) n m+r}\right)} \\
& =\bigcup_{s=0}^{m^{\prime}} L_{p, k_{0} n m+s n^{\prime}+r} \\
& \subset \bigcup_{k \in \mathbb{Z}} L_{p, k n^{\prime}+r} .
\end{aligned}
$$

This ends the proof.

Theorem 2

Let $F \in \mathcal{F}_{q, n}$ be such that $\operatorname{Per} F \neq S^{1}, m \geq 2$ be an integer and let ψ : Per $F \longrightarrow$ S^{1} be an orientation-preserving continuous solution of (2) satisfying (5) for $X \in\left\{\operatorname{Per} F, \mathcal{M}_{F}^{+}\right\}$and $a j \in\{0, \ldots, m-1\}$. Suppose that W_{ρ} is the selector of ρ given by (8), $\left(z_{p, k}\right)_{k \in \mathbb{Z}}$ for $p \in W_{\rho}$ are the families of sequences given by (10) and (11) and $\left\{L_{p, k}\right\}_{k \in \mathbb{Z}}$ for $p \in W_{\rho}$ are the families of arcs defined by (16). If $G_{p, k}: L_{p, k} \longrightarrow L_{p, k+1}$ for $k \in\{0,1, \ldots, m-2\}$ and $p \in W_{\rho}$ are orientationpreserving surjections, then there exists a unique orientation-preserving homeomorphism $G: S^{1} \longrightarrow S^{1}$ satisfying (4) and such that

$$
G_{\mid L_{p, k}}=G_{p, k} \quad \text { for } p \in W_{\rho} \text { and } k \in\{0,1, \ldots, m-2\}
$$

Moreover, $\alpha(G)=\frac{q+j n}{n m}$.
Proof. Some parts of the proof of this theorem are similar to the proof of Theorem 5 from [20]. Here we give only the sketch of these parts. For the details we refer the reader to [20]. Fix $p \in W_{\rho}$ and orientation-preserving surjections $G_{p, k}: L_{p, k} \longrightarrow L_{p, k+1}$ for $k \in\{0,1, \ldots, m-2\}$. Put

$$
\begin{equation*}
G_{p, m-1}:=F \circ G_{p, 0}^{-1} \circ G_{p, 1}^{-1} \circ \ldots \circ G_{p, m-2}^{-1} \tag{18}
\end{equation*}
$$

For the remaining integers k there exist unique $d \in \mathbb{Z} \backslash\{0\}$ and an $r \in$ $\{0,1, \ldots, m-1\}$ such that $k=m d+r$. For such k 's define

$$
\begin{equation*}
G_{p, k}=G_{p, m d+r}:=F^{d} \circ G_{p, r} \circ F_{\mid L_{p, k}}^{-d} \tag{19}
\end{equation*}
$$

It might be shown that $G_{p, k}\left(L_{p, k}\right)=L_{p, k+1}$ for $k \in \mathbb{Z}$ and $G_{p, k}: L_{p, k} \longrightarrow$ $L_{p, k+1}$ for $k \in \mathbb{Z}$ are orientation-preserving surjections.

Now fix $z \in S^{1} \backslash \operatorname{Per} F$. There exist a $p \in W_{\rho}$ and an $r \in\left\{0, \ldots, n^{\prime}-1\right\}$, where n^{\prime} is determined by (9), such that $z \in I_{H_{\psi}^{r}(p)}$. By (17), $z \in L_{p, d n^{\prime}+r}$ for some $d \in \mathbb{Z}$. Notice that such a d is unique. Indeed, the assumption
$L_{p, c n^{\prime}+r} \cap L_{p, d n^{\prime}+r} \neq \emptyset$ for some $c, d \in \mathbb{Z}, c \neq d$, contradicts (13). Define a function $\widetilde{G}: S^{1} \backslash \operatorname{Per} F \longrightarrow S^{1} \backslash \operatorname{Per} F$ as follows:

$$
\begin{equation*}
\widetilde{G}(z):=G_{p, d n^{\prime}+r}(z), \quad z \in L_{p, d n^{\prime}+r}, p \in W_{\rho}, d \in \mathbb{Z}, r \in\left\{0, \ldots, n^{\prime}-1\right\} . \tag{20}
\end{equation*}
$$

Notice that for every $u \in \mathcal{M}_{F}$ there exist unique $p \in W_{\rho}$ and $r \in\left\{0, \ldots, n^{\prime}-1\right\}$ such that $u=H_{\psi}^{r}(p)$. Therefore by (20), (17) and the properties of $G_{p, k}$ we have

$$
\begin{aligned}
\widetilde{G}\left(I_{u}\right) & =\widetilde{G}\left(I_{H_{\psi}^{r}(p)}\right)=\widetilde{G}\left(\bigcup_{d \in \mathbb{Z}} L_{p, d n^{\prime}+r}\right)=\bigcup_{d \in \mathbb{Z}} L_{p, d n^{\prime}+r+1}=I_{H_{\psi}^{r+1}(p)} \\
& =I_{H_{\psi}(u)}
\end{aligned}
$$

(if $r+1=n^{\prime}$ we use the equality $H_{\psi}^{n^{\prime}}(p)=p$).
It is easy to see that $\widetilde{G}: S^{1} \backslash \operatorname{Per} F \longrightarrow S^{1} \backslash \operatorname{Per} F$ is a surjection. By induction it can be proved that \widetilde{G} satisfies

$$
\begin{equation*}
\widetilde{G}^{m}(z)=F(z), \quad z \in S^{1} \backslash \operatorname{Per} F \tag{21}
\end{equation*}
$$

Moreover, using the same method as in the proof of Theorem 5 in [20] (the proof of 1°) it can be shown that \widetilde{G} preserves orientation on every I_{p} for $p \in \mathcal{M}_{F}$.

We are now in a position to define the solution of (4). Namely, put

$$
G(z)= \begin{cases}\widetilde{G}(z), & z \in S^{1} \backslash \operatorname{Per} F \tag{22}\\ h_{\psi}(z), & z \in \operatorname{Per} F\end{cases}
$$

where h_{ψ} is defined by (7). It is easy to see that G maps S^{1} onto itself. Furthermore, setting $F=h_{\psi}$ and $\phi=\widetilde{G}$ and repeating the same argument as in the proof of Lemma 1 (i.e., the proof of the fact that \hat{F} preserves orientation) one can obtain that G preserves orientation. Since S^{1} is a closed set, it follows that G is an orientation-preserving homeomorphism. Moreover, (7) and (21) imply that G satisfies (4).

It remains to show that $\alpha(G)=\frac{q+j n}{n m}$. From Lemma 1 there exists an orientation-preserving homeomorphism \hat{G} such that $\alpha(\hat{G})=\alpha(G), \hat{G}(z)=G(z)$ for $z \in \operatorname{Per} F=\operatorname{Per} G$ and $\operatorname{Per} \hat{G}=S^{1}$. From Theorem 4.2 in [7] it follows that \hat{G} is conjugated to a rotation. On the other hand, by $(22), \hat{G}(z)=h_{\psi}(z)$ for $z \in \operatorname{Per} F$. By (7) we get that \hat{G} is conjugated to $R(z)=e^{2 \pi \mathrm{i} \frac{q+j n}{m n}} z, z \in S^{1}$. Hence $\alpha(\hat{G})=\frac{q+j n}{m n}$ (see Theorem 1 in [8]), and the assertion follows.

Remark 4
Suppose that $F \in \mathcal{F}_{q, n}$ is such that $\operatorname{Per} F \neq S^{1}$. Then every continuous and orientation-preserving solution G of (4) with $\alpha(G)=\frac{\alpha(F)+j n}{m n}$, where $j \in$
$\{0, \ldots, m-1\}$, may be obtained by the method described in the proof of Theorem 2. Indeed, suppose that $G: S^{1} \longrightarrow S^{1}$ is a solution of (4) for an integer $m \geq 2$. Then $\alpha(G)=\frac{\alpha(F)+j n}{m n}$ for a $j \in\{0, \ldots, m-1\}$. Furthermore, by (4), $\operatorname{Per} F=\operatorname{Per} G, \mathcal{A}_{F}=\mathcal{A}_{G}$ and, by Corollary $1, \mathcal{M}_{F}=\mathcal{M}_{G}, \mathcal{M}_{F}^{+}=\mathcal{M}_{G}^{+}$ and $\mathcal{M}_{F}^{-}=\mathcal{M}_{G}^{-}$. Lemma 2 implies that there exists an orientation-preserving continuous mapping $\psi: \operatorname{Per} F \longrightarrow S^{1}$ satisfying (6). Put $h_{\psi}:=G_{\mid \operatorname{Per} G}$ and $H_{\psi}:=G_{\mid \mathcal{M}_{G}}$. By (6), h_{ψ} satisfies (7) and $H_{\psi}=h_{\psi_{\mathcal{M}_{G}}}$. Notice that

$$
\begin{equation*}
G\left(I_{p}\right)=I_{G(p)}=I_{H_{\psi}(p)}, \quad p \in \mathcal{M}_{G} \tag{23}
\end{equation*}
$$

Let ρ be the relation on $\mathcal{M}_{G}=\mathcal{M}_{F}$ given by (8) and let W_{ρ} be its selector. Fix $p \in W_{\rho}, z_{p, 0} \in I_{p}$ and put

$$
\begin{equation*}
z_{p, k}:=G^{k}\left(z_{p, 0}\right), \quad k \in \mathbb{Z} \backslash\{0\} . \tag{24}
\end{equation*}
$$

Obviously, $\left(z_{p, k}\right)_{k \in \mathbb{Z}}$ satisfies (11). Moreover, (23) and the fact that $H^{n^{\prime}}=$ $\operatorname{id}_{\mathcal{M}_{F}}$, where n^{\prime} is given in (9), yield

$$
\begin{array}{r}
z_{p, d n^{\prime}+r}=G^{d n^{\prime}+r}\left(z_{p, 0}\right) \in I_{H_{\psi}^{d n^{\prime}+r}(p)}=I_{H_{\psi}^{r}(p)}, \tag{25}\\
d \in \mathbb{Z}, r \in\left\{0, \ldots, n^{\prime}-1\right\} .
\end{array}
$$

By Definition 1, since n^{\prime} is the minimal number such that $G^{n^{\prime}}(z)=z$ for $\xrightarrow{z \in \operatorname{Per} G}$ and $\mathcal{M}_{F}^{+}=\mathcal{M}_{G}^{+}$, we have $\overrightarrow{\left\langle z_{p, 0}, z_{p, n^{\prime}}\right\rangle} \subset I_{p}$, if $p \in \mathcal{M}_{G}^{+}$and $\overrightarrow{\left\langle z_{p, n^{\prime}}, z_{p, 0}\right\rangle} \subset I_{p}$, if $p \in \mathcal{M}_{G}^{-}$. Hence in view of (24), (25) and the fact that G preserves orientation we get

$$
\overrightarrow{\left\langle z_{p,(d+1) n^{\prime}+r}, z_{\left.p, d n^{\prime}+r\right)}\right.} \subset I_{H_{\psi}^{r}(p)}, \quad\left(\text { resp. } \overrightarrow{\left\langle z_{p, d n^{\prime}+r}, z_{p,(d+1) n^{\prime}+r}\right\rangle} \subset I_{H_{\psi}^{r}(p)}\right)
$$

for $d \in \mathbb{Z}, r \in\left\{0, \ldots, n^{\prime}-1\right\}$ and $p \in \mathcal{M}_{G}^{+}$(resp. $p \in \mathcal{M}_{G}^{-}$). Consequently,

$$
H_{\psi}^{r}(p) \prec z_{p, r} \prec z_{p, n^{\prime}+r} \prec \ldots \prec z_{p,\left(m^{\prime}-1\right) n^{\prime}+r} \prec G^{m^{\prime} n^{\prime}}\left(z_{p, r}\right)=F^{n}\left(z_{p, r}\right)
$$

$\left(\right.$ resp. $\left.H_{\psi}^{r}(p) \prec F^{n}\left(z_{p, r}\right)=G^{m^{\prime} n^{\prime}}\left(z_{p, r}\right) \prec z_{p,\left(m^{\prime}-1\right) n^{\prime}+r} \prec \ldots \prec z_{p, n^{\prime}+r} \prec z_{p, r}\right)$.
Let $\left\{L_{p, k}\right\}_{k \in \mathbb{Z}}$ be defined by (16). Notice that

$$
\begin{equation*}
G\left(L_{p, k}\right)=L_{p, k+1}, \quad k \in \mathbb{Z} \tag{26}
\end{equation*}
$$

Now put

$$
\begin{equation*}
G_{p, k}:=G_{\mid L_{p, k}}, \quad p \in W_{\rho}, k \in \mathbb{Z} . \tag{27}
\end{equation*}
$$

From (4), (26) and (27) we have

$$
F_{\mid L_{p, 0}}=G_{p, m-1} \circ G_{p, m-2} \circ \ldots \circ G_{p, 1} \circ G_{p, 0}, \quad p \in W_{\rho},
$$

thus (18) holds. Furthermore, (4) implies $G \circ F=F \circ G$. Thus $G \circ F^{k}=F^{k} \circ G$ for any $k \in \mathbb{Z}$. From this, (26) and (27) we get (19).

90 Pawet Solarz

Theorem 2 and Remark 4 solve the problem of the existence of iterative roots of homeomorphisms having the set of periodic points different from the whole circle. Notice that if $F \in \mathcal{F}_{q, n}$ is such that $\operatorname{Per} F=S^{1}$, then taking $G:=h_{\psi}$, where h_{ψ} is defined by (7), we get $G^{m}=F$. To sum up, we have obtained the following result.

Theorem 3

Let $m \geq 2$ be an integer and let $F \in \mathcal{F}_{q, n}$. Equation (4) has orientationpreserving and continuous solution if and only if an orientation-preserving continuous solution ψ : Per $F \longrightarrow S^{1}$ of (2) satisfies (5) for $X \in\left\{\operatorname{Per} F, \mathcal{M}_{F}^{+}\right\}$and for a $j \in\{0, \ldots, m-1\}$. Moreover, if $\operatorname{Per} F \neq S^{1}$, then for all ψ and j satisfying (5) for $X \in\left\{\operatorname{Per} F, M_{F}^{+}\right\}$there exist infinitely many solutions of (4).

The following remark results from the above theorem. It answers the question of the existence of the iterative roots of the mapping $F_{\mid \operatorname{Per} F}$, where $F: S^{1} \longrightarrow S^{1}$ is an orientation-preserving homeomorphism having periodic points.

Remark 5

Let $m \geq 2$ be an integer and let $F \in \mathcal{F}_{q, n}$. The mapping $F_{\mid \operatorname{Per} F}$: Per $F \longrightarrow$ Per F has continuous and orientation-preserving iterative roots of order m if and only if some orientation-preserving continuous solution ψ : Per $F \longrightarrow S^{1}$ of (2) satisfies

$$
e^{2 \pi \mathrm{i} \frac{\alpha(F)+j}{m}} \psi(\operatorname{Per} F)=\psi(\operatorname{Per} F)
$$

for some $j \in\{0, \ldots, m-1\}$.
We conclude with an observation concerning homeomorphisms with a finite and non-empty set of periodic points.

Theorem 4

Suppose that $F \in \mathcal{F}_{q, n}$ is such that $1<\operatorname{card}(\operatorname{Per} F)=: N_{F}<\infty$ and $m \geq 2$ is an integer. Let moreover ψ_{1} and ψ_{2} be orientation-preserving continuous solutions of (2) satisfying (5) for $X \in\left\{\operatorname{Per} F, \mathcal{M}_{F}^{+}\right\}$and a $j \in\{0, \ldots, m-1\}$ and let $h_{\psi_{1}}, h_{\psi_{2}}: \operatorname{Per} F \longrightarrow \operatorname{Per} F$ be defined by (7). Then $h_{\psi_{1}}(z)=h_{\psi_{2}}(z)$ for $z \in \operatorname{Per} F$.

In the proof of Theorem 4 we will use the following proposition, which is a slightly modified Theorem 3 from [21] (see also Theorem 2 in [20]).

Proposition 2

Suppose that $F: S^{1} \longrightarrow S^{1}$ is an orientation-preserving homeomorphism such that $1<\operatorname{card}(\operatorname{Per} F)=: N_{F}<\infty$. Let $z_{0} \in \operatorname{Per} F$ be an arbitrary element and let $z_{1}, \ldots, z_{N_{F}-1} \in \operatorname{Per} F$ satisfy the following condition:

$$
\operatorname{Arg} \frac{z_{p}}{z_{0}}<\operatorname{Arg} \frac{z_{p+1}}{z_{0}}, \quad p \in\left\{0, \ldots, N_{F}-2\right\}
$$

Then $\alpha(F)=\frac{q}{n}$, where $0 \leq q<n$ and $\operatorname{gcd}(q, n)=1$, if and only if

$$
F\left(z_{p}\right)=z_{\left(p+k_{F} q\right)}\left(\bmod N_{F}\right), \quad p \in\left\{0, \ldots, N_{F}-1\right\}
$$

where $k_{F}:=\frac{N_{F}}{n}$.
Proof of Theorem 4. In view of Theorem 2 there exist orientation-preserving homeomorphisms G_{1} and G_{2} such that $\operatorname{Per} G_{i}=\operatorname{Per} F, G_{i}^{m}=F$ and $\alpha\left(G_{i}\right)=\frac{q+j n}{m n}=\frac{q^{\prime}}{n^{\prime}}$ for $i \in\{1,2\}$, where $q^{\prime}:=\frac{q+j n}{m^{\prime}}$ and m^{\prime}, n^{\prime} are given in (9). Moreover, $G_{i}(z)=h_{\psi_{i}}(z)$ for $z \in \operatorname{Per} F$ and $i \in\{1,2\}$. Let $z_{0}, \ldots, z_{N_{F}-1} \in$ Per F be defined as in Proposition 2 and let $K:=\frac{N_{F}}{n^{\prime}}=k_{G_{1}}=k_{G_{2}}$. By Proposition 2 we have

$$
\begin{aligned}
h_{\psi_{1}}\left(z_{p}\right) & =G_{1}\left(z_{p}\right)=z_{\left(p+K q^{\prime}\right)\left(\bmod N_{F}\right)}=G_{2}\left(z_{p}\right) \\
& =h_{\psi_{2}}\left(z_{p}\right)
\end{aligned}
$$

for every $p \in\left\{0, \ldots, N_{F}-1\right\}$. Thus the assertion follows.
The property described in Theorem 4 does not have to occur for homeomorphisms with infinitely many periodic points. For example, let $F(z)=e^{\pi \mathrm{i}} z$ for $z \in S^{1}$ and let $m=2$. Then $F \in \mathcal{F}_{1,2}, \mathcal{M}_{F}^{+}=\emptyset$ and Per $F=S^{1}$. Put $\psi_{1}(z)=z$ for $z \in S^{1}$ and $\psi_{2}\left(e^{2 \pi \mathrm{i} x}\right)=e^{2 \pi \mathrm{i} d(x)}$ for $x \in\langle 0,1)$, where

$$
d(x)= \begin{cases}-2 x^{2}+2 x, & x \in\left\langle 0, \frac{1}{2}\right), \\ -2\left(x-\frac{1}{2}\right)^{2}+2\left(x-\frac{1}{2}\right)+\frac{1}{2}, & x \in\left\langle\frac{1}{2}, 1\right)\end{cases}
$$

Notice that ψ_{1} and ψ_{2} satisfy (2) and (5) for $X \in\left\{\operatorname{Per} F, \mathcal{M}_{F}^{+}\right\}$and $j=0$, but $h_{\psi_{1}} \neq h_{\psi_{2}}$.

References

[1] Ch. Babbage, Essay towards the calculus of functions, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. (1815), 389-423; II, ibid. (1816), 179-256.
[2] M. Bajger, On the structure of some flows on the unit circle, Aequationes Math. 55 (1998), 106-121.
[3] K. Ciepliński, General construction of non-dense disjoint iteration groups on the circle, Czechoslovak Math. J. 55 (2005), 1079-1088.
[4] K. Ciepliński, On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups, Publ. Math. Debrecen 55 (1999), no. 3-4, 363-383.
[5] K. Ciepliński, On conjugacy of disjoint iteration groups on the unit circle, European Conference on Iteration Theory (Muszyna Złockie,1998), Ann. Math. Sil. 13 (1999), 103-118.
[6] K. Ciepliński, The rotation number of the composition of homeomorphisms, Rocznik Nauk.-Dydakt. Prace Mat. 17 (2000), 83-87.
[7] K. Ciepliński, M.C. Zdun, On a system of Schröder equations on the circle, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1883-1888.
[8] K. Ciepliński, M.C. Zdun, On semi-conjugacy equation for homeomorphisms of the circle, in: Functional Equations - Results and Advances, Adv. Math. (Dordr.) 3, Kluwer Academic Publishers, Dordrecht 2002, 135-158.
[9] I.P. Cornfeld, S.V. Fomin, Y.G. Sinai, Ergodic theory, Grundlehren Math. Wiss. 245, Spirnger-Verlag, Berlin, Heidelberg, New York, 1982.
[10] R. Isaacs, Iterates of fractional order, Canad. J. Math. 2 (1950), 409-416.
[11] W. Jarczyk, Babagge equation on the circle, Publ. Math. Debrecen 63 (2003), no. 3, 389-400.
[12] M. Kuczma, On the functional equation $\varphi^{n}(x)=g(x)$, Ann. Polon. Math. 11 (1961), 161-175.
[13] M. Kuczma, Functional Equations in a single variable, Monografie Mat. 46 Polish Scientific Publishers, Warszawa, 1968.
[14] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopaedia Math. Appl. 32, Cambridge Univ. Press, Cambridge, 1990.
[15] S. Łojasiewicz, Solution générale de l'équation fonctionnelle $f(f \ldots f(x) \ldots)=$ $g(x)$, Ann. Soc. Polon. Math. 24 (1951), 88-91.
[16] J.H. Mai, Conditions for the existence of Nth iterative roots of self-homeomorphisms of the circle, Acta Math. Sinica (Chin. Ser.) 30 (1987), no. 2, 280-283.
[17] W. de Melo, S. van Strein, One-dimensional dynamics, Ergeb. Math. Grenzgeb. (3), [Results in Mathematics and Related Areas (3)] 25, Springer-Verlag, Berlin, 1993.
[18] P. Solarz, On iterative roots of a homeomorphism of the circle with an irrational rotation number, Math. Pannon. 13 (2002), no. 1, 137-145.
[19] P. Solarz, On some iterative roots, Publ. Math. Debrecen 63 (2003), no. 4, 677-692.
[20] P. Solarz, Iterative roots of some homeomorphism with a rational rotation number, Aequationes Math. 72 (2006), no. 1-2, 152-171.
[21] P. Solarz, On some propreties of orientation-preserving surjections of the circle, (to appear).
[22] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer-Verlag, New York, Berlin, 1982.
[23] M.C. Zdun, On embedding of homeomorphisms of the circle in continuous flow, Iteration theory and its functional equations, (Lochau 1984), Lecture Notes in Math. 1163, Springer-Verlag, Berlin, New York, 1985, 218-231.
[24] M.C. Zdun, On iterative roots of homeomorphisms of the circle, Bull. Pol. Acad. Sci. Math. 48 (2000), no. 2, 203-213.

Herative roots of homeomorphisms possessing periodic points 93

[25] G. Zimmermann, Über die Existenz iterativer Wurzeln von Abbildungen, Doctoral dissertation, University of Marburg 1978.

Institute of Mathematics
Pedagogical University
ul. Podchorażych 2
PL-30-084 Kraków
Poland
E-mail: psolarz@ap.krakow.pl

Received: 18 January 2007; final version: 11 April 2007; available online: 6 June 200%.

[^0]: AMS (2000) Subject Classification: Primary 39B12, Secondary 26A18.

