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D.P. Patil, G. TamoneOn type sequenes and Arf ringsAbstrat. In this article in Section 2 we give an explicit description to

compute the type sequence t1, . . . , tn of a semigroup Γ generated by an
arithmetic sequence (see 2.7); we show that the i-th term ti is equal
to 1 or to the type τΓ, depending on its position. In Section 3, for
analytically irreducible ring R with the branch sequence R = R0 ( R1 (

. . . ( Rm−1 ( Rm = R, starting from a result proved in [4] we give a
characterization (see 3.6) of the “Arf” property using the type sequence
of R and of the rings Rj , 1 ≤ j ≤ m − 1. Further, we prove (see 3.9,
3.10) some relations among the integers ℓ∗(R) and ℓ∗(Rj), 1 ≤ j ≤

m − 1. These relations and a result of [6] allow us to obtain a new
characterization (see 3.12) of semigroup rings of minimal multiplicity
with ℓ∗(R) ≤ τ (R) in terms of the Arf property, type sequences and
relations between ℓ∗(R) and ℓ∗(Rj) , 1 ≤ j ≤ m − 1.0. Introdution

Let (R, mR) be a noetherian local one dimensional analytically irreducible
domain, i.e., the m-adic completion R̂ of R is a domain or, equivalently, the
integral closure R of R in its quotient field Q(R) is a discrete valuation ring
and a finite R-module. We further assume that R is residually rational, i.e.,
R and R have the same residue field. A particular important class of rings
which satisfy these assumptions are semigroup rings which are coordinate rings
of algebroid monomial curves.

Let v: Q(R) −→ Z ∪ {∞} be the discrete valuation of R and let C :=
annR(R/R) = {x ∈ R | xR ⊆ R} be the conductor ideal of R in R. Then
the value semigroup v(R) = {v(x) | x ∈ R, x 6= 0} is a numerical semigroup,
that is, N \ v(R) is finite and therefore v(R) = {0 = v0, v1, . . . , vn−1} ∪ {z ∈
N | z ≥ c}, where 0 = v0 < v1 < . . . < vn−1 < vn := c are elements of v(R),
n := n(R) = ℓ(R/C) and the integer c = c(R) := ℓR(R/C) is also determined
by C = {x ∈ Q(R) | v(x) ≥ c} or, equivalently C = (mR)c.
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In [11] Matsuoka studied the degree of singularity δ = δ(R) := ℓ(R/R) =

card(N \ v(R)) of R by introducing the saturated chain of fractionary ideals

C = An ( . . . ( A1 = m ( A0 = R ( A
−1
1 ( . . . ( A

−1
n = R,

where Ai := {x ∈ R | v(x) ≥ vi} and A
−1
i = (R : Ai), i = 0, 1, . . . , n. Moreover,

each A
−1
i , i = 0, . . . , n is an overring of R which satisfies the assumptions that

we assume for R. The sequence ti = ti(R) := ℓ(A−1
i /A

−1
i−1), i = 1, . . . , n, is

called the type sequence of R.
Various algebraic and geometric properties of the ring R are described by

some numerical invariants, for example, the degree of singularity and the type
sequence. Several authors have studied these numerical invariants (see for ex-
ample [1], [2], [4], [5], [16]). The first term t1 is the Cohen–Macaulay type of
R and the sum

∑n

i=1 ti is the degree of singularity of R. Further, the “Goren-
steinness” and “almost Gorensteinness” are characterized by type sequences
(see 1.2). It is worth noting here that if R is a semigroup ring, then the above
properties correspond to the properties “symmetric” and “pseudo-symmetric”
of numerical semigroups, respectively. These properties are of a special interest
(see [7], [17]), since each numerical semigroup can be expressed as an intersec-
tion of numerical semigroups that are either symmetric or pseudo-symmetric.
Furthermore, if R is analytically irreducible, then the property “Arf” can be
described by its type sequence and each term ti is related to the i-th term in
the “branch sequence” of R (see § 4).

In this article we prove the following results:

(1) If Γ is a numerical semigroup generated by an arithmetic sequence, then
we explicitly compute the type sequence (see 2.7) and give (see 2.9) a cha-
racterization of almost-Gorensteinness of the semigroup ring R = K[[Γ]].
This is achieved by studying (see 2.6) the “holes” in Γ by using the explicit
description (see 2.5) of the standard basis and the type of the numeri-
cal semigroup generated by arithmetic sequence given in [14] and [13],
respectively.

(2) If R is analytically irreducible, then we relate the degree of singularity
of R to the branch sequence R = R0 ( R1 ( . . . ( Rm−1 ( Rm = R,
starting from a result proved in [4] we give a characterization (see 3.6)
of the “Arf” property using the type sequence (see 1.3) of R and of the
rings Rj , 1 ≤ j ≤ m− 1. Further, we prove (see 3.9, 3.10) some relations
among the integers ℓ∗(R) and ℓ∗(Rj), 1 ≤ j ≤ m − 1. These relations
and a result of [6] allow us to obtain a new charaterization (see 3.12) of
semigroup rings of minimal multiplicity with ℓ∗(R) ≤ τ(R) in terms of
the Arf property, type sequences and relations between ℓ∗(R) and ℓ∗(Rj),
1 ≤ j ≤ m − 1.

In Section 4, we also give some illustrative examples to describe our me-
thods.



On type sequenes and Arf rings 371. Preliminaries --- Assumptions and Notation
Throughout this article we make the following assumptions and notation.

1.1. Notation
Let N and Z denote the set of all natural numbers and all integers, respectively.
Note that we assume 0 ∈ N. Further, for a, b ∈ N, we denote [a, b] := {r ∈ N |
a ≤ r ≤ b } and Na := {n ∈ N | n ≥ a}.

Let (R, mR) be a noetherian local one dimensional analytically irreducible
domain, i.e., the integral closure R of R in its quotient field Q(R) is a discrete
valuation ring and is a finite R-module. We further assume that R is residu-
ally rational, i.e., the residue field kR of R is equal to the residue field kR of
R. A particular important class of rings which satisfy these assumptions are
semigroup rings which are coordinate rings of algebroid monomial curves.

1.2. Minimal reductions and reduction number
If kR is infinite, then for every non-zero ideal a of R there exists x ∈ a such that
xR is a minimal reduction if a, i.e., xam = am+1 for some m ∈ N. The natural
number r(a) := min{m ∈ N | xam = am+1} is called the reduction number of a

(see [12]). In particular, if a = m, then r(m) is called reduction number of R.
By replacing R by the local ring R[X ]

m[X] of R[X ] at the prime ideal m[X ], we
may assume that kR is infinite and hence assume that a minimal reduction xR
of m exists.

We shall now recall the notions of type sequences and almost Gorenstein

rings.

1.3. Type sequences — almost Gorenstein rings
Let R be as in 1.1 and let v(R) be its numerical semigroup, c = c(v(R))
be the conductor of v(R), n = n(R) = ℓ(R/C) = card(v(R) \ Nc) and δ =
δ(R) = ℓ(R/R) = card(N \ v(R)) be the degree of singularity of R (see [11]).
Let 0 = v0 < v1 < . . . < vn−1 < vn := c be elements of v(R) such that
v(R) \ Nc = {v0, v1, . . . , vn−1}. Note that (see [11]) δ(R) is the sum of n
positive integers ti(R) := ℓ(A−1

i /A
−1
i−1), i = 1, . . . , n, where Ai := {x ∈ R |

v(x) ≥ vi} and A
−1
i := (R : Ai) := {x ∈ Q(R) | xAi ⊆ R}. The first positive

integer t1(R) = ℓ(m−1/R) is the Cohen–Macaulay type τR of R. The sequence
t1(R), t2(R), . . . , tn(R) is called the type sequence of R. Several authors have
studied the properties of type sequences (see [1], [5]). The term “type sequence”
is chosen since the first term t1(R) = ℓ(m−1/R) is the Cohen–Macaulay type
of R. Further, we have 1 ≤ ti(R) ≤ τR for every i = 1, . . . , n (see [11, § 3,
Proposition 2 and Proposition 3]) and hence (see also [5, Proposition 2.1])
ℓ∗(R) ≤ (τR−1) (ℓ(R/C) − 1), where ℓ∗(R) := τR ·ℓ(R/C)−ℓ(R/R). Moreover,
the equality holds if and only if ℓ(R/R) = τR + ℓ(R/C) − 1, or equivalently
ti(R) = 1 for i = 2, . . . , n.
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Type sequence of a numerical semigroup Γ can also be defined analogously:

Let c = c(Γ) ∈ N be the conductor of Γ and let Γ\Nc = {0 = v0, v1, . . . , vn−1},
where 0 = v0 < v1 < . . . < vn−1 < vn := c are elements of Γ. Further, for
i = 0, . . . , n, let Γi := {h ∈ Γ | h ≥ vi}, Γ(i) := {x ∈ Z | x + Γi ⊆ Γ} and let
ti = card (Γ(i) \ Γ(i − 1)). Then Γ = Γ(0) ⊆ Γ(1) ⊆ . . . ⊆ Γ(n−1) ⊆ Γ(n) = N

and the sequence ti, i = 1, . . . , n is called the type sequence of Γ. In particular,
the cardinality t1 of the set T(Γ) := Γ(1)\Γ is called the Cohen–Macaulay type

of the semigroup Γ.
The type sequence of a ring R need not be the same as the type sequence of

the numerical semigroup v(R) of R (see for example [5]). However, if R = K[[Γ]]
is the semigroup ring of a numerical semigroup Γ over a field K, then the type
sequence of R is equal to the type sequence of its semigroup v(R) = Γ.

A ring R in 1.1 is called almost Gorenstein if the type sequence of R is
{τR, 1, 1, . . . , 1}, or equivalently, ℓ∗(R) attains its upper bound, i.e., ℓ(R/R) =
τR − 1 + ℓ(R/C). It is clear that Gorenstein rings are almost Gorenstein but
not conversely (see [16, (1.2)-(1)]).2. The type sequene of a semigroup generated by an arithmeti sequene

Let R be as in 1.1. In addition to the notations of Section 1, we also fix the
following:

2.1. Notation
Put Γ := v(R) and let Γi := v(Ai), Γ(i) and ti, i = 1, . . . , n be as in 1.3.

In order to compute type sequences explicitly, we need to study the “holes”
of Γ, i.e. elements of N \ Γ. The positions of the holes will therefore determine
the type sequence of Γ. To make these things more precise first let us make
the following:

2.2. Definition
An element z ∈ Z \ Γ is called a hole of first type (respectively, hole of second

type) of Γ if c − 1 − z ∈ Γ (respectively, if c − 1 − z 6∈ Γ). Then Γ′ := {z ∈
Z \ Γ | c − 1 − z ∈ Γ} = {c − 1 − h | h ∈ Γ} is the set of holes of first type of
Γ and Γ′′ := {z ∈ Z \ Γ | c − 1 − z 6∈ Γ} is the set of holes of second type of Γ.
Therefore Z = Γ

⊎

Γ′
⊎

Γ′′. Further, it is easy to see that:

(2.2.a)

{

Γ′ ∩ N = {c − 1 − vi | i ∈ [0, n − 1]}; |Γ′ ∩ N| = n = c − δ,

Γ′′ ⊆ N \ Γ, c − 1 6∈ Γ′′ and T(Γ) ⊆ {c − 1} ∪ Γ′′.

In particular, Γ is symmetric if and only if Γ′′ = ∅. For this reason the cardi-
nality of Γ′′ is called the symmetry-defect of Γ.

The following lemma describes the holes of first type of Γ.
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2.3. Lemma
(Γ(i) \ Γ(i − 1)) ∩ Γ′ = {c − 1 − vi−1} for each i = 1, . . . , n.

Proof. Easy to verify (this essentially follows from [11, Proposition 2]).

In order to describe the holes of second type, we assume that Γ is generated
by an arithmetic sequence (the description of the holes of second type in the
general case is given in § 2 and § 3 of [15]). For this in addition to the notation
in 2.1 and 2.2, we further fix the following notation:

2.4. Notation
Let m, d ∈ N, m ≥ 2, d ≥ 1 be such that gcd(m, d) = 1 and let p be an

integer p ≥ 1, mi := m + id for i = 0, 1, . . . , p + 1. Let Γ :=
∑p+1

i=0 Nmi be the
semigroup generated by the arithmetic sequence m0, m1, . . . , mp+1.

For any positive natural number k ∈ N+, let qk ∈ N and rk ∈ [1, p+1] be the
unique integers defined by the equation k = qk(p + 1) + rk . We put q := qm−1

and r := rm−1 − 1. Therefore q ∈ N, r ∈ [0, p] and m − 2 = q(p + 1) + r.
Put s0 = 0 and sk := mrk

+ qkmp+1 = (1 + qk)m + (rk + qk(p + 1))d
for k ∈ [1, m − 1]. Further, we put S1 := {mi + jmp+1 | i ∈ [1, p + 1] and
j ∈ [0, q − 1]} and S2 := {mi + qmp+1 | i ∈ [1, r + 1]}. Note that S1 = ∅, if
q = 0.

Let 0 = v0 < v1 < · · · < vn−1 < vn := c be elements of Γ such that
Γ \ Nc = {0 = v0, v1, . . . , vn−1}. For i ∈ [0, n], the element vi ∈ Γ is called the
i-th element of Γ.

2.5. Proposition
With the notations as in 2.4 we have:

(1) The standard basis S := Sm(Γ) with respect to the multiplicity m = m0

of Γ is

S = {sk | k ∈ [0, m − 1]} = {0} ∪ S1 ∪ S2 .

(2) The conductor c := c(Γ) and the degree of singularity δ := δ(Γ) of Γ are

c = (m−1)(d+q)+q+1 and δ = ((m − 1)(d + q) + (r + 1)(q + 1)) /2.

(3) The set T := T (Γ) = Γ(1) \ Γ = {mi + qmp+1 − m0 | i ∈ [1, r + 1]} =
{c − 1 − (r − i + 1)d | i ∈ [1, r + 1]}. In particular, the Cohen–Macaulay

type of Γ is τ = τΓ = r + 1.

Proof. (1) and (3) are special cases of the general results proved in [14,
(3.5)] and [13, § 5]. (2) is proved in [18, § 3, Supplement 6].

Now we give an explicit description of the positions of the holes of second
type of Γ.
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2.6. Lemma
With the notations as in 2.1, 2.2 and 2.4, we have:

(1) card(Γ′′) = (q + 1)r.

(2) Γ′′ = {x − jmp+1 | x ∈ Γ(1) \ Γ, x 6= c − 1 and j ∈ [0, q]}.

(3) For each j ∈ [0, q], there exists a unique integer i(j) ∈ [0, n− 1] such that

jmp+1 = vi(j) is the i(j)-th element of Γ. Moreover,

Γ (i(j) + 1) \ Γ (i(j)) = {x − jmp+1 | x ∈ Γ(1) \ Γ}.

In particular, card (Γ (i(j) + 1) \ Γ (i(j))) = τΓ = r + 1.

Proof. (1) Immediate from 2.5-(2). (2) Easy to verify using 2.5-(3). For
the proof of (3) see [15, § 2 and § 3].

Now we give an explicit description of the type sequence of a semigroup
generated by an arithmetic sequence.

2.7. Theorem
Let m, d ∈ N, m ≥ 3, d ≥ 1 be such that gcd(m, d) = 1 and let p be an integer

with 1 ≤ p ≤ m − 2. Let Γ :=
∑p+1

k=0 Nmk be the semigroup generated by

the arithmetic sequence mk := m + kd, k = 0, 1, . . . , p + 1. Let q ∈ N and

r ∈ [0, p] be the unique integers defined by the equation m − 2 = q(p + 1) + r.
Further, let c ∈ Γ be the conductor of Γ, Nc = {z ∈ N | z ≥ c} and let

Γ \ Nc = {0 = v0, v1, . . . , vn−1} with v0 < v1 < . . . < vn−1 < vn := c. Then

the i-th term ti = ti(Γ) of the type sequence (t1, t2, . . . , tn) of Γ is

ti =

{

1, if vi−1 6= jmp+1 for every j ∈ [0, q],

r + 1, if vi−1 = jmp+1 for some j ∈ [0, q].

Proof. If vi−1 6= jmp+1 for every j ∈ [0, q], then Γ(i) \ Γ(i − 1) = {c− 1 −
vi−1} by 2.6-(1), (2), (3) and hence card (Γ(i) \ Γ(i − 1)) = 1. If vi−1 = jmp+1

for some j ∈ [0, q], then card (Γ(i) \ Γ(i − 1)) = r + 1 by 2.6-(3).

2.8. Corollary
In addition to the notations and assumptions as in 2.7, further assume that

d = 1. Then the i-th term ti of the type sequence (t1, t2, . . . , tn) of Γ is

ti =

{

r + 1, if i =
(

j+1
2

)

(p + 1) + j + 1 for some j ∈ [0, q],

1, otherwise.
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Proof. It is easy to check that for every j ∈ [0, q], we have

i(j) = card

( j
⊎

t=0

Γ(t)

)

=

j
∑

t=0

(t(p + 1) + 1) =

(

j + 1

2

)

(p + 1) + j + 1

and jmp+1 is the (i(j) − 1)-th element vi(j)−1 in Γ. Now the assertion is clear
from 2.7.

2.9. Corollary
Let m, d, p, q, r and Γ be as in 2.7 and let R := K[[Γ]] be the semigroup ring

of Γ over a field K. Then

(1) R is Gorenstein if and only if r = 0.

(2) Assume that R is not Gorenstein. Then R is almost Gorenstein if and

only if m = p + 2. Moreover, in this case we have τR = m − 1.

Proof. (1) Note that τR = r + 1 by 2.5-(3). Therefore R is Gorenstein if
and only if r + 1 = τR = 1, i.e., r = 0.

(2) R is almost Gorenstein if and only if the type sequence of R is τR =
r + 1, 1, . . . , 1 or equivalently (by 2.7) q = 0, i.e. m − 2 = r. Now, since
m ≥ p + 2 and r ≤ p, we have m − 2 = r if and only if m − 2 = p.3. Numerial invariants of analytially irreduible Arf rings

In this section we first recall some definitions and results proved in [9] on
blowing-up and Arf rings. These results hold more generally, for semi-local
1-dimensional Cohen–Macaulay rings.

Let R be a semi-local Cohen–Macaulay ring of dimension 1 and let m be
the (Jacobson) radical of R. Let R be the integral closure of R in its total
quotient ring Q(R). An ideal a in R is called open if it is open in the m-adic
topology on R, or, equivalently, m

n ⊆ a for some n ≥ 1, or, equivalently,
the length ℓ(R/a) is finite. For any two R-submodules M , N of R, we put
(M : N) := {y ∈ R | yN ⊆ M}.

For an open ideal a in R, let B(a) := ∪n∈N(an : an). The ring B(a) is called
the blowing-up of R along a or the first neighbourhood ring of a.

3.1. Proposition ([9, Proposition 1.1])
For an open ideal a in R, the ring B(a) is a finitely generated R-module and

R ⊆ B(a) ⊆ R. Moreover, if R is local and if a is a m-primary ideal which

is not principal, then R ( B(a). In particular, if R is local and if R is not a

discrete valuation ring, then R ( B(m). Furthermore, there exists a non-zero

divisor x ∈ a such that B(a) = R[ z1

x
, . . . , zr

x
], where z1, . . . , zr is a generating

set for the ideal a. In particular, a B(a) = xB(a).
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An open ideal a in R is called stable in R if B(a) = (a : a), or, equivalently,

a B(a) = a. It is clear that if a is an open ideal in R, then an is stable for some
n > 0 and if an is stable, then am is stable for every m ≥ n.

Recall that an ideal a of R is said to be integrally closed in R if a = a :=
{z ∈ R | zn + a1z

n−1 + · · · + an = 0 with aj ∈ aj for every j = 1, . . . , n}.

Now we recall the definition of an Arf ring studied by Lipman in [9].

3.2. Branch sequence and Arf rings
Let R be a ring as above. Since R is a finite R-module, there exists a finite
sequence

(3.2.1) R = R0 ( R1 ( . . . ( Rm−1 ( Rm = R

of one dimensional semi-local noetherian rings such that for each 1 ≤ i ≤ m,
the ring Ri is obtained from Ri−1 by blowing up the radical of Ri−1 . For
each maximal ideal n of R, every local ring R′

i := (Ri)n∩Ri
is called infinitely

near to R. For each i = 0, . . . , m, the multiplicity and the residue field of
the local ring R′

i are denoted by e(R′

i) and ki , respectively. The sequence
R′

0, R
′

1, . . . , R
′

m is called the branch sequence of R along n and the sequence
of pairs ((e(R′

i), [ki : k0]), i = 0, . . . , m is called the multiplicity sequence of
R, where [ki : k0] denotes the degree of the field extension ki|k0 (see [9, pp.
661, 669]. In particular, if R is analytically irreducible, residually rational
and R 6= R, then each Ri in (3.2.1) is also analytically irreducible, residually
rational; if mi is the maximal ideal of Ri , then the ring Ri is obtained from
Ri−1 by blowing up mi−1 . Further, Ri = R′

i for each i = 0, . . . , m, since R is
local and n is the only maximal ideal in R.

A semi-local Cohen–Macaulay ring of dimension 1 is called an Arf ring

if every integrally closed open ideal in R is stable, or, equivalently (see [9,
Theorem 2.2]), if A is any local ring infinitely near to R, then A has maximal
embedding dimension, i.e., embdim(A) = e(A). In particular, if a local ring R
is Arf, then R has maximal embedding dimension.

In the Proposition 3.3 below, we recall some conditions for a 1-dimensional
Cohen--Macaulay local ring R which are equivalent to the equality embdim(R)=
e(R).

3.3. Proposition
Let (R, m) be a one dimensional local Cohen–Macaulay ring and let a be an

m-primary ideal. Then the following statements are equivalent:

(i) B(a) = (a : a), i.e., a is stable.

(ii) There exists z ∈ a such that za = a2.

In particular, the maximal ideal m is stable ⇐⇒ embdim(R) = e(R) ⇐⇒
τR = e(R) − 1.
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Proof. For the equivalence of (i) and (ii) see [9, 1.8] and [12, 5.1]. If

a = m, then the equivalence: m is stable ⇐⇒ embdim(R) = e(R) is proved
in [9, 1.8 and 1.10]. Therefore to complete the proof is it enough to show
that: τR = e0(R) − 1 ⇐⇒ xm = m2 for some x ∈ m. Let x ∈ m be a
minimal reduction of m. Then, since R is Cohen–Macaulay, ℓ(R/xR) = e(R)
and from xR ⊆ . . . ⊆ (xR : m) ⊆ . . . ⊆ m ( R we have τR = ℓ ((R : m)/R) =
ℓ ((xR : m)/xR) ≤ ℓ(R/xR) − 1 = e(R) − 1. Moreover, the equality τR =
e(R) − 1 ⇐⇒ ℓ ((xR : m)/xR) = ℓ(R/xR) − 1 ⇐⇒ ℓ (R/(xR : m)) = 1 =
ℓ(R/m) ⇐⇒ (xR : m) = m ⇐⇒ xm = m

2.

The following result proved in [4] (see also [5]) shows how the property Arf
is described by the type sequence of its value semigroup.

3.4. Proposition ([4, Theorem 1.7-(5)])
Let (R, m) be a one dimensional noetherian local analytically irreducible, resid-

ually rational domain. Let v be the discrete valuation of R and let v(R) = {0 =
v0, v1, . . . , vn−1} ∪ Nc be the value semigroup of R, where 0 = v0 < v1 < . . . <
vn−1 < vn = c, C is the conductor of R over R, n := n(R) = ℓ(R/C) and

c = c(R) := ℓ(R/C). If R is an Arf ring, then ti = vi − vi−1 − 1 is the i-th
term in the type sequence of R.

Now we recall the following characterization of Arf rings given in [9].

3.5. Proposition ([9, Theorem 2.2 and Corollary 3.8])
Let (R, m) be a one dimensional noetherian local analytically irreducible ring

and let R = R0 ( R1 ( . . . ( Rm−1 ( Rm = R be the branch sequence of R.

Then R is an Arf ring if and only if embdim(Rj) = e(Rj) for each j = 0, . . . , m.

Moreover, if R is complete with algebraically residue field k, then R is an

Arf ring if and only if the value semigroup v(R) of R is {0, e(R0), e(R0) +
e(R1), . . . , e(R0) + · · · + e(Rm−2)} ∪ Nc, where c = e(R0) + · · · + e(Rm−2) +
e(Rm−1).

Under the assumptions of 3.5 we can characterize Arf rings using the type
sequences of R and of each term in the branch sequence of R.

3.6. Theorem
Let (R, m) be a complete local analytically irreducible domain with algebraically

closed residue field k. Let R = R0 ( R1 ( . . . ( Rm−1 ( Rm = R be the

branch sequence of R. For each j = 0, . . . , m − 1, let Cj be the conductor of

R over Rj , and let nj = n(Rj), cj = ℓ(R/Cj) and ti(Rj) be the i-th term in

the type sequence of Rj . Then: R is an Arf ring if and only if for each j =
0, . . . , m−1 and i = 1, . . . , nj , we have nj = m−j and ti(Rj) = e(Rj+i−1)−1 =
ti+1(Rj−1).
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Proof. (⇒): By the assumptions on R and 3.5, for each j = 0, . . . , m−1 we

have Rj is an Arf complete domain with integral closure R, the same residue
field k, Rj ( Rj+1 ( . . . ( Rm−1 ( Rm = R is the branch sequence of
Rj and the value semigroup v(Rj) is {0, v1,j, v2,j , . . . , vm−j−1,j} ∪ Ncj

, where
vi,j = e(Rj)+· · ·+e(Rj+i−1), i = 1, . . . , m−j−1 and cj = e(Rj)+· · ·+e(Rm−1).
Therefore we have nj = n(Rj) = (m − j − 1) + 1 = m − j. Further, for each
j = 0, . . . , m−1, if {ti(Rj) | 1 ≤ i ≤ m−j} is the type sequence of Rj , then by
3.4 we have ti(Rj) = vi,j −vi−1,j −1 = e(Rj+i−1)−1 = vi+1,j−1 −vi,j−1 −1 =
ti+1(Rj−1) for every 1 ≤ i ≤ m − j.

(⇐): For each j = 0, . . . , m − 1, by assumption, in particular, we have
τRj

= t1(Rj) = e(Rj) − 1. Therefore emdim(Rj) = e(Rj) by 3.3 and hence R
is an Arf ring by 3.5.

In particular, for the ready reference we note the following formulas for the
i-th term ti in the type sequence of R, in terms of the types, the multiplicities
and the lengths arising from the terms of the branch sequence of R.

3.7. Corollary
Let (R, m) be an Arf complete local domain with algebraically closed residue

field k and let R = R0 ( R1 ( . . . ( Rm−1 ( Rm = R be the branch sequence

of R. Then: m = n = n(R) and for each i = 1, . . . , n, the i-th term ti in the

type sequence of R is given by: ti = τ(Ri−1) = e(Ri−1) − 1 = ℓ(Ri/Ri−1).

3.8. Corollary
Let (R, m) be an Arf complete local domain with algebraically closed residue

field k and let B = B(m) be the blowing up of R along m. If t1, . . . , tn is the

type sequence of R, then t2, . . . , tn is the type sequence of B.

Recall that several authors (see for example [6], [16] and references in them)
have tried to characterize rings for which the inequality ℓ(R/R) ≤ τR · ℓ(R/C)
is an equality or to give a classification of the rings according to the value of
the integer ℓ∗(R) := τR · ℓ(R/C)− ℓ(R/R). Now, using the special properties of
Arf rings and 3.6 we give some relations between ℓ∗(R), the terms in the type
sequence of R, ℓ∗(Rj) and e(Rj), where R = R0 ( R1 ( . . . ( Rm−1 ( Rm = R
is the branch sequence of R. More precisely:

3.9. Theorem
Let (R, m) be a complete local analytically irreducible domain with algebraically

closed residue field k. Let R = R0 ( R1 ( . . . ( Rm−1 ( Rm = R be the branch

sequence of R and let ej = e(Rj) be the multiplicity of Rj , j = 0, . . . , m. Let

t1, . . . , tn be the type sequence of R. Then:

(1) ℓ∗(Rm−1) = 0 and ℓ∗(Rj) =
∑m−1

i=j+1(m− i) ·(ti−ti+1) for 1 ≤ j ≤ m−2.
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(2) For j = 0, . . . , m−2, we have ℓ∗(R) = ℓ∗(Rj)+

∑j

i=1(m−i) ·(ti−ti+1) =

ℓ∗(Rj) +
∑j

i=1(m − i) · (ei−1 − ei).

Proof. We shall use the notation as in 3.6. Note that for every 0 ≤ j ≤ m,
nj = m− j; in particular, n = n(R) = n(R0) = m. Further, tj+1, . . . , tm is the
type sequence of Rj ; in particular, tm is the type sequence of Rm−1 and hence
nm−1 = n(Rm−1) = 1 and ℓ∗(Rm−1) = 0. Now, for 0 ≤ j ≤ m − 2, we have

ℓ∗(Rj) = τ(Rj) · ℓ(Rj/Cj) − ℓ(R/Rj) = tj+1 · nj −
m

∑

i=j+1

ℓ(Ri/Ri−1)

= tj+1(m − j) −
m

∑

i=j+1

ti =

m
∑

i=j+2

(tj+1 − ti) =

m−1
∑

i=j+1

(m − i) · (ti − ti+1).

This proves (1). Now, since ti = e(Ri−1) − 1 = ei−1 − 1 by 3.7, we have
ti − ti+1 = ei−1 − ei for every 1 ≤ i ≤ m − 1 and hence by (1), we have

ℓ∗(R) = ℓ∗(R0) =

m−1
∑

i=1

(m − i) · (ti − ti+1) =

j
∑

i=1

(m − i) · (ti − ti+1) + ℓ∗(Rj)

=

j
∑

i=1

(m − i) · (ei−1 − ei) + ℓ∗(Rj).

This proves (2).

3.10. Corollary
With the same assumptions and notation as in 3.9, we have:

(1) ej ≤ ej−1 and ℓ∗(Rj) ≤ ℓ∗(R) for every j = 1, . . . , m − 1.

(2) For 1 ≤ j ≤ m − 2, ℓ∗(Rj) = ℓ∗(R) if and only if e0 = . . . = ej−1 = ej .

Proof. Note that the inequality ej ≤ ej−1 holds for every analytically irre-
ducible domain. Therefore by 3.9-(2) ℓ∗(Rj) ≤ ℓ∗(R) for every j = 1, . . . , m−2
and by 3.9-(1) ℓ∗(Rm−1) = 0 ≤ ℓ∗(R).

(2) Since m − i > 0 for every 1 ≤ i ≤ j ≤ m − 2, by 3.9-(2) ℓ∗(Rj) = ℓ∗(R)
if and only if ej−1 = ej for every j = 1, . . . , m − 2.

Now for complete semigroup rings R such that ℓ∗(R) ≤ τR and τR = e(R)−1
using [6, Corollary 2.14], we give another characterization involving the type
sequence of R and the type sequences of the rings Rj in the branch sequence of
R, Arf rings, ℓ∗(R), ℓ∗(Rj), 1 ≤ j ≤ m−1 (see 3.12 below). First we shall prove
the following lemma concerning two special types of semigroup rings considered
in [6, Corollary 2.14].
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3.11. Lemma
Let Γ be a numerical semigroup and let R = K[[Γ]] be the semigroup ring of Γ

over a field K. Let R = R0 ( R1 ( . . . ( Rm−1 ( Rm = R be the branch

sequence of R and let ej = e(Rj), j = 0, . . . , m − 1.

(1) Suppose that Γ is generated by e, pe + 1, pe + 2, . . . , pe + (e − 1), where

e, p are positive integers with e ≥ 3. Then m = p, R is an Arf ring and

ej = e(R) = e for every j = 0, . . . , p − 1.

(2) Suppose that Γ is generated by e, pe− a, pe − a + 1, . . . , pe − a + (a − 1),
where e, p, a are positive integers with e ≥ 3, p ≥ 2 and 1 ≤ a ≤ e − 1.
Then m = p, R is an Arf ring, ej = e(R) = e for every j = 0, . . . , p − 2
and ep−1 = e − a.

Proof. (1) It is easy to check that emdim(R) = e(R) = e; in fact the e
elements e, pe + 1, pe + 2, . . . , pe + (e − 1) form a minimal set of generators for
the semigroup Γ and e < pe + 1. For j = 0, . . . , p − 1, let Γj be the semigroup
generated by e, (p− j)e + 1, (p− j)e + 2, . . . , (p− j)e + (e− 1) and let Γp = N.
Then it is easy to verify that the sequence R = K[[Γ0]] ( K[[Γ1]] ( . . . (

K[[Γp−1]] ( K[[Γp]] = R is the branch sequence of R. Therefore m = p and
emdim(Rj) = e = ej for each j = 0, . . . , p − 1 and hence R is Arf by 3.5.

(2) For j = 0, . . . , p−2, let Γj be the semigroup generated by e, (p− j)e−a,
(p − j)e − a + 1, . . . , (p − j)e − a + (e − 1) (note that this is a minimal set of
generators for Γj ), Γp−1 generated by e−a, e−a+1, . . . , e, e+1, . . . , 2e−a−1
(note that e − a < e and that e − a, e − a + 1, 2e − 2a − 1 is a minimal set
of generators for Γp−1) and let Γp = N. Then it is easy to verify that the
sequence R = K[[Γ0]] ( K[[Γ1]] ( . . . ( K[[Γp−2]] ( K[[Γp−1]] ( K[[Γp]] = R is
the branch sequence of R and emdim(Rj) = e = ej for each j = 0, . . . , p − 2,
emdim(Rp−1) = e − a = ep−1 and hence R is Arf by 3.6.

3.12. Theorem
Let Γ be a numerical semigroup of multiplicity e and type τΓ . Let R = K[[Γ]]
be the semigroup ring of Γ over a field K and let R = R0 ( R1 ( . . . (

Rm−1 ( Rm = R be the branch sequence of R. Let t1 = τΓ, t2, . . . , tn be the

type sequence of R. For a natural number a ≤ t1 , the following statements are

equivalent:

(i) ℓ∗(R) = a and emdim(R) = e(R).

(ii) R is an Arf ring and

ti =











e − 1, if 1 ≤ i ≤ m and a = 0,

e − 1, if 1 ≤ i ≤ m − 1 and a > 0,

e − a − 1, if i = m and a > 0.
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(iii) R is an Arf ring and

ℓ∗(R) = ℓ∗(Rj) =

{

0, if 1 ≤ j ≤ m − 1 and a = 0,

a, if 1 ≤ j ≤ m − 2 and a > 0,

and if a > 0, then ℓ∗(Rm−1) = 0.

Proof. (i) ⇒ (ii): Note that by 3.3 emdim(R) = e(R) ⇐⇒ τR = e(R)−1.
Therefore by [6, Corollary 2.14] the value semigroup of R is:

v(R) = Γ =



























Ne +

e−1
∑

i=1

N(pe + i), if a = 0 (see 3.11-(1)),

Ne +

a−1
∑

i=0

N(pe − a + i), if a > 0 (see 3.11-(2)).

In particular, n = n(R) = m = p and R is an Arf ring (see 3.11). Further, by
3.7 and 3.11, i-th term ti in the type sequence of R is given by

ti =











e − 1, if 1 ≤ i ≤ m and a = 0,

e − 1, if 1 ≤ i ≤ m − 1 and a > 0,

e − a − 1, if i = m and a > 0.

(ii) ⇒ (iii): If a = 0, then ℓ∗(R) = 0 and by 3.9-(2) ℓ∗(Rj) = 0 for every
j = 1, . . . , m − 1. If a > 0, then by 3.9, we have ℓ∗(Rm−1) = 0 and ℓ∗(R) =
tm−1 − tm = a = ℓ∗(Rj) for every j = 1, . . . , m − 2.

(iii) ⇒ (i): Clearly ℓ∗(R) = a by (iii) and since R is an Arf ring, we have
emdim(R) = e(R).4. Examples

In this section we give some examples of Arf rings and some of not Arf rings.
In the following examples R denote the semigroup ring K[[Γ]] of the semigroup
Γ over a field K. Note that in this case each term Rj in the branch sequence
of R is also semigroup ring; in fact, if Γ is generated by n1, n2, . . . , np with
n1 < n2 < . . . < np , then R1 = K[[Γ1]], where Γ1 = v(R1) is generated by
n1, n2 − n1, . . . , np − n1 ; by repeating this argument we get the result for Rj ,
j ≥ 2.

4.1. Example
Let e, r, r′ ∈ N with e ≥ 3, 1 ≤ r, 1 ≤ r′, r+r′ ≤ e−1 and let Γ be the semigroup
generated by the sequence e, e + r, e + r + r′, e + r + r′ + 1, . . . , 2e + r + r′ − 1.
We consider the four cases (i) r′ = r = 1; (ii) r′ = 1, r ≥ 2; (iii) 1 < r′ ≤ r;
(iv) r < r′ separately.
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(a) We first compute the type sequence of R.

Case (i): (r′, r) = (1, 1): This case is considered in 3.11-(1) (p = 1). In this
case t1 = e − 1 is the type sequence of R.

Case (ii): r′ = 1 and r ≥ 2: In this case c = e+r and Γ\Nc = {0, e}. Therefore
n = 2 and v1 = e. Further, Γ(1) \ Γ(0) = T (Γ) = [r, e − 1] ∪ [e + 1, e + r − 1]
and Γ(2) \Γ(1) = [1, r− 1]. Therefore t1 = τR = e− 1, t2 = r − 1 and the type
sequence of Γ is e − 1, r − 1. Therefore, R is almost Gorenstein if and only if
r = 2.

Case (iii): 1 < r′ ≤ r: In this case c = e + r + r′ and Γ \ Nc = {0, e, e + r}.
Therefore n = 3 and v1 = e, v2 = e + r. Further, we have

Γ(1) \ Γ(0) = T (Γ) = {r} ∪ [r + r′, e + r + r′ − 1] \ {e, e + r},

Γ(2) \ Γ(1) =

{

[r + 1, r + r′ − 1], if r = r′,

[r′, r + r′ − 1] \ {r}, if r′ < r,

and

Γ(3) \ Γ(2) =

{

[1, r − 1], if r′ = r,

[1, r′ − 1], if r′ < r.

Therefore

t1 = τR = e − 1, t2 =

{

r′ − 1, if r′ = r,

r − 1, if r′ < r,
t3 =

{

r − 1, if r′ = r,

r′ − 1, if r′ < r,

and the type sequence of Γ is
{

e − 1, r′ − 1, r − 1, if r′ = r,
e − 1, r − 1, r′ − 1, if r′ < r.

Therefore, R is almost Gorenstein if and only if (r′, r) = (2, 2).

Case (iv): r < r′: In this case c = e + r + r′ and Γ \ Nc = {0, e, e + r}.
Therefore n = 3 and v1 = e, v2 = e + r. Further, we have Γ(1) \ Γ(0) =
T (Γ) = [r + r′, e + r + r′ − 1] \ {e, e + r}, Γ(2) \ Γ(1) = [r′, r + r′ − 1] and
Γ(3) \ Γ(2) = [1, r′ − 1]. Therefore t1 = τR = e − 2, t2 = r, t3 = r′ − 1 and the
type sequence of Γ is e − 2, r, r′ − 1. Therefore, R is almost Gorenstein if and
only if (r, r′) = (1, 2).

(b) Now we shall show that R is an Arf ring in cases (i), (ii), (iii) and R is
not Arf in case (iv).

Case (i): (r′, r) = (1, 1): in this case R is an Arf ring (see 3.11-(1) (p = 1)).

Case (ii): r′ = 1 and r ≥ 2: In this case, let Γ0 := Γ, Γ1 be the numerical
semigroup generated by [r, 2r− 1], Γ2 := N and let Rj := K[[Γj ]] for j = 0, 1, 2.
Then it is easy to see that e(R0) = e = embdim(R0), e(R1) = r = embdim(R1),
e(R2) = 1 = embdim(R2), Γ = Γ0 ( Γ1 ( Γ2 = N and R = R0 ( R1 ( R2 = R
is the branch sequence of R. Therefore R is an Arf ring by 3.5.
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Case (iii): 1 < r′ ≤ r : In this case, let Γ0 := Γ, Γ1 be the numerical semigroup
generated by {r} ∪ [r + r′, 2r + r′ − 1] (note that Γ1 is minimally generated by
{r} ∪ ([r + r′, 2r + r′ − 1] \ {2r})), Γ2 be the numerical semigroup generated
by [r′, 2r′ − 1], Γ3 := N and let Rj := K[[Γj ]] for j = 0, 1, 2, 3. Then it is easy
to see that e(R0) = e = embdim(R0), e(R1) = r = embdim(R1), e(R2) = r′ =
embdim(R2), e(R3) = 1 = embdim(R3), Γ = Γ0 ( Γ1 ( Γ2 ( Γ3 = N and
R = R0 ( R1 ( R2 ( R3 = R is the branch sequence of R. Therefore R is an
Arf ring by 3.5.

Case (iv): 1 < r′ ≤ r: r < r′: In this case, since e(R) = ne > e − 1 =
embdim(R), R is not an Arf ring by 3.5.

4.2. Example
Let m, d, p ∈ N, m ≥ 2, p ≥ 1, d ≥ 1, gcd(m, d) = 1, Γ be the semigroup
generated by an arithmetic sequence m, m + d, . . . , m + pd and let R = K[[Γ]].
Let B be the blowing-up of R along the maximal ideal of R. Then (see 3.1)
B = K[[Γ′]], where Γ′ is the semigroup generated by m, d, and so embdim(B) =
2. Further, by 3.5:

(i) If d = 1, then R is Arf if and only if embdim(R) = m (in fact, in this
case, B = K[[T ]]). The case d = 1 is also contained in Proposition 4.4 of
the article [3].

(ii) If d = 2 or m = 2, then for every j ≥ 2 the j-th term in the branch
sequence of R is Rj = K[[Γj ]], where Γj is the semigroup generated by
2, 2n + 1 for some integer n ≥ 1 and so embdim(Rj) = e(Rj) for every
j ≥ 1. Therefore, R is an Arf ring if and only if embdim(R) = m; in
particular, if m = 2, then R is an Arf ring.

(iii) If d ≥ 3 and m ≥ 3, then e(B) ≥ 3, embdim(B) < e(B) and hence R is
not an Arf ring.Referenes
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