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On sets associated to conditional equation

of exponential function

Abstract. In the present paper we give a description and properties of the
system of cones over Q which are one of parameters determining the
solutions of the conditional equation of exponential function.

1. Introduction

F.S. Roberts, generalizing the mathematical description of choices intro-
duced by himself in [10, 11], considers functions f:R(n) — R(n), where
R(n) :={(z1,...,2n) € R" : z; > 0for j=1,...,n}, 0, :==(0,...,0) € R",
which satisfy, among others, the following conditional functional equation:

f@) - fly) #0n = fl@z+y)=flx) f(y),
for z,y € R(n). Here  + y and « - y are defined in the following way:

THY = (x1+y17"'amn+yn)v Ty = (Zl'yla"'amn'yn)-

Mathematical theory of this approach was developed by Z. S. Rosenbaum
[12], Z. Moszner [3,7,8,9,], G.L. Forti and L. Paganoni [4,5] and A. Bahyrycz
[1,2,3].

As a generalization, one may consider functions f:R(n) — R(m) (where
n, m are arbitrary natural numbers, independent of each other) satisfying the
condition

Vo,y €R(n): f(z) f(y) # 0m = flx+y)=fl) fy) (1)
It may be shown that in such a case the description of all the solutions f =
(f1,-.., fm) of equation (1) takes the form:

fu(z) =

{ expa, () forx e Z,, @)

0 for x €e R(n)\ Z,,
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where a,:R"” — R are additive functions for v = 1,...,m, whereas the sets
Z,, satisfy the conditions

Z1U...UZ, =R(n), (3)

ij# 0, = Z0N...NZm 4z 0. nZin c 2. 0 Zimin o (4)
where i = (i1,...,im), J = (J1,- -+, Jm) € 0(m) := {0, 1} \ {0, },
Ei+Ey:={z+y:xz€FE and y € Ey} for Ey,Fy CR",
E':=E, E° :==R(n) \ E for E C R(n).
The proof of this fact is analogous to the proof for the case of n = m in [7].

Because of the form of the solutions, equation (1), will be called the condi-
tional equation of exponential function.

Let us notice that the parameters determining the solutions of equation
(1) are systems of sets Zi, ..., Z,, satisfying conditions (3) and (4), as well
as additive functions a,:R"™ — R. For this reason, it is interesting to find
conditions equivalent to condition (4) under the assumption of condition (3).

2. Auxiliary lemma

Let us recall the following definition:

DEFINITION 1
A set C is called a cone over an ordered field K (K=Q or K =R), ifz+y € C
for all z,y € C and ax € C for all z € C and o € KN (0, +00).

Let us observe that if the sets Z1,..., Z,, satisfy condition (3), then for
every a € R(n) and every k € {1,...,m} there exists a unique iz € {0, 1} such
that a € Z;* (further on it will be denoted by ix(a)) and at least one j such
that i;(a) = 1.

LEMMA 1
If a system of sets Z1, ..., Zy satisfies conditions (3) and (4), then for every
non-empty subset {l1,...,1,} of the set {1,...,m} and for every (iy,,...,4,) €

0(p) the set Zlill1 Nn...N ZZ” is a cone over Q.

Proof.
Step 1°

Consider arbitrary 0 # {l1,...,l,} C {1,...,m} and (i1,,...,i,) € 0(p).
Take x € Zlill1 N.. .ﬂZ;:p andy € Z;lll N.. .ﬁZli:’. Since (i, , . ..,4,) # Op , there
exists v € {l1,...,{p} such that i, = 1. Obviously, z € Zfl(x) N...N Zfﬁ”(x),

y € Z?(y) N...nZx® and i1, (x) =4, (y) = 4y, for every k € {1,...,p}. Since
iv(z) = 1i,(y) = 1, from condition (4) it follows that



On sets associated to conditional equation of exponential function 21

etyeZn..nzin® 4 200 nZinW
c zp@nW n A Zin@im )
C Zl(f“)2 n...n Zl(jlp)z
=Z"n..nz".
Therefore, for every (Z)_;é {li,...,1,} C{1,...,m} and every (is,,...,1,) € 0(p)
the set lelll Nn...N ZZ” is closed under addition.

Step 2°
Take arbitrary 0 # {l1,...,1,} C {1,...,m} and (i,,...,4;,) € 0(p). Con-
sider the set Z;lll Nn...N ZZP. Take = € lelll Nn...N ZZP and k € N. The set

U

Zlill1 Nn...N ZZ” is closed under addition, so kz € Z; ' N...N Z;;p. Consider
%x. Obviously,

Loe Zil(%m) n...nzi ()

k
and since Z1U. . .UZ,, = R(n), there exists v € {1,...,m} such that i, (;z) = 1.

o i1(%1‘) 17’”(%58) 3
It follows from step 1° that the set Z; N...NZn is closed under
addition, so consequently

1 itz Tm Ly
r=k- (Ex> EZII(" )ﬂ...ﬂZm(’“ )
As a result, for every I € {1,...,m} we have

ir(r) = il(%f),

1 iy i
EI S lel ﬂ...lepp.

which means that

We have shown that the set Zlill1 N...N ZZ” is a cone over Q.

REMARK 1
Notice that for m # 1 the converse of Lemma 1 is false, and here is an example
form=mn=2.

Define

Zy ={(z,y) € R(2) : y < 2z},
Zy = {(x,y) €R(2) : y > 32}

It is obvious that the sets Z1, Z1, ZiNZi, Z1 N Z9 and ZY N Z3 are cones over
R (because the sets Z{, Z3, Z?, Z9 are cones over R). Condition (4) is not
satisfied, since (1,0) € Z{ N Z§ and (2,2) € Z} N Z} whereas (3,2) ¢ Zi N Z9.
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REMARK 2

Let us observe that if the sets Z1, ..., Z,, satisfy conditions (3) and (4), then
for m € {1,2} the set Z) in the case of m = 1 and the sets Z9, 29, Z9n Z§ for
m = 2 are also cones over Q. If m =1, then Z; = R(n), so Z = (. If m = 2,
then Z1U Zy = R(n), so R(n)\ Z{ C Z3 and R(n)\ Z3 C Z}, and consequently
79 C Z} and Z9 C Z}]. Therefore

Nz =20 and ZYnZzl =23,

and, by Lemma 1, Z{ and ZJ are cones over Q and the set Z9 N ZY9 is empty.
If the sets Z1,..., Z,, satisfy conditions (3) and (4), then for m > 2 not
every set

Zn..nz,
where (0 # {l1,...,l,} is necessarily a cone over Q. Here is a suitable example
for n =2 and m = 3.
Define

Zy ={(z,y) €R(2): y < a},
Z = {(z,y) €RE): Lo <y <2},
Zs ={(z,y) e R(2): y > 2z}.

It can be easily checked that the sets Z1, Zs, Z3 satisty conditions (3) and (4)
and that the set

Zy ={(x,y) €R(2): y < gz} U{(z,y) €R(2): y > 2z}

is not a cone over Q.

3. Main result

The following theorem gives the conditions equivalent to condition (4) under
the assumption of condition (3).

THEOREM 1
Assume that sets Zi,...,Zym satisfy condition (3). The following conditions
are equivalent:

(i) condition (4);
(ii) the sets Zy,...,Zy are cones over Q for which
Zt+zlnz)czlnz) (5)
for all k,1 € {1,...,m} (it is enough to consider k #1);

(iii) the sets Zi,...,Zn, satisfy the conditions
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Zi+ 7 C Zt, (6)
for every k € {1,...,m} and condition (5) for all k,l € {1,...,m};

(iv) for all z,y € R(n) if there exists v € {1,...,m} such that © € Z, and
Yy € Z,, then

Vke{l,....m}: x+y€Zy < z€Zy andy < Z, (7)

(v) forall k,l € {1,...,m} the following implication holds
ij#£02 = ZFNZ+Z 0z c Z}HR 0z, (8)
where i = (ix, 1), j = (Jr, j1) € 0(2).
Proof. (i)=(ii) By Lemma 1, the sets Z1,...,Z,, are cones over Q. As-

sume that z € Z} + Z! N Z} for k,l € {1,...,m} such that k # [. It implies
that there exist such x € Z} and y € Z} N Z} that z + y = 2. Clearly,

ceZn Nz yezWn 0z and i) = iy) = 1. By
applying condition (4) we get
c+yeZ'Wn. . nzir@ L 700 n A Zzinb
c zp@nW a0 Zim@im@) ¢ zi W o Zik@)n)

=27Z'nZz.
(ii)=-(iii) The sets Zi, ..., Zy are cones over Q, so each of them is closed
under addition, condition (6) is therefore satisfied for every k € {1,...,m},

which completes the proof.

(i)=(iv) Let z,y € R(n), v € {1,...,m} be arbitrary and such that = €
Z,and y € Z,.

(< in (7)) Lets us take an arbitrary k € {1,...,m} such that z € Z} and
y € Z; . Condition (6) yields

T+y€EZL+ 2L C 7.

(= in (7)) Fix an arbitrary k € {1,...,m} such that z +y € Z} . If k = v,
then, by assumption, € Z} and y € Z . If k # v, then suppose
that x € Z? or y € Z)). Without loss of generality we may assume
that y € Z? . Then, by (5), we obtain

r+yeZi+zinz)czinz)czy,

which is a contradiction, since the sets Z} and Zj) are mutually
disjoint. It means that

x e Z} and yezZy,

which finishes the proof.
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(iv)=(v) Let k,l € {1,...,m} and i = (i, %), j = (jk,J1) € 0(2) be such
that ij # 02 . Consider z € Z;* NZ]' + Z}* N Z{'. Then there exist = € Z;* N Z}'
and y € Z,zk N lel such that z = x +y. Since ij # 02, there exist v € {k,}
such that i, = j, = 1, and condition (7) gives

vty ezl = g
For t € {k,1}\ {v} the following cases are possible:
a) iy = ji = 1,
b) it =0 or j: = 0.

Casea). If iy = j; = 1, then # € Z} and y € Z}, so, by condition (7), we
obtain

r+y€Z = Zztj‘.
Case b). Ifi; =0 or j; = 0, then it is not true that x € Z} and y € Z} . Since

r € Z! and y € Z} , from condition (iv) it follows that it is not true
that z +y € Z}, therefore

r+y€Zy = ZZ‘j‘.
Thus
z+ye 2z} Nz

(v)=(@) Leti,j € 0(m) besuch that ij # 0, . Consider z € Zi*N...NZim+
Z'N...N Z}m. Then there exist x € Z;* N...N Zim andy € Z* N...N Z}m
such that z = « + y. Since ij # 0,,, there exists k € {1,...,m} such that
ik = Jr = 1.

Let I € {1,...,m}. In such a case (ix,%) - (Jk,j1) # 02 and, by condition
(v), we obtain

x+y€zZM Nz oz,
SO

r4yeZMn.. . nZinin
which completes the proof of Theorem 1.

Theorem 1 leads to the following

COROLLARY 1

If sets Zu, ..., Zm are pairwise disjoint and satisfy condition (3), then condition
(4) is equivalent to the following condition: Zi,..., Zy are cones over Q.
Proof. Assume that sets Z, ..., Z,, are pairwise disjoint and satisfy con-

dition (3). Then, by Theorem 1, condition (4) is equivalent to condition
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(ii), namely, the sets Z1,..., Z,, are cones over Q which satisfy condition (5)
for all k,1 € {1,...,m} such that k& # [. Because of the fact that for all
k,le{1,...,m} such that k # [ the sets Zj, Z; are disjoint, the condition

Zl+Zlnz)czlnz
is reduced to the condition
Zl+ 2} c 7z},
because Z} C R(n)\ Z} = Z? (since Z} N Z} = 0), and therefore Z} NZY = Z}.
Similarly, the condition

Zi+Zinz) c zinzp

is reduced to the condition
Zi+ 2t C Z; .
Thus, in order to verify condition (5) for two disjoint sets contained in

R(n) it suffices to check whether these sets are closed under addition, which
completes the proof.

REMARK 3
Notice that if sets Z1, ..., Z,, satisfy condition (3), then the fact that they fulfil
condition (4) implies that they satisfy condition (5). The converse implication
is not true, the assumption that the sets Z1,..., Z,, are cones over Q cannot
be omitted in condition (ii). Here is an example for m = n = 2.

Define

Z1 = {(z,y) eR(2) : = <1},
Zs = R(2).

The sets Z1, Zs satisfy condition (3), as well as the conditions
Zi4+ZinZ8 =0 = ZInZY, Zi+Z;NZY) = {(z,y) ER(2) : 2 > 1} = Z3NZY.

Therefore, condition (5) is satisfied for k,! € {1,2}. Obviously, the sets Z1, Zs
do not satisfy condition (4), since the set Z; is not a cone over Q.

REMARK 4
Let us have a closer look at condition (4). Notice that the number of pairs
(i,7) € {0,1}™ x {0,1}™ equals 4™. The product ij = 0,, if and only if i, =0
and jr =0or i, =1 and jp =0or i =0 and ji = 1 for every k € {1,...,m}.
Therefore the number of pairs (i,5) € 0(m) x 0(m) satisfying the condition
1j # Op, is equal to 4™ — 3™.

Observe that condition (4) is symmetrical with respect to 7 and j, so instead
of verifying 4™ — 3™ conditions in order to verify condition (4) we will show
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that it suffices to verify £~=3"+2"=1 conditions. The number of pairs (i,i) €

0(m) x 0(m) is equal to 2™ — 1 and for all remaining pairs (i, j) € 0(m) x 0(m)
such that ij # 0,,, and @ # j it suffices to verify condition (4) for half of them;
that is to say, if it is verified for the pair (i, ), then there is no need to verify
it for the pair (4,7) so we have

4m —3m — (2m —1) 4m —3m42m —1

2m 1 =
* 2 2

Notice that in order to verify condition (iii) of Theorem 1 (which is equiv-
alent to condition (4) if condition (3) is assumed) it suffices to verify m? con-
ditions (m in order to verify condition (6) and m(m — 1) to verify condition

(5))-

m 12 3] 4] 5
4™ —3m g om ]

E ; 1| 5] 22| 95| 406

m? 1] 4] 9]16] 25

Table 1

Hence, verification of condition (iii) of Theorem 1 for m > 2 requires exam-
ining less conditions then it is the case for condition (4). Let us additionally
observe that the conditions obtained from (iii) of Theorem 1 are of a simpler
form than the ones obtained from (4).

REMARK 5
We will show that the system of conditions obtained from condition (iii) of
Theorem 1 for n > 1 and m > 1 is complete.

I. Consider the following sets:

Z1 = {(z,9,0,...,0) e R(n) : y >z},

ZQ = R(n)
and if m > 3, then
Z3=...=Zp=0.
Notice that condition (6) is satisfied for every k € {1,...,m}, since
the sets Z1,...,Z,, are cones over R. Condition (5) is satisfied for all

(k, 1) € {1,...,m}*\ {(1,2)}, and for k =1 and [ = 2 we have
R(n) + R(n) N 20 = R(n) \ {(0,22,0,....,0) € R(n)}
¢ R(n)n 29
=29
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II. Consider the following sets:
Z1 = {(z,2,0,...,0) € R(n)},

Zy =R(n)\ Z;
and if m > 3, then
Zs=...=Zm=10.
Condition (5) is satisfied for all k,I € {1,...,m}, since the sets
Zi,...,Zm are pairwise disjoint. Condition (6) is satisfied for every

ke {l,...,m}\ {2}, since the sets Zj, for k € {1,...,m} \ {2} are cones
over R. Condition (6) is not satisfied for k = 2, because (1,0,...,0) € Z
and (0,1,0,...,0) € Z3 whereas (1,1,0,...,0) & Zs.

The independence of the conditions obtained from condition (iii) of Theorem
1, which occurs even under additional assumption that the sets Zy,...,Z,,
are cones over R, means that when verifying condition (iii) it is necessary to
consider m? conditions (none of them may be omitted).

REMARK 6
We are going to show that if sets Z1,...,Z,, fulfilling condition (3) satisfy
condition (iii) of Theorem 1, then, as a consequence, they satisfy the conditions

Zi+ 2t = 7},
'+ zZinz) =20z

for all k,1€{1,...,m}.

It suffices to prove that Z} C Z} + Z} and Z} N ZY c Z} + Z} n Z}.

Fix z € Z} and y € Z} N Z). On account of Theorem 1, the system
Zi,...,Zm satisfies condition (3), which fact, combined with Lemma 1, implies
that the sets Z,i and le N Z,? are cones over Q, so

1 1 1
ixGZé and x:§x+§x€Zé+Zé,

%ye Zlnz) and y= %y—i—%yeleﬂZg—i—leﬁZg cZl+zinz).
Hence, in conditions (5) and (6) of condition (iii) of Theorem 1 the inclusion
may by replaced by equality. Analogous reasoning proves that in condition (5)
of condition (ii) of Theorem 1 the inclusion may by replaced by equality.

We will show that the fact that sets Z1,..., Z,, satisfy condition (3) and
condition (i) of Theorem 1 does not necessarily imply that the condition

i #0m = Zin...NZ+ZPn...0Zin =20 0L Zimdm

is satisfied (that is to say, that the inclusion in condition (4) cannot be replaced
with equality). Here is an example for m > 1.



28 Anna Bahyrycz

Put

Notice that
ZinzZin..nZ2% +zinzZyynzin...nzZ°
=0G zZinZin...nZ5 =R(n).
Similarly, in condition (v) of Theorem 1 the inclusion cannot be replaced

with equality. It suffices to consider the same sets as above and put k = 1,
1=2,7=(1,0), j = (1,1) and we obtain

ZiNZ3+2ZiNZy=0G Z{ N Z3 = R(n).
REMARK 7
Characterizing a function f:R(2) — R(2) satisfying equation (1), Z. Moszner

in [9] replaces condition (4) with four conditions which are equivalent to (4)
under the assumption of condition (3). These are the following conditions:

(a) Z1+ 71 C 7y,
(b) Zy+ Z> C Zs,
(c) 20+ Zy C 77,
(d) 29+ 2, C Z9.
Let us compare the above conditions with the ones obtained by expanding

condition (iii) of Theorem 1 for the case of n = m = 2. In this way, we obtain
two conditions from condition (5):

(@) 21+ 21 C 71,

(b)) 23+ 23 C Z3
and two conditions to be verified from condition (6):

() Zl+Zinzy c zinZy,

() Zi+2inzY c zinzy).
Clearly, conditions (a) and (a’), (b) and (b’) are identical. If we assume that
condition (3) holds (Z;UZy = R(2)), then we have Z{NZY = Z9 and ZiNZY =
Z9, and, since addition is commutative, condition (c¢’) corresponds precisely
with condition (d), and so does (d’) with (c), although they differ by notation.
Therefore, if we assume that condition (3) is satisfied, then condition (iii) of
Theorem 1 may be treated as a generalization of the system of conditions (a),

(b), (c) and (d) from [9] for the case of n, m being arbitrarily chosen natural
numbers, independent of each other.
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REMARK 8
It is easily seen that if in Lemma 1 and Theorem 1 we delete the assumption
that

Z1U...UZ, =R(n)

and define
Z}=2; and  Z):= <U Zj> \ Z;
j=1
for i =1,...,m, then both Lemma 1 and Theorem 1 remain valid.

L. Another properties of the systems satfisfying (3) and (4)

We start from the following

DEFINITION 2
Let C' C R(n) be a cone over Q. Denote:

(C) — the linear subspace of R™ over the field R generated by C;
C — the closure of the set C' in (C);
C*  — the interior of the set C in (C);

int C — the interior of the set C' in R".

Now we will be investigated another properties of the systems Z;,...,Z,,
satisfying conditions (3) and (4).

THEOREM 2
Let a system Zy, ..., Zy, satisfy conditions (3) and (4). If there exist k,l €
{1,...,m} such that k # 1 and (Z;, N Z))* # 0, then

Zi N <Zk ﬂZl> =7ZiN <Zk ﬂZl>.

Proof. Let x € (Z;, N Z;)*. Then there exists r > 0 such that the ball
K(x,r) CZyNZ, C (ZxN Zy).
For z € Z; N (Z, N Z;) there exists ¢ € Q, such that ||gz|| < r, so
x+qz € K(z,r) C Zp N Zy,

and, by condition (iv) of Theorem 1 (the condition equivalent to (4) when
condition (3) is assumed), because of the fact that z € Z} and ¢z € Z} we
obtain ¢z € Z}. Since gz € (Z, N Z}), z € Zx N (Zx N Z;) (for Zj, is a cone over
Q), which gives Z; N (Zp N Z;) C Zy, N {Z N Z}); consequently, by symmetry,
we get

ZiN <Zk N Zl> =7 N <Zk n Zl>
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Notice that if int(Zx N Z;) # 0, then Theorem 2 yields Z; = Z;, which
results in the following

COROLLARY 2
If a system Zn,...,Z, satisfies conditions (3) and (4), then for all k,l €
{1,....,m} Zy = Z; or Zx, N Z; is a set with empty interior in R™.

REMARK 9

If the sets Z1, Zs satisfy conditions (3) and (4), then int(Z; N Zs2) # 0 if and
only if Z1 = Z3 = R(n) (the only possible division of R(n) into two equal sets
whose union is R(n)).

Let us make the following definition

DEFINITION 3
For every subset {l1,...,0,} C {1,...,n} we define the set

Bll,...,lp = {(Il, A ,.Z'n) (S R(n) Xy =...=2, = 0},

p

and then we define the set

B:= {Bll,...,lp : {ll, ey lp} C {1, A ,n}}
Notice that for every B € B the set R(n) \ B is a cone over R.

LEMMA 2

If a set O # Z C R(n) is a cone over Q, then there exists a subset {l1,...,1,}
of the set {1,...,n} such that Z C By, ..., and evists T = (T1,...,ZTn) € Z
such that T, > 0 for every k € {1,...,n}\{l1,...,0lp}.

Proof. Let K be the family of all the subsets of the set {1,...,n} which
satisfy the condition

Vk = {k’l, A ,k‘y} cK ZC Bkl,...,k,, .
The set K is non-empty, for Z C R(n) = By, so ) € K. Obviously,
Z C By,

where L = {l,...,l,} = Ukex k-
Take x = (21,...,2n) € Z. Let M = {mq,...,m;} be such a subset of the
set {1,...,n}\ L that

Vie{l,...,t} xpm; =0 and Vse ({1,...,n}\L)\ M z,;>0.

Observe that if the set M # (), since the set Z ¢ B,,,, for every j € {1,...,t}
there exists y™ = (y;",...,yn"~) € Z such that y,,’ > 0. Define
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t

T+ i if M ,

. Zy if M #0
Jj=1

T if M =0,

which finishes the proof.

THEOREM 3
If a system Zu, ..., Zy satisfies conditions (3) and (4) and if there exists such
ke{l,...,m} that Zr = R(n), then Z; € B for every i € {1,...,m}.

Proof. Fix an arbitrary i € {1,...,m} for which Z; # (. Lemma 2 guar-
antees the existence of {l1,...,l,} C {1,...,n} such that Z; C By, . ; and

AT = (T1,...,@Tn) € Zi: YEe{l,....n}\{l,.... L} Tr>0.

Let z = (z1,...,2n) € Biy,..41, -
there exists g € Q, such that

Then, for every k € {1,....,n} \ {l1,..., 0}

Tk > qr2k
and for every j € {l1,...,l,}
SL'j = Zj =0.

Denote
g=min{g; : je{l,....n}\{k,...,L}}.

Then, T —qz € R(n) = Z, gz € R(n) = Zp and T = (T — qz) + ¢z € Z;.
By condition (iv) of Theorem 1 (equivalent to (4) when (3)) is assumed), we

obtain gz € Z;, therefore z € Z;. We have shown that By, . ;, C Z;, and
hence, because Z; C By, ,...;, we obtain
Zi=By,..1,,

which proves the theorem.

REMARK 10
Z. Moszner in [9] (see Theorem 1) proved that every function f = (f1,..., fp):
R(p) — R(p) satisfying condition (1) with n = m = p satisfies the condition

Va,y eR(p): flz+y) = flz) fy), 9)

if and only if there exists k € {1,...,p} for which f; # 0 on R(p), or, when we
use the “language of cones", if there exists k € {1,...,p} such that Z, = R(p).

More exactly, for k =1,...,p let My be subsets of {1,...,p} such that M;
is empty for at least one index j € {1,...,p}. Let
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Zy ={x €eR(p): Vi € My =z =0},

i.e. Z, € B. Finally, let ax : R — R be additive functions. It was shown in
[9], Corollary 2, that all solutions of equation (9) are of the form

_ [exp ar(z) for v € Zy,,
fk(x)_{() for x € R(p) \ Zy .

Thus our Theorem 3 is a natural generalization expressed in the “language of
cones" of Corollary 2 in [9] to the case of functions f:R(n) — R(m) with n
and m possibly distinct.
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