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We consider some functional equations arising from the Cauchy–

Riemann equations, and certain related functional equations. First we
propose a new functional equation (E.1) below, over a 2-divisible Abelian
group, which is a discrete version of the Cauchy-Riemann equations, and
give the general solutions of (E.1). Next we study a functional equa-
tion which is equivalent to (E.1). Further we propose and solve par-
tial difference-differential functional equations and nonsymmetric partial
difference equations which are also arising from the Cauchy–Riemann
equations.

bdcfe gXh\i`j/k/l/m`h\n j/g

Let (G,+) be an additive Abelian group in which it is possible to divide
by 2. Let C be the field of complex numbers. The main aim of this note is to
determine the general solution of the following new functional equation

f(x+ t, y) − f(x− t, y) = −i[f(x, y + t) − f(x, y − t)] (E.1)

for all x, y, t ∈ G, where f :G×G −→ C and i is the imaginary unit.
Let R be the field of real numbers. For a function f : R×R −→ C we define

the divided partial difference operators 4x,t and 4y,t by

(4x,tf)(x, y) =
f(x+ t, y) − f(x, y)

t

and

(4y,tf)(x, y) =
f(x, y + t) − f(x, y)

t
,

respectively. Then the partial difference equation
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4x,tf = − i4y,tf

may be considered as a discrete analogue of the Cauchy–Riemann equation

∂f

∂x
= − i

∂f

∂y
.

This equation may be rewritten in the form

f(x+ t, y) − f(x, y) = − i[f(x, y + t) − f(x, y)] (E.2)

for all x, y, t ∈ R, which has a simple geometric interpretation on the plane.
Equation (E.2) is considered in the papers of J. Aczél and S. Haruki 1981

[3], and S. Haruki 1986 [6]. The authors show, among others, that (E.2) does
not lead essentially beyond a linear function in the case when R is replaced by
an arbitrary monoid M . Further, in the paper of S. Haruki and C.T. Ng 1994
[7] the general solution of (E.2) is obtained in more general algebraic structures
than M and C.

It is natural to ask what happens if, instead of operators 4x,t and 4y,t, we
impose the divided partial mean difference operators 5x,t and 5y,t defined by

(5x,tf)(x, y) =
f(x+ t, y) − f(x− t, y)

2t
and

(5y,tf)(x, y) =
f(x, y + t) − f(x, y − t)

2t
.

In this case we have the partial difference equation

5x,tf = − i5y,t f,

which is also a discrete analogue of the Cauchy–Riemann equation. This leads
to the above functional equation (E.1) which also has a simple geometric in-
terpretation on the plane. As a main result of this note we show that equation
(E.1) for f :G×G −→ C does not lead essentially beyond a quadratic function.

In Section 2 we determine the general and the regular solutions (when G is
replaced by R) of equation (E.1).

We also show in Section 3 that similar results hold for certain related func-
tional equations. In Section 3.1 we consider the functional equation

f(x+ t, y + t) − f(x− t, y − t) = − i[f(x− t, y + t) − f(x+ t, y − t)]. (E.3)

In Section 3.2 we study the partial difference-differential equations

∂f(x, y)

∂x
= − i

[

f(x, y + t) − f(x, y − t)

2t

]

,

f(x+ t, y) − f(x− t, y)

2t
= − i

∂f(x, y)

∂y
.

Finally in Section 3.3 we propose and solve several functional equations of
nonsymmetric type, which are also analogous to the Cauchy–Riemann equation.



~ u�v � z u��X�yz � � �yvS�y�y�Z���y�ywyu`� z �B�y��u�vSz �yz �y}�� vS�B��� �y���yu�wy�Z�y�y� � �Xz �y��u��y���y�ywyu`� z �B�y��os�
� cf�/l/g/m`h\n j/g/�F� �/�/l/��h\n j/g

(E.1)

� c bdcf�"�/�� /�/g/�/i`�F�F¡/j/� lXh\n j/g

A function A1:G −→ C is said to be additive if A1 satisfies

A1(x+ y) = A1(x) + A1(y) for all x, y ∈ G.

A function A2:G×G −→ C is said to be bi-additive if A2 satisfies both equations

A2(x+ y, z) = A2(x, z) +A2(y, z)

and

A2(x, y + z) = A2(x, y) +A2(x, z)

for all x, y, z ∈ G. A function A2:G −→ C is the diagonalization of the A2 if

A2(x) = A2(x, x),

whenever A2:G×G −→ C is symmetric and additive in each argument.
Our main result of this note is as follows.

Theorem 2.1
A function f :G × G −→ C satisfies equation (E.1) for all x, y, z ∈ G if and
only if there exist

(i) a complex constant A0,

(ii) an additive function A1:G −→ C,

(iii) a symmetric bi-additive function A2:G×G −→ C

such that

f(x, y) = A0 +A1(x) + iA1(y) +A2(x) −A2(y) + 2iA2(x, y) (S.1)

for all x, y ∈ G, where A2:G −→ C is the diagonalization of A2 .

We impose the following notations. Define the shift operators X t and Y t

by

(Xtf)(x, y) = f(x+ t, y) and (Y tf)(x, y) = f(x, y+ t) for all x, y, t ∈ G.

In particular 1 = X0 = Y 0 denote the identity operator. Further, define the
partial mean difference operators δx,t and δy,t by

δx,t = Xt −X−t and δy,t = Y t − Y −t for all x, y, t ∈ G.

Notice that the ring of operators generated by this family of operators is com-
mutative and distributive.

In order to prove Theorem 2.1 we need the following two lemmas. One of
them is:
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Lemma 2.1
If a function f :G×G −→ C satisfies equation (E.1) for all x, y, t ∈ G, then f

also satisfies each one of the following three functional equations

(δ3x,tf)(x, y) = 0 and (δ3y,tf)(x, y) = 0 (2.1)

((δ2x,t + δ2y,t)f)(x, y) = 0 (2.2)

or as the expanded form (2t replaced by t)

f(x+ t, y) + f(x− t, y) + f(x, y + t) + f(x, y − t) = 4f(x, y) (2.3)

for all x, y ∈ G.

The above Lemma 2.1 shows that equation (E.1) yields equation (2.3). On
the other hand, J. Aczél, H. Haruki, M.A. McKiernan and G.N. Sakovic̆ 1968
[2, p. 43, Lemma 3] proved that equation (2.3) is equivalent to the Haruki
functional equation (M.A. McKiernan [11], H. Światak [13], among others)

f(x+ t, y+ t)+f(x+ t, y− t)+f(x− t, y+ t)+f(x− t, y− t) = 4f(x, y). (2.4)

Hence, if we directly apply a general theorem of M.A. McKiernan 1970 [12,
p.32, Theorem 2] to equation (2.4), then we obtain

(δk
x,tf)(x, y) = 0 and (δk

y,tf)(x, y) = 0 (2.5)

with k = 11. On the other hand, it is also known, cf. [2, p. 43, Lemma 3],
that if an arbitrary f satisfies (2.4), then f also satisfies difference equations
(2.5) for k = 4. However, equations (2.1), that is, (2.5) serve as a better tool
to prove the ‘only if ’ part of Theorem 2.1, since if k > 3 in (2.5), then the
solution of (2.1) contains more symmetric multiadditive functions of higher
order (cf. S. Mazur and W. Orlicz 1934 [9], and M.A. McKiernan 1967 [10],
among others).

The other is a lemma which is a particular case of Lemma 6 in [2, p. 49-50].
We note that if we replace f : R × R −→ R by f :G × G −→ C in Lemma 6
of [2], then it follows from a general theorem of S. Mazur and W. Orlicz [9]
that the result of Lemma 6 in [2] still holds for the case δx,t = Xt −X−t and

δy,t = Y t − Y −t instead of ∆x,t = X
t

2 −X−
t

2 and ∆y,t = Y
t

2 − Y −
t

2 defined
in [2, p. 43].

Lemma 2.2
A function f :G × G −→ C satisfies both equations (2.1) for all x, y, t ∈ G if
and only if f is given by

f(x, y) = A0 +A1(x) +A2(x) +B1(y) +B2(y)

+A1,1(x; y) +A2,1(x; y) +A1,2(x; y) +A2,2(x; y)
(2.6)
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for all x, y ∈ G, where A0, A1, A2:G −→ C are defined in Theorem 2.1,
B1:G −→ C is an additive function, and B2:G −→ C is the diagonalization of
a symmetric bi-additive function. Further, the functions A1,1, A2,1, A1,2, A2,2:
G×G −→ C are defined as follows:

A1,1(x; y) = A1,1(x; y), A2,1(x; y) = A2,1(x, x; y),

A1,2(x; y) = A1,2(x; y, y), A2,2(x; y) = A2,2(x, x; y, y),

where Ai,j , i, j = 1, 2 are additive functions in each of their variables.

By Lemma 6 in [2, p. 49-50] we have

f(x, y) =

2
∑

n,m=0

An,m(x; y),

that is, f(x, y) is a generalized quadratic polynomial in x and y and can be
written as expression (2.6).

Proof of Lemma 2.1. We multiply (E.1) by i and then write equation (E.1)
in the operator form

[(iXt − iX−t)f ](x, y) = [(Y t − Y −t)f ](x, y)

which may be written briefly as

iXt − iX−t = Y t − Y −t (2.7)

for f . We will omit the f whenever no confusion can rise. Now, cube the
operators on both sides of (2.7) to obtain

−iX3t + 3iXt − 3iX−t + iX−3t = Y 3t − 3Y t + 3Y −t − Y −3t. (2.8)

By multiplying (2.7) by 3

3iXt − 3iX−t = 3Y t − 3Y −t, (2.9)

while by multiplying the both sides by −1 and by replacing t by 3t in (2.7) we
have

−iX3t + iX−3t = − Y 3t + Y −3t. (2.10)

If we substitute (2.9) and (2.10) in (2.8) in order to eliminate the operators
3iXt, −3X−t, −X3t, and iX−3t from (2.8), then

Y 3t − 3Y t = Y −3t − 3Y −t, and (Y t − Y −t)3 = 0, (2.11)

which is the second equation of (2.1).
Similarly, substitute (2.9) and (2.10) in (2.8) to eliminate the operators Y 3t,

−3Y t, 3Y −t, and −Y −3t from (2.8). Then we obtain the first equation of (2.1).
Next, square both sides of (2.7) to obtain (2.2), while replace 2t by t in

(2.2) to obtain (2.3). This completes the proof of Lemma 2.1.
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Proof of Theorem 2.1. Since f satisfies (2.1), by Lemma 2.2 f is given by
(2.6). If we substitute (2.6) into equation (2.3), then

A2(t, t) +A2,1(t, t; y) +B2(t; t) +A1,2(x; t, t)

+ A2,2(x, x; t, t) +A2,2(t, t; y, y)

= 0.

(2.12)

Set x = y = 0 in (2.12) to obtain

B2(t) = −A2(t), (2.13)

which, with (2.12), implies

A2,1(t, t; y) +A1,2(x; t, t) +A2,2(x, x; t, t) +A2,2(t, t; y, y) = 0. (2.14)

Further, set x = 0, y = 0, respectively, in (2.14). Then we have

A2,1(t; y) +A2,2(t; y) = 0 and A1,2(x; t) +A2,2(x; t) = 0

for all x, y, t ∈ G, which show that

A2,1(x; y) +A2,2(x; y) = 0 (2.15)

and

A1,2(x; y) +A2,2(x; y) = 0 (2.16)

for all x, y ∈ G. Subtract (2.16) from (2.15) to obtain

A2,1(x; y) −A1,2(x; y) = 0. (2.17)

Thus it follows from (2.6), (2.13), and (2.15) that

f(x, y) = A0 +A1(x)+A2(x)+B1(y)−A2(y)+A1,1(x; y)+A1,2(x; y). (2.18)

Next, substitute (2.18) into equation (2.7), that is,

i[f(x+ t, y) − f(x− t, y)] = f(x, y + t) − f(x, y − t)],

to obtain

iA1(t) + 2iA2(x, t) + iA1,1(t, y) + iA1,2(t; y, y)

= B1(t) +A1,1(x, t) − 2A2(y, t) + 2A1,2(x; y, t).
(2.19)

Set x = 0, y = 0, and x = y = 0, respectively in (2.19). Then we have the
following three equations

iA1(t) + iA1,1(t, y) + iA1,2(t; y, y) = B1(t) − 2A2(y, t) (2.20)

iA1(t) + 2iA2(x, t) = B1(t) +A1,1(x, t) (2.21)

iA1(t) = B1(t). (2.22)
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Equations (2.20) and (2.22) yield

iA1,1(t; y) + iA1,2(t; y, y) = − 2A2(y, t)

which can be rewritten in the form

iA1,1(x, y) + iA1,2(x; y, y) = − 2A2(y, x) (2.23)

while (2.21) and (2.22) imply 2iA2(x, t) = A1,1(x, t) and

2iA2(x, y) = A1,1(x; y). (2.24)

Further, it follows from (2.24) and (2.23) that −2A2(x, y) + iA1,2(x; y, y) =
−2A2(y, x), and, since A2 is symmetric,

A1,2(x; y) = 0. (2.25)

Thus equation (2.18) with (2.22), (2.24) and (2.25) implies (S.1) for all x, y ∈ G.
Conversely, (S.1) satisfies equation (E.1). This completes the proof of The-

orem 2.1.

� c � c¨§ �/ /l/� �Fi�¡/j/� lXh\n j/g/¡

In addition, as soon as some suitable regularity assumptions are imposed
on f for the case G = R in the above Theorem 2.1, it can be readily shown
by the following lemma that f is an ordinary complex polynomial of degree at
most two. The following lemma is a consequence of Theorem 2.1.

Lemma 2.3
Let (F,+) be an additive group. If f :F × F −→ C is given by (S.1) for all
x, y ∈ F , then all functions A1, A2:F −→ C and A2:F × F −→ C can be
represented in terms of f and a constant A0 by

A1(x) =
f(x, y) − f(−x,−y) − f(−x, y) + f(x,−y)

4
, (2.26)

A1(y) =
f(x, y) − f(−x,−y) + f(−x, y) − f(x,−y)

4i
, (2.27)

A2(x, y) =
f(x, y) + f(−x,−y) − f(−x, y) − f(x,−y)

8i
, (2.28)

A2(x) = f(x, 0) −A0 −
f(x, y) − f(−x,−y)− f(−x, y) + f(x,−y)

4
, (2.29)

A2(y) = − f(0, y) +A0 +
f(x, y) − f(−x,−y) + f(−x, y) − f(x,−y)

4
(2.30)

for all x, y ∈ F .
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Proof. It follows from

f(x, y) = A0 +A1(x) + iA1(y) +A2(x) −A2(y) + 2iA2(x, y) (S.1)

that

f(−x,−y) = A0 −A1(x) − iA1(y) +A2(x) −A2(y) + 2iA2(x, y), (2.31)

f(−x, y) = A0 −A1(x) + iA1(y) +A2(x) −A2(y) − 2iA2(x, y), (2.32)

f(x,−y) = A0 +A1(x) − iA1(y) +A2(x) −A2(y) − 2iA2(x, y). (2.33)

Subtract (2.31) from (S.1) and (2.33) from (2.32), respectively, to obtain

f(x, y) − f(−x,−y) = 2A1(x) + 2iA1(y), (2.34)

f(−x, y) − f(x,−y) = − 2A1(x) + 2iA1(y). (2.35)

Add (2.34) and (2.35) to obtain (2.27). Subtract (2.35) from (2.34) to obtain
(2.26). Next by adding (S.1) and (2.31) we have

f(x, y) + f(−x,−y) = 2A0 + 2A2(x) − 2A2(y) + 4iA2(x, y). (2.36)

Further, add (2.32) and (2.33) to obtain

f(−x, y) + f(x,−y) = 2A0 + 2A2(x) − 2A2(y) − 4iA2(x, y). (2.37)

If we subtract (2.37) from (2.36), then we have (2.28). By setting y = 0 in
(S.1) and then by using (2.26) we have (2.29). Set x = 0 in (S.1) and then use
(2.27) to obtain (2.30). This completes the proof of Lemma 2.3.

If we assume that, for example, f : R × R −→ C is continuous everywhere,
then by applying the above Lemma 2.3 we have the following result.

Theorem 2.2
A continuous function f : R × R −→ C satisfies (E.1) for all x, y, t ∈ R if and
only if f is given by

f(x, y) = a(x2 − y2 + 2ixy) + b(x+ iy) + c (2.38)

for all x, y ∈ R, where a, b, and c are complex constants.

Proof. Lemma 2.3 clearly holds for the case F = R. If f is continuous
everywhere, then it readily follows from (2.26) and (2.28) of Lemma 2.3 that
A1(x) and A2(x, y) are also continuous for all x, y ∈ R. It is well-known that a
continuous additive function A1(x): R −→ C is given by A1(x) = bx [1, p. 36]
for all x ∈ R, where b is a complex constant. It readily follows from this result
that a continuous symmetric bi-additive function A2: R × R −→ C is given
by A2(x, y) = axy for all x, y ∈ R, where a is a complex constant. Hence,
(2.38) follows from (S.1) with A0 = c. Conversely, (2.38) satisfies (E.1). This
completes the proof of Theorem 2.2.
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Equation (E.1) can also be rewritten in the complex form

f(z + t) − f(z − t) = − i[f(z + it) − f(z − it)] (2.39)

for all z ∈ C and t ∈ R, where f(z) := f(x, y) for all x, y ∈ R and f : C −→ C.
In this case the continuous solution (2.38) is given by a complex polynomial of
degree at most two such that

f(z) = az2 + bz + c

for all z ∈ C.

ª/cf«/�/iSh\�Fn g�i`�/� ��h\�/k­¬\l/g/m`h\n j/g/�F� �/�/l/��h\n j/g/¡
ª/c bdcf®/�/l/��h\n j/g/¡

(E.3)
�Fg/k�n h\¡°¯±�Fi`n ��h\n j/g/¡

Here we mainly consider the functional equation

f(x+ t, y + t) − f(x− t, y − t) = − i[f(x− t, y + t) − f(x+ t, y − t)] (E.3)

for all x, y, t ∈ G, where f :G×G −→ C, and determine the general and regular
solutions of (E.3).

One of applications of functional equations is that to a geometric charac-
terization of complex polynomials from the standpoint of conformal mapping
properties. In particular, H. Haruki 1971 [4] obtains the functional equation

f(z + te
πi

4 ) − f(z − te
πi

4 ) = i[f(z + te−
πi

4 ) − f(z − te−
πi

4 )] (3.1)

for all z ∈ C and t ∈ R, where f : C −→ C, from two geometric properties
on f . Equation (3.1) yields (E.3) for all x, y, t ∈ R, where f(x, y) := f(z)
for z = x + iy and f : R × R −→ C. The continuous solution f : C −→ C of
equation (3.1) is obtained in [4] by using the regularity of solutions of Haruki’s
functional equation (2.4). We note that the continuity assumption in order to
consider equation (3.1) is natural from the point of view of geometric properties
of f yielding (3.1) in [4]. Further, it is possible to obtain the general solution
of equations (E.3) and (3.1) for f : R × R −→ C and f : C −→ C when no
regularity assumptions are imposed on f , since it is shown in [4] that (3.1)
implies (2.4), and the general solution of (2.4) is obtained in [2, p. 50-51,
Theorem 5]. However, in this section we first show that equation (E.3) is
equivalent to (E.1) when no regularity assumptions are imposed on f so that
by Theorem 2.1 in §2.1 we immediately obtain the general solution of equation
(E.3) under no regularity assumptions on f . We emphasize that we do not
apply the general solution of equation (2.4). We will be able to generalize our
results from R to G.
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Theorem 3.1
The function f :G×G −→ C satisfies equation (E.1) for all x, y, t ∈ G, if and
only if it satisfies equation (E.3) for all x, y, t ∈ G.

Proof. As before equation (E.1) can be rewritten in the simple operator
form

Xt −X−t + iY t − iY −t = 0 or iXt − iX−t − Y t + Y −t = 0. (3.2)

Multiply the second equation of (3.2) by the operator (1− i)(X t +X−t +Y t +
Y −t) to obtain

2(iXtY t − iX−tY −t −X−tY t +XtY −t)

+ (X2t −X−2t + iY 2t − iY −2t)

+ (iX2t − iX−2t − Y 2t + Y −2t)

= 0.

By replacing t by 2t in (3.2) we have

X2t −X−2t + iY 2t − iY −2t = 0 or iX2t − iX−2t − Y 2t + Y −2t = 0.

Hence, it follows from these operator equations that

iXtY t − iX−tY −t −X−tY t +XtY −t = 0 (3.3)

and

iXtY t − iX−tY −t = X−tY t −XtY −t.

Further, multiply the both sides of this equation by −i to obtain

XtY t −X−tY −t = − i(X−tY t −XtY −t) (3.4)

which is the operator form of equation (E.3). Thus equation (E.1) implies
(E.3).

Conversely, multiply (3.4) by i to obtain equation (3.3). Next, by multi-
plying (3.3) by the operator (1 + i)(X tY t + X−tY −t + X−tY t + XtY −t) we
have

(iX2tY 2t − iX−2tY −2t −X−2tY 2t +X2tY −2t)

+ (−X2tY 2t +X−2tY −2t − iX−2tY 2t + iX2tY −2t)

+ 2(iX2t − iX−2t − Y 2t + Y −2t)

= 0.

It follows from (3.3) and (3.4) that

iX2tY 2t − iX−2tY −2t −X−2tY 2t +X2tY −2t = 0
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and

−X2tY 2t +X−2tY −2t − iX−2tY 2t + iX2tY −2t = 0.

Therefore we obtain

iX2t − iX−2t = Y 2t − Y −2t. (3.5)

If we multiply both sides of (3.5) by −i and replace 2t by t, then we obtain
equation (E.1). Hence, equation (E.3) implies equation (E.1). Therefore (E.1)
and (E.3) are equivalent.

The following result is an immediate consequence of Theorems 2.1 and 3.1.

Corollary 3.1
A function f :G × G −→ C satisfies equation (E.3) for all x, y, t ∈ G if and
only if f is given by expression (S.1) for all x, y ∈ G.

We also readily obtain from Theorems 3.1 and 2.2 in the case of G = R

that a continuous function f : R × R −→ C satisfies (E.3) for all x, y, t ∈ R if
and only if f is given by (2.38) for all x, y ∈ R.

H. Haruki in [4, p. 37] proved the following theorem on regular solutions of
functional equation (2.4).

Theorem 3.2
A continuous function f : C −→ C satisfies equation (3.1) for all z ∈ C and
t ∈ R if and only if f is given by a quadratic polynomial of z.

The following proof of Theorem 3.2 is an alternative one, without applying
a regularity of functional equation (2.4).

Proof. Equation (3.1) yields the functional equation

f(z + t+ it) − f(z − t− it) = − i[f(z − t+ it) − f(z + t− it)] (3.6)

for all z ∈ C and t ∈ R. Define f(z) = f(x, y) for z = x + iy. Then equation
(3.6) implies equation (E.3). Hence, by Theorem 2.2 and Theorem 3.1 f is a
quadratic polynomial. Conversely, a quadratic polynomial satisfies (3.6). This
proves Theorem 3.2.

Theorem 3.3
Assume that f :G × G −→ C satisfies one of the following three functional
equations

f(x+ t, y) − f(x− t, y) = − i[f(x, y + t) − f(x, y − t)] (E.36)

f(x+ t, y) − f(x, y) = − i[f(x, y + t) − f(x, y)] (E.37)

f(x+ t, y + t) − f(x− t, y − t) = − i[f(x− t, y + t) − f(x+ t, y − t)] (E.38)
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for all x, y, t ∈ G. Then f also satisfies the Haruki functional equation

f(x+ t, y+ t)+f(x− t, y+ t)+f(x+ t, y− t)+f(x− t, y− t) = 4f(x, y) (2.4)

for all x, y, t ∈ G.

Proof. Replace t by −t in (E.2) and then substract the result from (E.2)
to obtain equation (E.1). Theorem 3.1 shows that (E.1) is equivalent to (E.3).
By Lemma 2.1, (E.1) implies (2.3) which is equivalent to (2.4) ([2, Lemma 3,
p. 43]). We note that if we replace R by G in Lemma 3 of [2, p. 43], then the
proof of equivalency of (2.3) and (2.4) still holds.

ª/c � cf´"n ¬ ¬\�/i`�/gXh\n �F� µ\k/n ¬ ¬\�/i`�/g/mX�°�/�/l/��h\n j/g/¡

If one side of the Cauchy–Riemann equation ∂f
∂x

= −i∂f
∂y

is replaced by the
operators 5x,tf or 5y,tf defined in §1, then we have the following two partial
difference-differential equations

∂f(x, y)

∂x
= − i

[

f(x, y + t) − f(x, y − t)

2t

]

(3.7)

f(x+ t, y) − f(x− t, y)

2t
= − i

∂f(x, y)

∂y
. (3.8)

We determine the general solutions of equations (3.7) and (3.8).

Theorem 3.4
A function f : R×R −→ C satisfies equation (3.7) for all x, y ∈ R and t ∈ R\{0}
if and only if f is given by

f(x, y) =
1

2
a(y2 − x2 − 2ixy) + b(y − ix) + c, (3.9)

where a, b, and c are complex constants.

Proof. We replace (3.7) by

f(x, y + t) − f(x, y − t)

2t
= φ(x, y), (3.10)

where φ(x, y) := i
∂f(x,y)

∂x
, or, since x is the same parameter in each term of

(3.10), by

g(y + t) − g(y − t)

2t
= ψ(y). (3.11)
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It follows from [5, p. 577] that the general solution of (3.11) is given by

ψ(y) = αy + β, g(y) =
1

2
αy2 + βy + γ,

where α, β, and γ are complex constants. Hence, φ and f are represented by

φ(x, y) = i
∂f(x, y)

∂x
= α(x)y + β(x), (3.12)

f(x, y) =
1

2
α(x)y2 + β(x)y + γ(x), (3.13)

where α, β, γ: R −→ C. Now, substitute (3.13) into (3.12) to obtain

i

[

1

2
α′(x)y2 + β′(x)y + γ′(x)

]

= α(x)y + β(x).

Therefore α′(x) = 0, iβ′(x) = α(x), and

β(x) = γ′(x)i. (3.14)

Consequently, α(x) = a, where a is a complex constant, β ′(x) = −ai. Therefore
β(x) = −axi + b, which with (3.14) implies γ ′(x) = −ax − bi and γ(x) =
− 1

2ax
2 − bxi+ c, where b and c are complex constants. These α(x), β(x), and

γ(x) with (3.13) yield (3.9). Conversely, (3.9) satisfies differential functional
equation (3.7). This completes the proof of Theorem 3.4.

In view of the similarity of equations (3.7) and (3.8) the following theorem
readily follows from a proof similar to the above proof of Theorem 3.4.

Theorem 3.5
A function f : R×R −→ C satisfies equation (3.8) for all x, y ∈ R and t ∈ R\{0}
if and only if f is given by

f(x, y) =
1

2
a(x2 − y2 + 2ixy) + b(x+ iy) + c,

where a, b, and c are complex constants.

ª/c ª/c·¶"j/g/¡/¸/¹º¹º�Xh\i`n m.»/�FiSh\n �F� k/n ¬ ¬\�/i`�/g/mX���/�/l/��h\n j/g/¡

In Sections 2 and 3.1, as well as in the papers [3], [6], [7] as a discrete ana-
logue of the Cauchy–Riemann equation ∂f

∂x
= −i∂f

∂y
, the symmetric equations

4x,tf = − i4y,t f and 5x,t f = − i5y,t f

were considered, and the general solution of functional equations (E.1) and
(E.2) was determined when no regularity assumptions are imposed on f .
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In this final subsection, we determine the general solutions of the following
two nonsymmetric partial difference equations which are also discrete analogue
of the Cauchy–Riemann equations:

4x,tf = − i4y,s f and 5x,t f = − i5y,s f.

These equations are given by

f(x+ t, y) − f(x, y)

t
= − i

[

f(x, y + s) − f(x, y)

s

]

(3.15)

f(x+ t, y) − f(x− t, y)

2t
= − i

[

f(x, y + s) − f(x, y − s)

2s

]

(3.16)

for all x, y ∈ R and s, t ∈ R\{0}. By applying the general solutions of functional
equations (E.1) and (E.2) we obtain the general solutions of nonsymmetric
functional equations (3.15) and (3.16) under no regularity assumptions.

As a closely related to (E.3) we can also derive the following functional
equation, and we obtain its general solution without any regularity assumptions
as well:

f(x+ t, y + t) − f(x− t, y − t)

t

= − i

[

f(x− s, y + s) − f(x+ s, y − s)

s

] (3.17)

for all x, y ∈ R and s, t ∈ R \ {0}.

Theorem 3.6
A function f : R × R −→ C satisfies equation (3.15) for all x, y ∈ R and s, t ∈
R \ {0} if and only if f is given by

f(x, y) = a(x+ iy) + b (3.18)

for all x, y ∈ R, where a and b are complex constants.

Proof. Set t = s in (3.15) to obtain equation (E.2). From [3, Theorem 2,
p. 99] it is known that the general solution of (E.2) is given by

f(x, y) = A(x) + iA(y) + b, (3.19)

where A: R −→ C is additive and b is a complex constant. Substitute (3.19) into

(3.15). Then we have A(t)
t

= A(s)
s

which implies A(t) = at for fixed s = s0 6= 0

where a = A(s0)
s0

is a complex constant. Hence, we obtain (3.18) from (3.19).
Conversely, (3.18) satisfies equation (3.15).
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Theorem 3.7
A function f : R × R −→ C satisfies equation (3.16) for all x, y ∈ R and s, t ∈
R \ {0} if and only if f is given by (2.38) for all x, y ∈ R, where a, b, and c are
complex constants.

Proof. Set t = s in equation (3.16) to obtain equation (E.1). Hence, it
follows from Theorem 2.1 that f is given by (S.1). Substitute (S.1) into equation
(3.16) to obtain

2A1(t) + 4A2(x, t) + 4iA2(t, y)

2t

= −
[2iA1(s) − 4A2(y, s) + 4iA2(x, s)]i

2s
.

(3.20)

Now, set x = y = 0 in (3.20). Then we have A1(t)
t

= A1(s)
s

, since A2(0, t) =
A2(t, 0) = 0, which implies

A1(t) = bt (3.21)

where b = A1(s0)
s0

, s0 6= 0, is a complex constant. Next, by setting y = 0 and

t = 1 in (3.20) with (3.21) we obtain A2(x, s) = sA2(x, 1) = sA(x), where
A(x) := A2(x, 1) is additive for all x ∈ R. But A2 is symmetric. Hence, we

obtain sA(x) = xA(s) and A(x) = ax where a = A(s0)
s0

, s0 6= 0, is a complex
constant. Hence, we obtain

A2(x, y) = axy. (3.22)

Then it follows from (3.21), (3,22), and (S.1) with A0 = c that f is given by
(2.38). Conversely, (2.38) satisfies equation (3.16).

Theorem 3.8
A function f : R × R −→ C satisfies equation (3.17) for all x, y ∈ R and s, t ∈
R \ {0} if and only if f is given by (2.38) for all x, y ∈ R, where a, b, and c are
complex constants.

Proof. Set t = s in equation (3.17). Then we have equation (E.3). Hence,
by Corollary 3.1, f is given by (S.1). Substitute (S.1) in equation (3.17). Then
we have

A1(t) + iA1(t) + 2A2(x, t) − 2A2(t, y) + 2iA2(t, y) + 2iA2(x, t)

t

=
iA1(s) +A1(s) + 2iA2(s, x) + 2iA2(s, y) + 2A2(x, s) − 2A2(s, y)

s
.

(3.23)

Next, set x = y = 0 in (3.23) to obtain

A1(t) + iA1(t)

t
=
iA1(s) +A1(s)

s
, (3.24)
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since A2(0, x) = A2(x, 0) = 0 for all x ∈ R. So, it follows from (3.23) and (3.24)
that

A2(x, t) −A2(y, t) + iA2(x, t) + iA2(y, t)

t

=
iA2(x, s) + iA2(y, s) +A2(x, s) −A2(y, s)

s
.

(3.25)

Further, on putting x = 0 and y = 0 in (3.25) independently, we have the
following two equations

−A2(y, t) + iA2(y, t)

t
=
iA2(y, s) −A2(y, s)

s
(3.26)

A2(x, t) + iA2(x, t)

t
=
iA2(x, s) +A2(x, s)

s
. (3.27)

Replace x by y in (3.27) to obtain

A2(y, t) + iA2(y, t)

t
=
iA2(y, s) +A2(y, s)

s
. (3.28)

Add both sides of (3.26) and (3.28) to obtain A2(y,t)
t

= A2(y,s)
s

, which yields

A2(y, t) = tA(y), where A(y) = A2(y,s0)
s0

for fixed s = s0 6= 0 is additive, and
A2(x, y) = xA(y). Since A2 is symmetric, as before,

A2(x, y) = axy (3.29)

where a is a complex constant. On the other hand, (3.24) implies A1(t)
t

= A1(s)
s

.
Hence

A1(t) = bt (3.30)

where b = A1(s0)
s0

, s0 6= 0, is a complex constant. Hence, it follows from (3.29),

(3.30), and (S.1) with A0 = c that f is given by (2.38). Conversely, (2.38)
satisfies (3.17). This completes the proof of Theorem 3.8.

Functional equations (3.15), (3.16), and (3.17) can also be rewritten in the
complex forms

f(z + t) − f(z)

t
= − i

[

f(z + is) − f(z)

s

]

(3.31)

f(z + t) − f(z − t)

2t
= − i

[

f(z + is) − f(z − is)

2s

]

(3.32)

f(z + t+ it) − f(z − t− it)

t
= − i

[

f(z − s+ is) − f(z + s− is)

s

]

(3.33)
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for all z ∈ C and s, t ∈ R \ {0}, where f(z) := f(x, y) for all x, y ∈ R and
f : C −→ C. In this case, it follows from Theorem 3.6 and (3.18) that the
general solution of (3.31) is given by f(z) = az + b. On the other hand, by
Theorems 3.7 and 3.8 and (2.38) the general solution of (3.32) and (3.33) are
given by f(z) = az2 + bz + c. Thus, it is remarkable that the only solutions
of the above three functional equations are certain complex polynomials of
bounded degree when no regularity assumptions are imposed on f .
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