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Approximate multi-Jensen-cubic mappings
and a fixed point theorem

Abstract. In this paper, we introduce multi-Jensen-cubic mappings and unify
the system of functional equations defining the multi-Jensen-cubic mapping
to a single equation. Applying a fixed point theorem, we establish the gen-
eralized Hyers-Ulam stability of multi-Jensen-cubic mappings. As a known
outcome, we show that every approximate multi-Jensen-cubic mapping can
be multi-Jensen-cubic.

1. Introduction

The study of stability problems for functional equations is related to a question
of Ulam [38] concerning the stability of group homomorphisms and affirmatively
answered for Banach spaces by Hyers [22]. Later, the result of Hyers was signif-
icantly generalized by Aoki [1], Th. M. Rassias [36] (stability incorporated with
sum of powers of norms), Găvruţa [21] (stability controlled by a general control
function) and [35] (stability including mixed product-sum of powers of norms).
Over the past few decades, many authors have published the generalized Hyers-
Ulam stability theorems of various functional equations. One of them is the Jensen
functional equation. Recall that the stability of the Jensen functional equation

J
(x+ y

2

)
= J(x) + J(y)

2

has been studied by a number of authors; see [29], [25] and [27] for more details.
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Let V be a commutative group, W be a linear space, and n ≥ 2 be an integer.
Recall from [20] that a mapping f : V n →W is called multi-additive if it is additive
(satisfies Cauchy’s functional equation A(x+ y) = A(x) + A(y)) in each variable.
Some facts on such mappings can be found in [28] and many other sources. In [20],
Ciepliński studied the generalized Hyers-Ulam stability of multi-additive mappings
in Banach spaces. For the miscellaneous forms of multi-quadratic mappings, their
characterizations and stability, we refer to [17], [37] and [40]. Prager and Schwaiger
[33] introduced the notion of multi-Jensen mappings f : V n → W (V and W
being vector spaces over the set of all rational numbers) with the connection with
generalized polynomials and obtained their general form. The aim of this note was
to study the stability of the multi-Jensen equation. Next, the stability of multi-
Jensen mappings in various normed spaces have been investigated by a number of
mathematicians (see [18], [19], [34] and [39]).

The story of stability of cubic functional equation commences by introducing
the cubic functional equation

f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y) = 6f(y) (1.1)

by J. M. Rassias in [35]. He found the solution of (1.1) and investigated the Hyers-
Ulam stability problem for these cubic mappings. The following alternative cubic
functional equations have been introduced by Jun and Kim in [23, 24].

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x), (1.2)

f(x+ 2y) + f(x− 2y) = 4f(x+ y) + 4f(x− y)− 6f(x). (1.3)
They studied the Hyers-Ulam stability problem for (1.2) and (1.3) in [24] and [23],
respectively; for other forms of the (generalized) cubic functional equations and
their stabilities on the various Banach spaces refer to [5], [6], [7] and [8].

It is worth mentioning that the fixed point theorems have been considered
for various mappings and functional equations in [2], [3], [12], [16], [26] and [31].
Similar investigations have been carried out in the stability of linear recurrence;
see [14], [15], and [32]. Moreover, the fixed point theorem were applied to obtain
similar stability results in [11].

Recently, motivated by the cubic functional equations (1.2) and

8f
(x+ 2y

2

)
+ 8f

(x− 2y
2

)
= 4f(x+ y) + 4f(x− y)− 6f(x) (1.4)

some multi-cubic mappings are introduced in [10] and [30]. Furthermore, the
stability of multi-cubic and multi-quartic mappings in Banach spaces via the fixed
point method are investigated in [9] and [10], respectively.

In this paper, we define the multi-Jensen-cubic mappings which are Jensen in
each of some k variables and are cubic in sense of satisfies equation (1.4) in each
of the other variables and then we present a characterization of such mappings. In
other words, we reduce the system of n equations defining the multi-Jensen-cubic
mappings to obtain a single functional equation. We also prove the generalized
Hyers-Ulam stability for the multi-Jensen-cubic mappings by using the fixed point
method. Finally, we indicate some direct consequences of stability and hypersta-
bility of multi-Jensen-cubic mappings in Banach spaces.



Approximate multi-Jensen-cubic mappings [143]

2. Characterization of multi-Jensen-cubic mappings

Throughout this paper, N stands for the set of all positive integers, N0 :=
N ∪ {0}, R+ := [0,∞). Moreover, for the set X, we denote

Xn := X ×X × · · · ×X︸ ︷︷ ︸
n−times

.

For any l ∈ N0, n ∈ N, t = (t1, . . . , tn) ∈ {−2, 2}n and x = (x1, . . . , xn) ∈ V n we
write lx := (lx1, . . . , lxn) and tx := (t1x1, . . . , tnxn), where lx stands, as usual, for
the scaler product of l on x in the linear space V .

Let V andW be linear spaces, n ∈ N and k ∈ {0, . . . , n}. A mapping f : V n →
W is called k-Jensen and n−k-cubic (briefly, multi-Jensen-cubic) if f is Jensen in
each of some k variables and is cubic in each of the other variables (see equation
(1.4)). In this note, we suppose for simplicity that f is Jensen in each of the
first k variables, but one can obtain analogous results without this assumption.
Let us note that for k = n (k = 0), the above definition leads to the so-called
multi-Jensen (multi-cubic) mappings; some basic facts on Jensen mappings can be
found for instance in [33].

From now on, we assume that V and W are vector spaces over the set of all
rational numbers. Moreover, we identify x = (x1, . . . , xn) ∈ V n with (xk, xn−k) ∈
V k × V n−k, where xk := (x1, . . . , xk) and xn−k := (xk+1, · · · , xn), and we adopt
the convention that (xn, x0) := xn := (x0, xn). Put xki = (xi1, . . . , xik) ∈ V k and
xn−ki = (xi,k+1, . . . , xin) ∈ V n−k where i ∈ {1, 2}. We shall denote xni by xi if
there is no risk of ambiguity. In addition, we put

M = {Nn = (Nk+1, · · · , Nn) : Nj ∈ {x1j ± x2j , x1j}},

where j ∈ {k + 1, . . . , n}. Consider

Mn−k
T := {Nn = (Nk+1, . . . , Nn) ∈M : Card{Nj : Nj = x1j} = T}.

We also use the following notations

f(Mn−k
T ) :=

∑
Nn∈Mn−k

T

f(Nn),

f(xki ,Mn−k
T ) :=

∑
Nn∈Mn−k

T

f(xki ,Nn) for i ∈ {1, 2}.

We say the mapping f : V n → W satisfies the r-power condition in the jth
variable if for all (z1, . . . , zn) ∈ V n,

f(z1, . . . , zj−1, 2zj , zj+1, . . . , zn) = 2rf(z1, . . . , zj−1, zj , zj+1, . . . , zn).

Example 2.1
[30] Let (A, ‖·‖) be a Banach algebra. Fix the vector a0 in A (not necessarily unit).
Define a mapping h : An → A by h(a1, . . . , an) =

∏n
j=1 ‖aj‖3a0 for (a1, . . . , an) ∈

An. It is easily verified that the mapping h satisfies 3-power condition in all
variables but h is not multi-cubic even for n = 1, that is h does not satisfy in the
equation (1.4).
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In this paper, we use
(
n
k

)
which is the binomial coefficient defined for all n, k ∈

N0 with n ≥ k by n!/(k!(n− k)!).
In this section, we wish to show that the mapping f : V n →W is multi-Jensen-

cubic if and only if it satisfies the following equation

23n−2k
∑

q∈{−2,2}n−k

f
(xk1 + xk2

2 ,
xn−k1 + qxn−k2

2

)

=
∑

l1,...,lk∈{1,2}

n−k∑
m=0

4n−k−m(−6)mf(xl11, · · · , xlkk,Mn−k
m )

(2.1)

for all xki = (xi1, . . . , xik) ∈ V k and xn−ki = (xi,k+1 . . . , xin) ∈ V n−k, where
i ∈ {1, 2}.

Here, we reduce the system of n equations defining the multi-Jensen-cubic
mapping to obtain a single functional equation.

Theorem 2.2
Let n ∈ N and k ∈ {0, · · · , n}. Then, the mapping f : V n → W is multi-Jensen-
cubic mapping if and only if f satisfies equation (2.1) and the 3-power condition
in the last n− k variables.

Proof. (Necessity) We firstly note that it is easily verified that f satisfies 3-power
condition in the last n − k variables. Suppose that f is a multi-Jensen-cubic
mapping. Without loss of generality, we assume that k ∈ {0, . . . , n− 1}. For any
xn−k ∈ V n−k, define the mapping gxn−k : V k → W by gxn−k (xk) := f(xk, xn−k)
for xk ∈ V k. By assumption, gxn−k is k-Jensen, and hence Lemma 1.1 from [34]
implies that

2kgxn−k

(xk1 + xk2
2

)
=

∑
j1,j2,...,jk∈{1,2}

gxn−k (xj11, xj22, . . . , xjkk)

for all xk1 , xk2 ∈ V k. It now follows from the above equality that

2kf
(xk1 + xk2

2 , xn−k
)

=
∑

j1,j2,...,jk∈{1,2}

f(xj11, xj22, . . . , xjkk, x
n−k) (2.2)

for all xk1 , xk2 ∈ V k and xn−k ∈ V n−k. Similarly to the above, for any xk ∈ V k,
consider the mapping hxk : V n−k → W defined via hxk (xn−k) := f(xk, xn−k) for
xn−k ∈ V n−k which is n− k-cubic. Now, [30, Theorem 3.2] implies that

8n−k
∑

q∈{−2,2}n−k

hxk

(xn−k1 + qxn−k2
2

)
=

n−k∑
m=0

4n−k−m(−6)mhxk (Mn−k
m ) (2.3)

for all xn−k1 , xn−k2 ∈ V n−k. By the definition of hxk , relation (2.3) is equivalent to

8n−k
∑

q∈{−2,2}n−k

f
(
xk,

xn−k1 + qxn−k2
2

)
=

n−k∑
m=0

4n−k−m(−6)mf(xk,Mn−k
m ) (2.4)
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for all xn−k1 , xn−k2 ∈ V n−k and xk ∈ V k. Inserting equality (2.2) into (2.4) we get

23n−2k
∑

q∈{−2,2}n−k

f
(xk1 + xk2

2 ,
xn−k1 + qxn−k2

2

)
=

∑
q∈{−2,2}n−k

∑
j1,j2,...,jk∈{1,2}

f
(
xj11, xj22, . . . , xjkk,

xn−k1 + qxn−k2
2

)

=
∑

j1,...,jk∈{1,2}

n−k∑
m=0

4n−k−m(−6)mf(xj11, . . . , xjkk,Mn−k
m )

for all xki = (xi1, . . . , xik) ∈ V k and xn−ki = (xi,k+1 . . . , xin) ∈ V n−k, which proves
that f satisfies equation (2.1).

(Sufficiency) Assume that f satisfies (2.1). Putting xn−k2 = 0 in (2.1) and
using the assumption, we obtain

23n−2k×2n−kf
(xk1 + xk2

2 , xn−k1

)
=

∑
j1,j2,...,jk∈{1,2}

n−k∑
m=0

2n−k−m(−6)m4n−k−m
(
n−k
m

)
× f(xj11, xj22, . . . , xjkk, 2xn−k1 )

=
∑

j1,j2,...,jk∈{1,2}

(8− 6)n−k23(n−k)f(xj11, xj22, . . . , xjkk, x
n−k
1 )

= 24n−4k
∑

j1,j2,...,jk∈{1,2}

f(xj11, xj22, . . . , xjkk, x
n−k
1 ).

Thus

2kf
(xk1 + xk2

2 , xn−k1

)
=

∑
j1,j2,...,jk∈{1,2}

f(xj11, xj22, . . . , xjkk, x
n−k
1 ) (2.5)

for all xk1 , xk2 ∈ V n and xn−k1 ∈ V n−k. In view of [34, Lemma 1.1], we see that f is
Jensen in each of the k first variables. Furthermore, by putting xk1 = xk2 in (2.1),
we have

23n−2k
∑

q∈{−2,2}n−k

f
(
xk1 ,

xn−k1 + qxn−k2
2

)
= 2k

n−k∑
m=0

4n−k−m(−6)mf(xk1 ,Mn−k
m )

and so

8n−k
∑

q∈{−2,2}n−k

f
(
xk1 ,

xn−k1 + qxn−k2
2

)
=

n−k∑
m=0

4n−k−m(−6)mf(xk1 ,Mn−k
m )

for all xk1 ∈ V k and xn−k1 , xn−k2 ∈ V n−k. In view of [30, Theorem 3.2], we see that
f is a multi-Jensen-cubic mapping.
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3. Stability of multi-Jensen-cubic mappings

In this section, we prove the generalized Hyers-Ulam stability of equation (2.1)
by a fixed point result (Theorem 3.1) in Banach spaces. Throughout, for two sets
X and Y , the set of all mappings from X to Y is denoted by Y X . Here, we
introduce the following three hypotheses:

(A1) Y is a Banach space, S is a nonempty set, j ∈ N, g1, . . . , gj : S → S and
L1, . . . , Lj : S → R+;

(A2) T : Y S → Y S is an operator satisfying the inequality

‖T (λ)(x)− T (µ)(x)‖ ≤
j∑
i=1

Li(x)‖λ(gi(x))− µ(gi(x))‖

for all λ, µ ∈ Y S , x ∈ S;
(A3) Λ: RS+ → RS+ is an operator defined through

Λ(δ)(x) :=
j∑
i=1

Li(x)δ(gi(x)), δ ∈ RS+, x ∈ S.

The following result presents a theorem in fixed point theory [12, Theorem 1]
which plays a fundamental tool to reach our purpose in this paper.

Theorem 3.1
Let hypotheses (A1)–(A3) hold and the function θ : S → R+ and the mapping
φ : S → Y fulfil the following two conditions:

‖T (φ)(x)− φ(x)‖ ≤ θ(x), θ∗(x) :=
∞∑
l=0

Λlθ(x) <∞

for all x ∈ S. Then, there exists a unique fixed point ψ of T such that

‖φ(x)− ψ(x)‖ ≤ θ∗(x)

for all x ∈ S. Moreover, ψ(x) = liml→∞ T l(φ)(x) for all x ∈ S.

Here and subsequently, for the mapping f : V n → W , we consider the differ-
ence operator Df : V n × V n →W defined by

Df(x1, x2) := 23n−2k
∑

q∈{−2,2}n−k

f
(xk1 + xk2

2 ,
xn−k1 + qxn−k2

2

)

−
∑

l1,...,lk∈{1,2}

n−k∑
m=0

4n−k−m(−6)mf(xl11, · · · , xlkk,Mn−k
m )

for all xki = (xi1, . . . , xik) ∈ V k and xn−ki = (xi,k+1, . . . , xin) ∈ V n−k.
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The next lemma from [4] will be useful in the proof of our stability result. For
simplicity, given an m ∈ N, we write S := {0, 1}m, and Si stands for the set of all
elements of S having exactly i zeros, i.e.

Si := {(s1, . . . , sm) ∈ S : card{j : sj = 0} = i}, i ∈ {0, . . . ,m}.

Lemma 3.2
Let m ∈ N, l ∈ N0 and ψ : S → R. Then

m∑
v=0

m∑
w=0

∑
s∈Sw

∑
t∈Sv

(2l − 1)wψ(st) =
m∑
i=0

∑
p∈Si

(2l+1 − 1)iψ(p).

From now on S stands for {0, 1}k and Si ⊆ S for i ∈ {0, . . . , k}. We have the
following stability result for functional equation (2.1).

Theorem 3.3
Let V be a linear space and W be a Banach space. Suppose that φ : V n×V n → R+
is a function satisfying the equality

lim
l→∞

( 1
23n−2k

)l n∑
i=0

∑
p∈Si

(2l − 1)iφ((2lpxk1 , 2xn−k1 ), (2lpxk2 , 2xn−k2 )) = 0 (3.1)

for all x1 =
(
xk1 , x

n−k
1

)
, x2 =

(
xk2 , x

n−k
2

)
∈ V n and

Φ(x) := 1
24n−3k

∞∑
l=0

( 1
23n−2k

)l
×

n∑
i=0

∑
p∈Si

(2l − 1)iφ((2l+1pxk1 , 22xn−k1 ), (0, 0)) <∞
(3.2)

for all x =
(
xk1 , x

n−k
1

)
∈ V n. Assume also that f : V n →W is a mapping satisfying

the inequality
‖Df(x1, x2)‖ 6 φ(x1, x2) (3.3)

for all x1, x2 ∈ V n. Then, there exists a unique solution F : V n → W of (2.1)
such that

‖f(x)−F(x)‖ ≤ Φ(x) (3.4)

for all x = (xk1 , xn−k1 ) ∈ V n.

Proof. Replacing x1 = (xk1 , xn−k1 ), x2 = (xk2 , xn−k2 ) by 2x1 = 2(xk1 , xn−k1 ), (0, 0) in
(3.3), respectively, we have∥∥∥∥23n−2k × 2n−kf(x)

−
∑
s∈S

n−k∑
m=0

(
n−k
m

)
2n−k−m4n−k−m(−6)mf(2sxk1 , 2xn−k1 )

∥∥∥∥ ≤ φ(2x, 0),
(3.5)
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where x = x1 = (xk1 , xn−k1 ) ∈ V n. Since
∑n−k
m=0

(
n−k
m

)
8n−k−m(−6)m = (8−6)n−k =

2n−k, inequality (3.5) shows that∥∥∥∥f(x)− 1
23n−2k

∑
s∈S

f(2sxk1 , 2xn−k1 )
∥∥∥∥ ≤ 1

24n−3k φ(2x, 0) (3.6)

for all x = x1 = (xk1 , xn−k1 ) ∈ V n. Set θ(x) := 1
24n−3kφ(2x, 0) and T (θ)(x) :=

1
23n−2k

∑
s∈S θ(2sxk1 , 2x

n−k
1 ), where θ ∈WV n , x ∈ V n. Then, relation (3.6) can be

modified as
‖f(x)− T (f)(x)‖ ≤ θ(x), x ∈ V n. (3.7)

Define
Λη(x) := 1

23n−2k

∑
s∈S

η(2sxk1 , 2xn−k1 )

for all η ∈ RV n

+ , x = x1 = (xk1 , xn−k1 ) ∈ V n. We now see that Λ has the form
described in (A3) with S = V n, gi(x) = gs(x) = (2sxk1 , 2xn−k1 ) and Li(x) = 1

23n−2k

for all i and x ∈ V n. Furthermore, for each λ, µ ∈WV n and x ∈ V n, we find

‖T (λ)(x)− T (µ)(x)‖ =
∥∥∥∥ 1

23n−2k

[∑
s∈S

(
λ(2sxk1 , 2xn−k1 )− µ(2sxk1 , 2xn−k1 )

) ]∥∥∥∥
≤ 1

23n−2k

∑
s∈S
‖λ(2sxk1 , 2xn−k1 )− µ(2sxk1 , 2xn−k1 )‖.

The above relation shows that the hypothesis (A2) holds. By induction on l, one
can check for any l ∈ N0 and x ∈ V n that

Λl(θ)(x) :=
( 1

23n−2k

)l n∑
i=0

(2l − 1)i
∑
p∈Si

θ(2lpxk1 , 2xn−k1 ). (3.8)

Fix an x ∈ V n. Here, we adopt the convention that 00 = 1. Hence, the relation
(3.8) is trivially true for l = 0. Next, assume that (3.8) holds for a l ∈ N0. Using
Lemma 3.2 for m = n and ψ(s) := θ(2l+1sxk1 , 2xn−k1 ), s ∈ S, we get

Λl+1(θ)(x) = Λ(Λl(θ))(x) = 1
23n−2k

n∑
v=0

∑
t∈Sv

Λl(θ)(2txk1 , 2xn−k1 )

=
( 1

23n−2k

)l+1 n∑
v=0

∑
t∈Sv

n∑
w=0

(2l − 1)w
∑
s∈Sw

θ(2l+1stxk1 , 2xn−k1 )

=
( 1

23n−2k

)l+1 n∑
v=0

n∑
w=0

∑
s∈Sw

∑
t∈Sv

(2l − 1)wθ(2l+1stxk1 , 2xn−k1 )

=
( 1

23n−2k

)l+1 n∑
i=0

∑
p∈Si

(2l+1 − 1)iθ(2l+1pxk1 , 2xn−k1 ).
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Therefore, (3.8) holds for any l ∈ N0 and x ∈ V n. Now, relations (3.2) and (3.8)
necessitate that all assumptions of Theorem 3.1 are satisfied. Hence, there exists
a mapping F : V n →W such that

F(x) = lim
l→∞

T l(f)(x) = 1
23n−2k

∑
s∈S
F(2sxk1 , 2xn−k1 )

for all x =
(
xk1 , x

n−k
1

)
∈ V n, and also (3.4) holds. We argue by induction on l that

‖DT l(f)(x1, x2)‖

≤
( 1

23n−2k

)l n∑
i=0

∑
p∈Si

(2l − 1)iφ((2lpxk1 , 2xn−k1 ), (2lpxk2 , 2xn−k2 ))
(3.9)

for all x1, x2 ∈ V n and l ∈ N0. The inequality (3.9) is valid for l = 0 by (3.3).
Assume that (3.9) is true for an l ∈ N0. Then

‖DT l+1(f)(x1, x2)‖

= 1
23n−2k

∥∥∥∥∑
s∈S
DT l(f)((2sxk1 , 2xn−k1 ), (2sxk2 , 2xn−k2 ))

∥∥∥∥
≤
( 1

23n−2k

)l+1∑
s∈S

n∑
i=0

∑
t∈Si

(2l − 1)iφ((2l+1stxk1 , 2xn−k1 ), (2l+1stxk2 , 2xn−k2 ))

=
( 1

23n−2k

)l+1 n∑
i=0

∑
p∈Si

(2l+1 − 1)iφ((2l+1pxk1 , 2xn−k1 ), (2l+1pxk2 , 2xn−k2 ))

for all x1, x2 ∈ V n. We note that the last equality follows from Lemma 3.2 with
m := n and ψ(s) := φ((2l+1sxk1 , x

n−k
1 ), (2l+1sxk2 , 2xn−k2 )), s ∈ S. Letting l → ∞

in (3.9) and applying (3.1), we arrive at DF(x1, x2) = 0 for all x1, x2 ∈ V n. This
means that the mapping F satisfies (2.1).

Finally, assume that F : V n →W is another mapping satisfying equation (2.1)
and inequality (3.4), and fix x ∈ V n, j ∈ N. Then, we have

‖F(x)− F(x)‖ =
∥∥∥∥( 1

23n−2k

)j
F(2jx)−

( 1
23n−2k

)j
F(2jx)

∥∥∥∥
≤
( 1

23n−2k

)j
(‖F(2jx)− f(2jx)‖+ ‖F(2jx)− f(2jx)‖)

≤ 2
( 1

23n−2k

)j
Φ(2jx)

≤ 1
24n−3k−1

( 1
23n−2k

)j n∑
l=0

( 1
23n−2k

)l
×

n∑
i=0

∑
p∈Si

(2l − 1)iφ((2l+1pxk1 , 22xn−k1 ), (0, 0)).
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Consequently, letting j → ∞ and using the fact that series (3.2) is convergent
for all x ∈ V n, we obtain F(x) = F(x) for all x ∈ V n, and hence the proof is
finished.

The next corollary which is a direct consequence of Theorem 3.3, shows that
every multi-Jensen-cubic mapping can be stable when the norm of Df(x1, x2) is
controlled by a positive number for all x1, x2 ∈ V n, where V is a normed space.
Corollary 3.4
Given δ > 0. Let also V be a normed space and W be a Banach space. If f : V n →
W is a mapping satisfying the inequality

‖Df(x1, x2)‖ ≤ δ

for all x1, x2 ∈ V n, then there exists a unique solution F : V n →W of (2.1) such
that

‖f(x)−F(x)‖ ≤ δ

2n(23(n−k) − 1)
for all x ∈ V n.
Proof. Setting the constant function φ(x1, x2) = δ for all x1, x2 ∈ V n, and applying
Theorem 3.3, we have

Φ(x) = 1
24n−3k

∞∑
l=0

( 1
23n−2k

)l n∑
i=0

∑
p∈Si

(2l − 1)iφ((2l+1pxk1 , 22xn−k1 ), (0, 0))

= δ

24n−3k

∞∑
l=0

( 1
23n−2k

)l k∑
i=0

(
k
i

)
(2l − 1)i × 1n−i

= δ

24n−3k

∞∑
l=0

( 1
23n−2k

)l
2kl = δ

24n−3k

∞∑
l=0

( 1
23(n−k)

)l
= δ

2n(23(n−k) − 1)
.

We note that Corollary 3.4 does not hold for k = n. In the upcoming result by
putting k = 0 in Corollary 3.4, we show that every multi-cubic mappings is stable.
Corollary 3.5
Let δ > 0. Suppose that V is a normed space and W is a Banach space. If
f : V n →W is a mapping satisfying the inequality∥∥∥∥23n

∑
q∈{−2,2}n

f
(xn1 + qxn2

2

)
−

n∑
m=0

4n−m(−6)mf(Mn
m)
∥∥∥∥ ≤ δ

for all x1, x2 ∈ V n, then there exists a unique multi-cubic mapping C : V n → W
such that

‖f(x)− C(x)‖ ≤ δ

2n(23n − 1)
for all x ∈ V n.
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Let A be a nonempty set, (X, d) a metric space, ψ ∈ RAn

+ , and F1, F2 operators
mapping a nonempty set D ⊂ XA into XAn . We say that operator equation

F1ϕ(a1, . . . , an) = F2ϕ(a1, · · · , an) (3.10)

is ψ-hyperstable provided every ϕ0 ∈ D satisfying inequality

d(F1ϕ0(a1, . . . , an),F2ϕ0(a1, . . . , an)) ≤ ψ(a1, . . . , an), a1, . . . , an ∈ A,

fulfils (3.10); this definition is introduced in [13]. In other words, a functional
equation F is hyperstable if any mapping f satisfying the equation F approximately
is a true solution of F . In the following corollary, we show that every multi-Jensen-
cubic mapping is hyperstable.

Corollary 3.6
Let V be a normed space and W be a Banach space. Suppose that δij > 0 for
i ∈ {1, 2} and j ∈ {1, · · · , n} fulfil

∑2
i=1
∑n
j=1 δij < 3n − 2k. If f : V n → W is

a mapping satisfying the inequality

‖Df(x1, x2)‖ ≤
2∏
i=1

n∏
j=1
‖xij‖δij

for all x1, x2 ∈ V n, then f satisfies equation (2.1).
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