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We investigate some properties of ∗-concave and convex multi-

functions on the real line with convex bounded closed values. In partic-
ularly we consider the Hadamard inequality and the Hardy–Littlewood–
Pólya majorization theory in the case of multifunctions.

]_^a`/bGc/d e�f/gShWd i/d jWd k/i/c

Let X be a real Banach space. Denote by clb(X) the set of all nonempty
bounded closed convex subsets of X . For given A, B ∈ clb(X) and λ ≥ 0 we
define A + B = {a + b : a ∈ A, b ∈ B}, λA = {λa : a ∈ A},

A
∗

+ B = cl(A + B) = cl(clA + clB).

The structure (clb(X),
∗

+) is an Abelian semigroup with the neutral element
{0}. It is clear that

λ(A
∗

+ B) = λA
∗

+ λB, (λ + µ)A = λA
∗

+ µA, λ(µA) = λµA, 1 · A = A

for all λ, µ ≥ 0 and A, B ∈ clb(X). Thus the triple (clb(X),
∗

+, ·) is also an
abstract convex cone (for definition see e.g. [11]). Since

A
∗

+ C = B
∗

+ C =⇒ A = B

(cf. [11]), the cancellation law is satisfied.
Let d be the Hausdorff metric in clb(X) derived from the norm || · || in

X , i.e. d(A, B) = max {e(A, B), e(B, A)}, where e(A, B) = supa∈A ρ(a, B)
and ρ(a, B) = infb∈B ||a − b|| for A, B ∈ clb(X). For given A ∈ clb(X) we
define ||A|| = sup {||a|| : a ∈ A} = d(A, {0}). The metric space (clb(X), d) is
complete (see e.g. [1, Theorem II-3, p. 40]). Moreover d is translation invariant
since
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d(A
∗

+ C, B
∗

+ C) = d(A + C, B + C) = d(A, B)

and positively homogeneous

d(λA, λB) = λd(A, B)

for all A, B, C ∈ clb(X) (cf. [2, Lemma 2.2]).
A multifunction F : [a, b] −→ clb(X) is said to be ∗-concave (∗-convex) if

F (λx + (1 − λ)y) ⊂ λF (x)
∗

+ (1 − λ)F (y),
(

λF (x)
∗

+ (1 − λ)F (y) ⊂ F (λx + (1 − λ)y)
)

for all x, y ∈ [a, b] and λ ∈ (0, 1).

Remark 1

The concavity of multifunctions, defined as follows,

F (λx + (1 − λ)y) ⊂ λF (x) + (1 − λ)F (y), x, y ∈ [a, b], λ ∈ (0, 1)

implies the ∗-concavity, but not conversely. To see this we consider two sets
A, B ∈ clb(X) such that A+B 6= cl(A+B) (an example could be found in [10,
pp. 712-713]) and the multifunction F : [0, 1] −→ clb(X) given by the formula

F (t) = tA
∗

+ (1 − t)B. It is easy to check that F (λt + (1 − λ)s) ⊂ λF (t)
∗

+
(1 − λ)F (s) for all t, s ∈ [0, 1] and λ ∈ (0, 1) but

F

(

1

2
· 0 +

1

2
· 1

)

= F

(

1

2

)

=
1

2
(A

∗

+ B) 6⊂
1

2
(A + B) =

1

2
[F (0) + F (1)].

Remark 2

A multifunction F : [a, b] −→ clb(X) is ∗-convex if and only if it is convex i.e.,

λF (x) + (1 − λ)F (y) ⊂ F (λx + (1 − λ)y) , x, y ∈ [a, b], λ ∈ (0, 1).

We note that every convex multifunction with non-empty values has convex
values. Indeed, λF (x) + (1 − λ)F (x) ⊂ F (x) for all λ ≥ 0 and x ∈ [a, b].

A multifunction F : [a, b] −→ clb(X) is said to be increasing if F (x) ⊂ F (y)
whenever x, y ∈ [a, b] and x < y.

A set ∆ = {y0, y1, . . . , yn}, where a = y0 < y1 < . . . < yn = b, is said to be a
partition of [a, b]. For given partition ∆ we set δ(∆) = max {yi − yi−1 : i = 1,
. . . , n}. For the partition ∆ and for a system τ = (τ1, . . . , τn) of intermediate
points τi ∈ [yi−1, yi] we create the Riemann sum

S(∆, τ) = (y1 − y0)F (τ1)
∗

+ · · ·
∗

+ (yn − yn−1)F (τn).
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If for every sequence (∆ν) of partitions ∆ν =
{

yν
0 , yν

1 , . . . , yν
nν

}

of [a, b] such
that limν→∞ δ(∆ν) = 0, and for every sequence (τ ν) of systems of intermediate
points, the sequence of the Riemann sums (S(∆ν , τν)) tends to the same limit

I ∈ clb(X), then F is said to be Riemann integrable over [a, b] and
∫ b

a
F (y) dy :=

I .
The Riemann integral for multifunction with compact convex values was

investigated by A. Dinghas [3] and M. Hukuhara [4]. Some properties of Rie-
mann integral of multifunctions with convex closed bounded values may be
found in paper [8].

� ^a�"bGf/bG�KbG�[f�d i/g/�/�/bG� d jW��d i�eSbGc/g�kSh~�K�/� jWd hW�/i/e[jWd k/i/c

We believe that the following theorem is known. Nevertheless we prove it
for convenience of the reader.

Theorem 1

Every ∗-concave multifunction F : [a, b] −→ clb(X) is continuous on (a, b) with
respect to the Hausdorff metric.

Proof. Since all values of F are bounded we may find a constant M > 0

such that ||λF (a)
∗

+ (1 − λ)F (b)|| ≤ M for λ ∈ [0, 1]. Thus by ∗-concavity of
F we have ||F (x)|| ≤ M , x ∈ [a, b].

Let us fix x0 ∈ (a, b) and let x be a point belonging to the interval (x0, b).
There exist λ, µ ∈ (0, 1) such that x = λx0 + (1 − λ)b and x0 = µx + (1− µ)a.
Hence λ = x−b

x0−b
→ 1− and µ = x0−a

x−a
→ 1− as x → x+

0 . Then by the ∗-
concavity we obtain

e(F (x), F (x0)) ≤ e(λF (x0)
∗

+ (1 − λ)F (b), F (x0))

≤ d(λF (x0)
∗

+ (1 − λ)F (b), λF (x0)
∗

+ (1 − λ)F (x0))

= (1 − λ)d(F (b), F (x0))

and

e(F (x0), F (x)) ≤ e(µF (x)
∗

+ (1 − µ)F (a), F (x))

≤ d(µF (x)
∗

+ (1 − µ)F (a), µF (x)
∗

+ (1 − µ)F (x))

= (1 − µ)d(F (a), F (x))

≤ 2M(1 − µ),

whence d(F (x), F (x0)) → 0 as x → x+
0 . We have shown that F is right-hand

side continuous at x0. The similar argument can be used to get the left-hand
side continuity of F at x0.
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Remark 3

A ∗-concave multifunction on [a, b] need not be continuous. To see this it is
enough to take F : [0, 1] −→ clb(R) defined by

F (x) =

{

{0} , x > 0,

[0, 1], x = 0.

The continuity of convex multifunctions can be obtained from Theorem 3.7
in [7]. We give here an independent, straightforward proof similar to that of
Theorem 1.

Theorem 1′

Every convex multifunction F : [a, b] −→ clb(X) is continuous on (a, b) with
respect to the Hausdorff metric and bounded on [a, b].

Proof. At first we will prove that F is bounded on [a, b]. We observe that
for every x ∈ [a, a+b

2 ] there exists λ ∈ [ 12 , 1] such that λx + (1−λ)b = a+b
2 . Let

us fix u ∈ F (b). The convexity of F yields

λF (x) + (1 − λ)u ⊂ F

(

a + b

2

)

,

whence

F (x) ⊂
1

λ
F

(

a + b

2

)

−

(

1

λ
− 1

)

u.

Thus F is bounded on [a, a+b
2 ]. In similar manner we show that F is bounded

on [a+b
2 , b]. Consequently there is a constant M such that ||F (x)|| ≤ M for

x ∈ [a, b].
Let us fix x0 belonging to (a, b) and let x0 < x < b. We can find λ, µ ∈ (0, 1)

such that x = λx0+(1−λ)b, x0 = µx+(1−µ)a. Clearly λF (x0)+(1−λ)F (b) ⊂
F (x) and µF (x) + (1 − µ)F (a) ⊂ F (x0). We note that λ, µ → 1− as x → x+

0 .
By the convexity of F and properties of e we obtain two inequalities

λe(F (x0), F (x)) = e(λF (x0), λF (x))

= e(λF (x0) + (1 − λ)F (b), λF (x) + (1 − λ)F (b))

≤ e(F (x), λF (x) + (1 − λ)F (b))

≤ d(F (x), λF (x) + (1 − λ)F (b))

= (1 − λ)d(F (x), F (b))

≤ 2M(1− λ),

e(F (x), F (x0)) = sup
v∈F (x)

ρ(v, F (x0))

≤ sup
v∈F (x)

ρ(v, µF (x) + (1 − µ)F (a))
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= e(F (x), µF (x) + (1 − µ)F (a))

≤ d(F (x), µF (x) + (1 − µ)F (a))

= (1 − µ)d(F (x), F (a))

≤ 2M(1− µ).

Consequently

lim
x→x

+

0

d(F (x), F (x0)) = 0.

The left continuity of F at x0 may be shown analogously.

A continuous multifunction F : [a, b] −→ clb(X) is Riemann integrable on
[a, b] (cf. [8]). A ∗-concave multifunction on [a, b] is commonly bounded on this
interval. Therefore it is not difficult to see that a ∗-concave multifunction has
to be Riemann integrable on each [c, d] ⊂ [a, b] (cf. [8]).

In the case of convex functions on [a, b] the following Hadamard inequality

f

(

a + b

2

)

≤
1

b − a

∫ b

a

f(x) dx ≤
f(a) + f(b)

2

is well known (cf. [5, pp. 196-197]). We are going to deal with suitable inclusion
for convex and ∗-concave multifunctions.

Theorem 2

If F : [a, b] −→ clb(X) is ∗-concave multifunction, then

F

(

x + y

2

)

⊂
1

y − x

∫ y

x

F (t) dt ⊂
F (x)

∗

+ F (y)

2
(1)

for each x, y such that x < y and [x, y] ⊂ [a, b].

Proof. Let us fix n ∈ N and let xi = x + iy−x
n

and τi = x + 2i−1
2n

(y −x) for
i ∈ {1, . . . , n}. These points create the partition ∆n = {x, x1, . . . , xn−1, y} of
the interval [x, y] and τ = (τ1, . . . , τn) is a system of intermediate points. We
note that

τi =
xi−1 + xi

2
=

[2n − (2i − 1)]x + (2i − 1)y

2n
.

Using the ∗-concavity of F we obtain

F (τi) ⊂
2n − (2i − 1)

2n
F (x)

∗

+
2i − 1

2n
F (y)

for i ∈ {1, . . . , n}. Summing up over i we get

F (τ1)
∗

+ . . .
∗

+ F (τn)

⊂

(

2n − 1

2n
+

2n− 3

2n
+ · · · +

1

2n

)

F (x)
∗

+

(

1

2n
+

3

2n
+ · · · +

2n − 1

2n

)

F (y).
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Since 1 + 3 + · · · + (2n − 1) = n2, we obtain

1

y − x

[

F (τ1)
∗

+ · · ·
∗

+ F (τn)
]y − x

n
⊂

F (x)
∗

+ F (y)

2
. (2)

Now we let n → ∞. Then δ(∆n) → 0 and with respect to the definition of

the integral, by (2) and by the closedness of the set 1
2 (F (x)

∗

+ F (y)) we have

1

y − x

∫ y

x

F (t) dt ⊂
F (x)

∗

+ F (y)

2
.

To obtain the first inclusion of (1) we take an even positive integer n. Let
k = n/2 and let us choose i ∈ {1, . . . , k}. We note that 1

2 (τi + τj) = 1
2 (x + y)

for j = n + 1 − i. Again by the ∗-concavity of F we infer

F

(

x + y

2

)

⊂
1

2
(F (τi)

∗

+ F (τj)).

Summing up over i ∈ {1, . . . , k} leads to

kF

(

x + y

2

)

⊂ k
[

F (τ1)
∗

+ · · ·
∗

+ F (τk)
∗

+ F (τk+1)
∗

+ · · ·
∗

+ F (τn)
]

or

F

(

x + y

2

)

⊂
1

y − x

[

F (τ1)
∗

+ · · ·
∗

+ F (τn)
]

·
y − x

n
(3)

for all even n. The right-hand side of inclusion (3) tends to 1
y−x

∫ y

x
F (t) dt as

n → ∞. Hence

F

(

x + y

2

)

⊂
1

y − x

∫ y

x

F (t) dt.

The proof of the next theorem runs similarly.

Theorem 2′

If F : [a, b] −→ clb(X) is a convex multifunction, then the following inclusions
hold

F (x)
∗

+ F (y)

2
⊂

1

y − x

∫ y

x

F (t) dt ⊂ F

(

x + y

2

)

(4)

for all intervals [x, y] ⊂ [a, b].

Inclusions (4) for the Aumann integral may be found in the paper of E. Sad-
owska [9, Theorem 1], where the integral Jensen inequality is applied (see the
paper of J. Matkowski and K. Nikodem [6]). The assumptions of Theorem 2′

differ somewhat from that of Theorem 1 in [9].



| or}~sP�p��or�psp� z x sp��oU���Uortr�_sp�Pu�tp�
∗ � �Uortp�UuS�_s�}~�p� z x � �ptp��z x ortp��m/�

�/^a�"bG�[f/�/�W�Sd j jW� g���k/k/f/�W  ¡/� �/b��Kbp¢Wk/�[d £/b¤jWd k/iKjW¥/g/k/�[g/�¦hWk/�§�K�/� jWd hW�/i/e[jWd k/i/c

In this part of the note we are going to transfer the Hardy–Littlewood–
Pólya majorization principle for convex functions (cf. [5, ch. 8, § 5]) to convex
and ∗-concave multifunctions.

Theorem 3

Let x1, x2, y1, y2 be real numbers such that x2 ≤ x1, y2 ≤ y1, x1 ≤ y1,
x1 + x2 = y1 + y2. If F : R −→ clb(X) is ∗-concave, then

F (x1)
∗

+ F (x2) ⊂ F (y1)
∗

+ F (y2). (5)

Proof. The assumptions of the theorem imply the inequality y2 ≤ x2 ≤
x1 ≤ y1. At first we assume that y1 6= y2. Setting λ = y1−x2

y1−y2
, µ = y1−x1

y1−y2
by

the ∗-concavity we have

F (x2) = F (λy2 + (1 − λ)y1) ⊂ λF (y2)
∗

+ (1 − λ)F (y1),

F (x1) = F (µy2 + (1 − µ)y1) ⊂ µF (y2)
∗

+ (1 − µ)F (y1).

Multiplying the above inclusions by y1 −y2 and summing them up together we
obtain

(y1−y2)(F (x1)
∗

+ F (x2)) ⊂ (x2−y2+x1−y2)F (y1)
∗

+ (y1−x2+y1−x1)F (y2).

The equality x1 + x2 = y1 + y2 and the above inclusions lead to

F (x1)
∗

+ F (x2) ⊂ F (y1)
∗

+ F (y2).

If y1 = y2, then y1 = x1 = x2 = y2 and condition (5) holds true.

Theorem 3 for concave multifunctions can be found in [7, Theorem 2.14] in
another formulation. The same concerns the next theorem. Its proof is similar
to the previous one.

Theorem 3′

Let x1, x2, y1, y2 be real numbers such that x2 ≤ x1, y2 ≤ y1, x1 ≤ y1 and,
x1 + x2 = y1 + y2. If F : R −→ clb(X) is convex, then

F (y1)
∗

+ F (y2) ⊂ F (x1)
∗

+ F (x2).

Corollary 1

Let a, b, c be non-negative numbers and let a + b ≤ c. If F : [0,∞) −→ clb(X)
is a ∗-concave multifunction, then

F (a + b)
∗

+ F (c) ⊂ F (a)
∗

+ F (b + c).
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Proof. To obtain the Corollary from Theorem 3 it is enough to set x1 = c,
x2 = a + b, y1 = b + c, y2 = a (see [5, pp. 194-195 ]).

Corollary 2

Let x1, x2, y1, y2 be real numbers satisfying the conditions: x2 ≤ x1, y2 ≤ y1,
x1 ≤ y1 and x1 + x2 ≤ y1 + y2. If F : R −→ clb(X) is an increasing ∗-concave
multifunction, then

F (x1)
∗

+ F (x2) ⊂ F (y1)
∗

+ F (y2)

holds true.

Proof. Taking z1 = y1 and z2 = x1 + x2 − y1 we can easily check that the
numbers x1, x2, z1, z2 satisfy the assumption of Theorem 3. Hence

F (x1)
∗

+ F (x2) ⊂ F (z1)
∗

+ F (z2).

Moreover, F is increasing and z2 ≤ y2 , so

F (x1)
∗

+ F (x2) ⊂ F (y1)
∗

+ F (y2).

Theorem 4

Assume that xi, yi, i ∈ {1, . . . , n} are real numbers such that

xn ≤ xn−1 ≤ . . . ≤ x1, yn ≤ yn−1 ≤ . . . ≤ y1, (6)

k
∑

i=1

xi ≤
k

∑

i=1

yi, k ∈ {1, . . . , n − 1} ,
n

∑

i=1

xi =
n

∑

i=1

yi (7)

and

xk+1 ≤ yk, k ∈ {2, . . . , n − 1} . (8)

If F : R −→ clb(X) is a ∗-concave multifunction, then

F (x1)
∗

+ · · ·
∗

+ F (xn) ⊂ F (y1)
∗

+ · · ·
∗

+ F (yn). (9)

Proof. The theorem is valid for n = 2 thanks to Theorem 3.
Now we assume (9) true for an n ∈ N, n ≥ 2 and take arbitrary numbers

xi, yi, i ∈ {1, . . . , n, n + 1} satisfying

xn+1 ≤ xn ≤ . . . ≤ x1, yn+1 ≤ yn ≤ . . . ≤ y1, (6n+1)
k

∑

i=1

xi ≤

k
∑

i=1

yi, k ∈ {1, . . . , n} ,

n+1
∑

i=1

xi =

n+1
∑

i=1

yi (7n+1)

and

xk+1 ≤ yk, k ∈ {2, . . . , n} . (8n+1)
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By (7n+1) we have

n
∑

i=1

xi =

n−1
∑

i=1

yi + (yn + yn+1 − xn+1).

According to the induction hypothesis

F (x1)
∗

+ · · ·
∗

+ F (xn) ⊂ F (y1)
∗

+ · · ·
∗

+ F (yn−1)
∗

+ F (yn + yn+1 − xn+1)

since yn + yn+1 − xn+1 ≤ yn−1 (see (6n+1) and (7n+1)). If we show that

F (yn + yn+1 − xn+1)
∗

+ F (xn+1) ⊂ F (yn)
∗

+ F (yn+1) (10)

holds, the proof will be complete.
Consider two cases: (a) xn+1 ≤ yn + yn+1 − xn+1 and (b) xn+1 > yn +

yn+1 − xn+1. In case (b) (yn + yn+1 − xn+1) + xn+1 = yn + yn+1, yn+1 ≤ yn,
yn + yn+1 − xn+1 < xn+1 and xn+1 ≤ yn according to (8n+1). By Theorem 3
condition (10) holds. In case (a), xn+1+(yn+yn+1−xn+1) = yn+yn+1, yn+1 ≤
yn, xn+1 ≤ yn + yn+1 −xn+1 and yn + yn+1 −xn+1 = yn + (yn+1 −xn+1) ≤ yn

because yn+1 ≤ xn+1. By Theorem 3 condition (10) holds.

Theorem 4′

Assume that xi, yi, i ∈ {1, . . . , n} are real numbers such that

xn ≤ xn−1 ≤ . . . ≤ x1 , yn ≤ yn−1 ≤ . . . ≤ y1 ,

k
∑

i=1

xi ≤

k
∑

i=1

yi , k ∈ {1, . . . , n − 1} ,

n
∑

i=1

xi =

n
∑

i=1

yi

and

xk+1 ≤ yk , k ∈ {2, . . . , n − 1} .

If F : R −→ clb(X) is a convex multifunction, then

F (y1)
∗

+ · · ·
∗

+ F (yn) ⊂ F (x1)
∗

+ · · ·
∗

+ F (xn).

Results of the same kind as Theorem 4 and 4′, formulated in some other
language, were obtained by K. Nikodem (cf. [7, Theorem 2.14]).
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