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Bozena Pigtek
Some properties of convex and x-concave

multifunctions

Abstract. We investigate some properties of *-concave and convex multi-
functions on the real line with convex bounded closed values. In partic-
ularly we consider the Hadamard inequality and the Hardy—Littlewood—
Pélya majorization theory in the case of multifunctions.

1. Basic definitions

Let X be a real Banach space. Denote by ¢lb(X) the set of all nonempty
bounded closed convex subsets of X. For given A, B € ¢lb(X) and A\ > 0 we
define A+ B={a+b: a€ A be B}, \A={)a: a€ A},

A+ B=cl(A+ B) = cl(clA + clB).

The structure (clb(X ),J*r) is an Abelian semigroup with the neutral element
{0}. Tt is clear that

MALB)=MIAB, A+pm)A= M+ pA, ApAd) = ud, 1.A=A

for all A\,u > 0 and A, B € ¢lb(X). Thus the triple (clb(X),J*r, -) is also an
abstract convex cone (for definition see e.g. [11]). Since

AYC=B++C — A=28

(cf. [11]), the cancellation law is satisfied.

Let d be the Hausdorff metric in ¢lb(X) derived from the norm |[|-|| in
X, ie. d(A,B) = max{e(A, B),e(B,A)}, where e(A, B) = sup,c4 pla,B)
and p(a, B) = infpep||la — b|| for A,B € clb(X). For given A € clb(X) we
define ||A|| = sup{||a|| : a € A} = d(A,{0}). The metric space (clb(X),d) is
complete (see e.g. [1, Theorem II-3, p. 40]). Moreover d is translation invariant
since
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dA+C,B+C)=d(A+C,B+C)=dA,B)

and positively homogeneous
d(AA,A\B) = Md(A, B)

for all A, B,C € clb(X) (cf. [2, Lemma 2.2]).
A multifunction F:[a,b] — clb(X) is said to be *-concave (x-convex) if

*

F(Qx+(1—XNy) CAF(z) + (1-=NF(y),
(AF(@) + (1= NF(y) C F Az + (1-\)y) )
for all z,y € [a,b] and X € (0,1).

REMARK 1
The concavity of multifunctions, defined as follows,

FAz+ (1 —MNy) CAF(z)+ (1 —N)F(y), z,y € [a,b], A€ (0,1)

implies the *-concavity, but not conversely. To see this we consider two sets
A, B € clb(X) such that A+ B # cl(A+ B) (an example could be found in [10,
pp. 712-713]) and the multifunction F:[0,1] — ¢lb(X) given by the formula
F(t) =tA + (1 —¢)B. Tt is easy to check that F(At + (1 — A)s) C AF(t) +
(1—-X)F(s) for all t,s € [0,1] and A € (0,1) but

[F(0) + F(1)].

F(1-0+1-1)=F(1):%(AiB)gzl(/HB):%

2 2 2 2

REMARK 2
A multifunction F: [a,b] — ¢lb(X) is *-convex if and only if it is convex i.e.,

AF(z)+(1—=NF(y) CFAz+(1-Ny), x,y € [a,b], A€ (0,1).

We note that every convex multifunction with non-empty values has convex
values. Indeed, AF(z) + (1 — A\)F(z) C F (z) for all A > 0 and «z € [a, b].

A multifunction F: [a,b] — clb(X) is said to be increasing if F(z) C F(y)
whenever x,y € [a,b] and z < y.

Aset A ={yo,y1,...,Yn}, wherea =yo < y1 < ... < yn = b, is said to be a
partition of [a,b]. For given partition A we set §(A) = max{y; —y;i—1: i =1,
...,n}. For the partition A and for a system 7 = (71,...,7,) of intermediate
points 7; € [y;—1,y;] we create the Riemann sum

S(A,T) = (1 — yo)F(m) + - + (Yo — yn1)F (7).
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If for every sequence (AY) of partitions A¥ = {yb’, i, ... ,y,ﬁu} of [a, b] such
that lim, . §(A¥) = 0, and for every sequence (7") of systems of intermediate
points, the sequence of the Riemann sums (S(A¥,7")) tends to the same limit
I € clb(X), then F is said to be Riemann integrable over [a, b] and fab F(y)dy :=
1.

The Riemann integral for multifunction with compact convex values was
investigated by A. Dinghas [3] and M. Hukuhara [4]. Some properties of Rie-
mann integral of multifunctions with convex closed bounded values may be
found in paper [8].

2. Hadamard inequality in case of multifunctions

We believe that the following theorem is known. Nevertheless we prove it
for convenience of the reader.

THEOREM 1
Every x-concave multifunction F:[a,b] — clb(X) is continuous on (a,b) with
respect to the Hausdorff metric.

Proof. Since all values of F' are bounded we may find a constant M > 0

such that ||\F'(a) + (I =XN)F()|| < M for A € [0,1]. Thus by *-concavity of
F we have ||F(z)|| < M, x € [a,]].

Let us fix 29 € (a,b) and let & be a point belonging to the interval (zq, b).
There exist A, i € (0,1) such that z = Azg + (1 — A\)b and 29 = pz + (1 — p)a.
Hence A = f{;bb — 17 and p = 2= — 17 as x — xd. Then by the x-
concavity we obtain

(AF(x0) + (1 = NF(b), F(x0))
(AF(20) + (1 = A)F(b), \F(z0) + (1 — \)F(x0))
= (1= N)d(F(b), F(x0))

e(F(x), F(x))

IN

e

and

(1 = p)d(F(a), F(z))

whence d(F(z), F(z9)) — 0 as * — a7 . We have shown that F is right-hand
side continuous at xp. The similar argument can be used to get the left-hand
side continuity of F' at xg.
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REMARK 3
A x-concave multifunction on [a,b] need not be continuous. To see this it is
enough to take F': [0, 1] — clb(R) defined by

{0}, x>0,
Flz) = { 0,1, z=0.

The continuity of convex multifunctions can be obtained from Theorem 3.7
in [7]. We give here an independent, straightforward proof similar to that of
Theorem 1.

THEOREM 1’
Every conver multifunction F:[a,b] — clb(X) is continuous on (a,b) with
respect to the Hausdorff metric and bounded on [a,b)].

Proof. At first we will prove that F is bounded on [a,b]. We observe that
for every x € [a, %] there exists A € [3,1] such that Az + (1 — \)b = 22, Let
us fix u € F(b). The convexity of F yields

AF(m)+(1—A)uCF(a;b>,

F(m)C%F(a;b) - (%—1)1&

Thus F is bounded on [a, %F2]. In similar manner we show that F' is bounded
on [“E2 b]. Consequently there is a constant M such that ||F(z)|| < M for
x € [a,b].

Let us fix z¢ belonging to (a,b) and let zy < x < b. We can find A, p € (0, 1)
such that © = Axg+(1—N\)b, 29 = px+(1—p)a. Clearly AF(zo)+(1—X)F(b) C
F(z) and pF(x) + (1 — p)F(a) C F(xg). We note that A\, — 1~ as z — .
By the convexity of F' and properties of e we obtain two inequalities

whence

Ae(F (o), F(x)) = e(AF (z0), AF())
= e(AF(z0) + (1 = N F(b), A\F(z) + (1 — N)F(b))
< e(F(2), AF(z) + (1 = ) F (b))
< d(F(2), \F(2) + (1 = ) F(D))
= (1= Nd(F(z), F(b))
<2M(1- ),

e(F(x), F(zo)) = sup p(v, F(x0))
veF (x)

< sup p(v, pF(x) + (1 = p)F(a))
veF (x)
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= e(F(z), uF(z) + (1 — p)F(a))
< d(F(z), pF(x) + (1 = p)F(a
= (1= p)d(F(z), F(a))
<2M(1—p)
Consequently
xlir;l+ d(F(z), F(x0)) = 0.

The left continuity of F' at £y may be shown analogously.

A continuous multifunction F':[a,b] — ¢lb(X) is Riemann integrable on
[a, b] (cf. [8]). A *-concave multifunction on [a, b] is commonly bounded on this
interval. Therefore it is not difficult to see that a #-concave multifunction has
to be Riemann integrable on each [c, d] C [a, b] (cf. [8]).

In the case of convex functions on [a, b] the following Hadamard inequality

(5 < ks [ e s L2320

is well known (cf. [5, pp. 196-197]). We are going to deal with suitable inclusion
for convex and *-concave multifunctions.

THEOREM 2
If F:la,b] — clb(X) is x-concave multifunction, then

F(x;y>cy%x :F(t)dtcw (1)

for each x,y such that x <y and [z,y] C [a,b].

Proof. Let us fix n € N and let z; = 2 +i=2 and 7; = v + 21 (y — 2) for

2n
i € {1,...,n}. These points create the partition A,, = {x,21,...,2p_1,y} of
the interval [z,y] and 7 = (71,...,7,) is a system of intermediate points. We
note that

ri1+x;  [2n— (20— 1))z 4 (20 — 1)y
2 B 2n '

Using the *-concavity of F' we obtain
2n7(2i71)F 121'71
2n

for i € {1,...,n}. Summing up over i we get

T; —

F(TZ) C

*

F(ri) + ...+ F(r)

n—1 2n—3 1 « (1 3 on—1
C < o + o 4+ 4 2n) (:c)+< + n+ + ) (y)
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Since 1 +3 +---+ (2n — 1) = n?, we obtain

yix[F(ﬁ)i...iF(rn)}y;I c F(x);F(y).

(2)

Now we let n — oco. Then §(A,) — 0 and with respect to the definition of
the integral, by (2) and by the closedness of the set 1 (F(x) ¥ F(y)) we have

*

! /yF(t)dtC w

y—x

To obtain the first inclusion of (1) we take an even positive integer n. Let
k =n/2 and let us choose i € {1,...,k}. We note that 3(r; + 7;) = 1(z + )
for j =n+ 1 —1i. Again by the x-concavity of F' we infer

*

F (“’” . y) c %(F(n) I F().

Summing up over i € {1,...,k} leads to

kF<xJ2ry) Ck[F(Tl)J*r...+F(Tk)+F(Tk+1)+...+F(Tn)}

or

* *

F(5FY) e o lrm b R 3

for all even n. The right-hand side of inclusion (3) tends to —— [ F(t) dt as
y—z Jx

n — o0o. Hence
x+y 1 Y
F F(t)dt.
( 2 )Cyw/z )

The proof of the next theorem runs similarly.

THEOREM 2’
If F:[a,b] — clb(X) is a conver multifunction, then the following inclusions

hold
F(x);rF(y)cylx/:F(t)dth(x;Ly) (4)

for all intervals [x,y] C [a,b].

Inclusions (4) for the Aumann integral may be found in the paper of E. Sad-
owska [9, Theorem 1], where the integral Jensen inequality is applied (see the
paper of J. Matkowski and K. Nikodem [6]). The assumptions of Theorem 2’
differ somewhat from that of Theorem 1 in [9)].
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3. Hardy-Litllewood-Pélya majorization theorem for multifunctions

In this part of the note we are going to transfer the Hardy—Littlewood—
Pélya majorization principle for convex functions (cf. [5, ch. 8, § 5]) to convex
and #-concave multifunctions.

THEOREM 3
Let x1, x2, y1, y2 be real numbers such that o < x1, Y2 < y1, 1 < Y1,
1+ x2 =y1 +y2. If F:R — clb(X) is x-concave, then

F(x1) + F(z2) C F(y1) + F(y2)- (5)
Proof. The assumptions of the theorem imply the inequality yo < xo <

1 < y1. At first we assume that 13 # yo. Setting A\ = Z;Z; W= Zi:Z; by
the x-concavity we have

Flw2) = F(Ays + (1= Nyn) C AF () + (1 — N F(y),

F(x1) = F(py2 + (1 — p)y1) C pF(y2) + (1 — ) F(y1).

Multiplying the above inclusions by y; — y2 and summing them up together we
obtain

*

(g1 —12) (F(@1) + F(2)) C (w3 —ya+a1—y2) F(yn) + (1 — 72 +11 —71) F(12).

The equality x1 + x2 = y1 + y2 and the above inclusions lead to

F(x1) + F(22) C F(y1) + F(y2)-
If y1 = yo, then y; = 21 = x2 = Y2 and condition (5) holds true.

Theorem 3 for concave multifunctions can be found in [7, Theorem 2.14] in
another formulation. The same concerns the next theorem. Its proof is similar
to the previous one.

THEOREM 3’
Let x1, x2, y1, y2 be real numbers such that xo < x1, Y2 < y1, 1 < y1 and,
x1+ 22 =y1+y2. If F:R — clb(X) is conver, then

F(y1) + Fly2) C Fla1) + Flaa).

COROLLARY 1
Let a, b, ¢ be non-negative numbers and let a +b < c. If F:]0,00) — clb(X)
18 a *-concave multifunction, then

Fla+b) + F(c) C F(a) + F(b+ o).
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Proof. To obtain the Corollary from Theorem 3 it is enough to set x1 = ¢,
xo=a+b,y1 =b+c, yo = a (see [5, pp. 194-195 ]).

COROLLARY 2

Let 1, x2, y1, y2 be real numbers satisfying the conditions: xo < x1, Y2 < Y1,
21 <y1 and x1 + 2 < y1 +y2. If F:R — ¢lb(X) is an increasing *-concave
multifunction, then

F(z1) + F(x2) C F(y1) + F(y2)
holds true.

Proof. Taking z; = y1 and 22 = 1 + x5 — y1 we can easily check that the
numbers x1, T2, 21, 29 satisfy the assumption of Theorem 3. Hence

F(z1) & F(x) C F(21) + F(z2).

Moreover, F' is increasing and 2z < ys, SO

F(a1) + F(xs) C F(y1) + Flys).

THEOREM 4
Assume that x;, y;, i € {1,...,n} are real numbers such that

Ty < Xp_q < ... <o, Yn S Yn—1 < ... <1, (6)

k k n n
i=1 i=1 i=1 i=1
and
ZTrt+1 < Yk, ke{2,...,n—1}. (8)
If F:R — clb(X) is a *-concave multifunction, then

*

F(w1)+ -+ F(zn) C F(y1) + -+ + F(yn). 9)

Proof. The theorem is valid for n = 2 thanks to Theorem 3.
Now we assume (9) true for an n € N, n > 2 and take arbitrary numbers
T, ¥i, t € {1,...,n,n + 1} satisfying

Tnt1 < xp <. < oy, Ynt+1 < yn < ... <y, (6n+1)
n+1 n+1

k k
legzy“ ke{la"'an}a lezzyl (7n+1)
1=1 =1 i=1 =1

and
Th41 Syka ke {2,,’11} (8"+1)
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By (7n+1) we have

n n—1
Zﬂfi = Z Yi + (Un + Ynt1 — Tnt1)-
i=1 i=1

According to the induction hypothesis

* * * *

F(x1)+"'+F(xn)CF(y1)+"'+F(yn—1)+F(yn+yn+1_$n+1)

since Yn + Yn+1 — Tnt+1 < Yn—1 (see (6p41) and (75,41)). If we show that

* *

F(yn + Ynt1 — Tnt1) + F(@ny1) C Fyn) + F(Ynt1) (10)

holds, the proof will be complete.

Consider two cases: (a) Znt+1 < Yn + Ynt1 — Tny1 and (b) zpp1 > yn +
Yn+1 — Tnt1. In case (b) (Yn + Ynt1 — Tnt1) + Tnt1 = Yn + Ynt1s Ynt1 < Yn,
Yn + Yn+1 — Tny1 < Tpt1 and z,41 < Y, according to (8,4+1). By Theorem 3
condition (10) holds. In case (a), Tnt+1+ (Yn+Ynt1—Tnt1) = Yn+Yn+1, Ynt1 <
Yns Trt1 < Yn +Unt1 — g1 a0 Yp + Ung1 — Tng1 = Yn + Wnt1 — Tng1) < Un
because Yn+1 < Tpt1. By Theorem 3 condition (10) holds.

THEOREM 4’
Assume that xz;, y;, i € {1,...,n} are real numbers such that

xngxn71§~-~§x1; yngyn71§~-~§y1a

k k n N
inSZyi, ke{l,...,n—1}, Zz’Z:Zyl
' ' i=1 i=1
and
Th+1 < Yk s ke{2,...,n—1}.
If F:R — clb(X) is a convex multifunction, then

* * *

F(y1)+"'+F(yn) CF(£1)+"'+F($n)'
Results of the same kind as Theorem 4 and 4’, formulated in some other

language, were obtained by K. Nikodem (cf. [7, Theorem 2.14]).
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