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Abstract. Let f be a polynomial in two complex variables. We say that
f is nearly irreducible if any two nonconstant polynomial factors of f have
a common zero in C2. In the paper we give a criterion of nearly irreducibility
for a given polynomial f in terms of its Newton diagram.

1. Introduction

Let f(X,Y ) =
∑
cαβX

αY β ∈ C[X,Y ] be a nonzero polynomial of positive
degree. We say that the polynomial f is quasi–convenient if cα0 6= 0 and c0β 6= 0 for
some integers α, β ≥ 0. Otherwise f(X,Y ) = XsY tf̃(X,Y ) for some nonnegative
integers s and t, where f̃ is a quasi-convenient polynomial or it is a nonzero
constant. Let suppf := {(α, β) ∈ N2 : cαβ 6= 0}. We define

∆∞(f) := convex({(0, 0)} ∪ suppf).

The polygon ∆∞(f) is called the Newton diagram at infinity of the polynomial f .
For any nonzero vector ~w = [p, q] of the real plane R2 we put

in(f, ~w)(X,Y ) :=
∑

pα+qβ=d~w(f)

cαβX
αY β ,

where
d~w(f) = max {pα+ qβ : (α, β) ∈ suppf}.
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We call a quasi–convenient polynomial f(X,Y ) ∈ C[X,Y ] nondegenerate at
infinity if for every real vector ~w = [p, q] such that p > 0 or q > 0 the system of
equations

in(f, ~w)(X,Y ) = ∂

∂X
in(f, ~w)(X,Y ) = ∂

∂Y
in(f, ~w)(X,Y ) = 0

has no solutions in C∗ ×C∗, where C∗ = C \ {0}.

Definition 1.1
A polynomial f(X,Y ) ∈ C[X,Y ] of a positive degree is nearly irreducible if any
two nonconstant polynomial factors g(X,Y ), h(X,Y ) ∈ C[X,Y ] of f(X,Y ) have
a common zero in C2.

Note that every nearly irreducible polynomial has a connected zero-set. Note
that nearly irreducible polynomial may be reducible (e.g. f = XY ). It is easy
to check that if f is nearly irreducible and grad f = ( ∂f∂X ,

∂f
∂Y ) 6= 0 on the curve

f(X,Y ) = 0 then f is irreducible (see [17]).
The notion of nearly irreducibility of polynomials in two variables was intro-

duced in [1] by S. Abhyankar and L. A. Rubel in connection with research of
these authors on irreducibility of polynomials of the form f(X)− g(Y ). The main
result of [1] was reproved by L. A. Rubel, A. Shinzel and H. Tverberg in [17].
Afterwards A. Płoski generalized the result of S. Abhyankar and L. A. Rubel by
using the Newton diagram of a given polynomial (see [16], Theorem 2) which is
Theorem 1.2 in this note.

Theorem 1.2 ([16], Theorem 2)
Let f be a quasi-convenient polynomial such that

1◦ f is nondegenerate at infinity,

2◦ every face of the polygon ∆∞(f) not included in coordinate axes has a neg-
ative slope, (i.e. it is a segment included in the straight line of the form
pα+ qβ = r for some p, q > 0).

Then the polynomial f is nearly irreducible.

Our theorem (Theorem 1.3) generalizes the result of Płoski. We state

Theorem 1.3
Let f be a quasi-convenient polynomial such that

1◦ f is nondegenerate at infinity,

2◦ if ~w = [p, q] is a nonzero vector such that pq 6 0 then the system of equa-
tions in(f, ~w)(X,Y )=in(f,−~w)(X,Y )=0 has no solutions in C∗×C∗.

Then the polynomial f is nearly irreducible.

In comparison to Theorem 1.2, in Theorem 1.3 there are no restrictions on
the shape of the polygon ∆∞(f). The proof of Theorem 1.3, based on the
Kouchnirenko-Bernstein Theorem, is given in Section 3.
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α

β

~w

−~w

(0, 0) (1, 0)

(0, 1)

(3, 2)

(2, 3)

∆∞(f)

Fig. 1: Newton diagram at infinity of f .

Remark
If there is no pair of parallel faces of the polygon ∆∞(f) then for any ~w 6= ~0 at
least one of the polynomials in(f, ~w)(X,Y ) or in(f,−~w)(X,Y ) is a monomial and
then condition 2◦ in our theorem trivially holds, so Theorem 1.3 implies Theorem
1.2 (see Example 3).

The examples presented below show that the assumption 2◦ in Theorem 1.3
is essential. In particular, Example 2 shows that nonnegative slope of boundary
faces of ∆∞(f) not included in coordinate axes and nondegeneracy at infinity of
f are not enough to nearly irreducibility property

Example 1
Let us consider the polynomial

f(X,Y ) = X3Y 2 +X2Y 3 −X − Y = (XY − 1)(XY + 1)(X + Y ),

whose Newton diagram at infinity is drawn in Figure 1.
It is easily seen that the polynomial f is nondegenerate at infinity and that it

is not nearly irreducible. Note that condition 2◦ of Theorem 1.3 is not satisfied.
Namely, if ~w = [−1, 1] then in(f, ~w)(X,Y ) = Y (X2Y 2−1) and in(f,−~w)(X,Y ) =
X(X2Y 2 − 1). The system

in(f, ~w)(X,Y ) = in(f,−~w)(X,Y ) = 0

has a solution in C∗ ×C∗.

Example 2
Let f(X,Y ) = (X − 1)(X + 1)(X + Y ) = X3 + X2Y − X − Y , whose Newton
diagram at infinity is drawn in Figure 2. The polynomial f is nondegenerate at
infinity and obviously f is not nearly irreducible. The assumption 2◦ of Theorem
1.3 does not hold because if ~w = [0, 1] then in(f, ~w)(X,Y ) = Y (X2 − 1) and
in(f,−~w)(X,Y ) = X(X2− 1) have a common zero in C∗×C∗. Note that for any
c 6= 0 the polynomial f(X,Y ) + c satisfies 2◦, so it is nearly irreducible.
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(2, 1)

(3, 0)

~w

−~w

∆∞(f)

Fig. 2: Newton diagram at infinity of f .
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(3, 4)
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∆∞(f)

~w

−~w

Fig. 3: Newton diagram at infinity of f .

Example 3
Let f(X,Y ) = Y +X2 +XY 3 +X3Y 4 +X5Y 3. Its Newton diagram at infinity is
given in Figure 3. The polynomial f is nondegenerate at infinity but we can not
apply Theorem 1.2 because the polygon ∆∞(f) possesses faces with positive slope.
Nevertheless, in(f, ~w)(X,Y ) or in(f,−~w)(X,Y ) is a monomial for any ~w 6= ~0,
hence after Theorem 1.3, the polynomial f is nearly irreducible.

2. Kouchnirenko-Bernstein Theorem

The famous Bézout theorem for affine curves states that two polynomial equa-
tions of given degrees m, n > 0 have at most mn common solutions provided that
their number is finite. If additionally their Newton diagrams at infinity are known
then we can give more precise estimation. Namely, we may replace the product
mn by the Minkowski mixed area of these diagrams. Such results were proved in
Kouchnirenko’s and Bernstein’s papers in 1970s [10, 11, 12, 4]. See also [3, 5, 8, 9].
Focusing only on two-dimensional case much more precise results are possible.
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Let f(X,Y ), g(X,Y ) ∈ C[X,Y ] be polynomials of positive degrees. If P =
(a, b) ∈ C2 is a solution of the system

f(X,Y ) = 0, g(X,Y ) = 0,

then the symbol (f, g)P denotes the intersection multiplicity of f and g at P . We
use the definition of the intersection multiplicity as in [7]. We have (f, g)P < +∞
if and only if P is an isolated solution of the given system.

A pair (f, g) of quasi–convenient polynomials is nondegenerate at infinity if
for any real vector ~w = [p, q] such that p > 0 or q > 0 the system of equations
in(f, ~w)(X,Y ) = in(g, ~w)(X,Y ) = 0 has no solutions in C∗ ×C∗.

For a pair of quasi–convenient polynomials f(X,Y ), g(X,Y ) ∈ C[X,Y ] we
denote by ν∞(f, g) the double Minkowski mixed area (see [18] for definition) of
the diagrams ∆∞(f) and ∆∞(g), i.e.

ν∞(f, g) := Area(∆∞(f) + ∆∞(g))−Area∆∞(f)−Area∆∞(g),
where + denotes the Minkowski sum.

Proposition 2.1 (Additivity of the Newton diagrams at infinity)
If polynomials f , g ∈ C[X,Y ] are quasi–convenient then

∆∞(fg) = ∆∞(f) + ∆∞(g).

Proof of Proposition 2.1. The inclusion ∆∞(fg) ⊂ ∆∞(f)+∆∞(g) is obvious and
it holds for any pair of nonzero polynomials. To prove the opposite inclusion we
consider for every nonzero polynomial h of a positive degree its Newton diagram
∆(h) := convex(supph).

Let u ∈ ∆∞(f) and v ∈ ∆∞(g). It is easily seen that there exist points
u1 ∈ ∆(f), v1 ∈ ∆(g) and real numbers 0 ≤ s, t ≤ 1 such, that u = su1 and
v = tv1. We need to show that u + v = su1 + tv1 ∈ ∆∞(fg). The following
equality is well-known: ∆(f) + ∆(g) = ∆(fg) and it holds for every nonzero
polynomials f and g (see [14]). Let us note that

u1 + v1 ∈ ∆(f) + ∆(g) = ∆(fg) ⊂ ∆∞(fg).

The quasi–convenience of the polynomials f and g means that their supports
have common points with both coordinate axes. Therefore ∆(f) ⊂ ∆∞(fg) and
∆(g) ⊂ ∆∞(fg). Hence (0, 0), u1, v1, u1 +v1 ∈ ∆∞(fg). By convexity of ∆∞(fg)
we see that su1 + tv1 ∈ ∆∞(fg).

The assumption in Proposition 2.1 about quasi-convenience of the polyno-
mials f and g is essential. For instance, if f(X,Y ) = X and g(X,Y ) = Y ,
then f(X,Y ) g(X,Y ) = XY and ∆∞(fg) is a segment, while ∆∞(f) + ∆∞(g) is
a square. By Proposition 2.1 we may write

ν∞(f, g) = Area∆∞(fg)−Area∆∞(f)−Area∆∞(g).
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Let us present a useful version of the Kouchnirenko–Bernstein Theorem in two-
dimensional case.

Theorem 2.2 (Kouchnirenko–Bernstein)
Let polynomials f(X,Y ), g(X,Y ) ∈ C[X,Y ] be quasi–convenient. It holds

1◦ if f and g are coprime then
∑
P∈C2(f, g)P ≤ ν∞(f, g),

2◦
∑
P∈C2(f, g)P = ν∞(f, g) if and only if the pair (f, g) is nondegenerate at

infinity.

The first proof of this theorem (in multi-dimensional case) was given by Kouch-
nirenko in [10] under the additional assumption that the polynomials f and g have
identical Newton diagrams at infinity.

The original Bernstein Theorem was formulated for Laurent polynomials in n
variables without mentioning Kouchnirenko’s assumption and it concerned count-
ing isolated solutions of a system of such polynomials in the set (C∗)n (see [4]).
Theorem 2.2 follows from its local version due to Kouchnirenko (i.e. estimation of
the intersection multiplicity of plane curves given in terms of their local Newton
diagrams, see [10, 2, 15, 6, 13]) and from Bézout Theorem for projective curves.
For the sake of completeness, we give the proof of Theorem 2.2 in Section 4.

3. Proof of Theorem 1.3

The proof of our theorem requires two lemmas. Second of them follows from
well-known properties of the Minkowski mixed area (see [18], Theorem 5.1.7) but
for the convenience of the reader we will give a proof.

Lemma 3.1
Let f(X,Y ) be a polynomial nondegenerate at infinity. If g(X,Y ), h(X,Y ) ∈
C[X,Y ] are two coprime divisors of f then the pair (g, h) is nondegenerate at
infinity.

Proof. Since f(X, 0)f(0, Y ) 6= 0, we have g(X, 0)g(0, Y )h(X, 0)h(0, Y ) 6= 0 in
C[X,Y ]. Therefore the polynomials g and h are quasi–convenient. Let us suppose,
contrary to our claim, that the pair (g, h) is degenerate at infinity. By definition
there exists a real vector ~w = [p, q], where p > 0 or q > 0, such that in(g, ~w)(x, y) =
in(h, ~w)(x, y) = 0 for some (x, y) ∈ C∗ × C∗. Since g(X,Y ) and h(X,Y ) are
coprime divisors of the polynomial f(X,Y ), there exists a polynomial P (X,Y )
such that f(X,Y ) = g(X,Y )h(X,Y )P (X,Y ). Let us note that

in(f, ~w)(X,Y ) = in(g, ~w)(X,Y )in(h, ~w)(X,Y )in(P, ~w)(X,Y ),

hence
in(f, ~w)(x, y) = ∂

∂X
in(f, ~w)(x, y) = ∂

∂Y
in(f, ~w)(x, y) = 0.

The above equalities contradict nondegeneracy at infinity of the polynomial f .
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Lemma 3.2
If the polynomials f, g ∈ C[X,Y ] of positive degrees are quasi–convenient then

1◦ ν∞(f, g) ≥ 0,

2◦ ν∞(f, g) = 0 if and only if the diagrams ∆∞(f) and ∆∞(g) form segments
included in the same straight line passing through the origin.

In the proof of Lemma 3.2 we need the following Brunn–Minkowski inequality
(see [19], Theorem 6.5.3):

Theorem 3.3
If A and B are nonempty and measurable subsets of R2 then

(Area(A+B))1/2 ≥ (AreaA)1/2 + (AreaB)1/2,

where A+B denotes the Minkowski sum of A and B.

Proof of Lemma 3.2. Note that ∆∞(fg) = ∆∞(f) + ∆∞(g) (see Proposition 2.1).
Using Brunn–Minkowski inequality for the sets A = ∆∞(f) and B = ∆∞(g) we
have

(Area∆∞(fg))1/2 ≥ (Area∆∞(f))1/2 + (Area∆∞(g))1/2,

hence

Area∆∞(fg) ≥ Area∆∞(f) + Area∆∞(g) + 2[(Area∆∞(f))(Area∆∞(g))]1/2.

This proves 1◦.
Suppose now that in 1◦ the equality holds. Last inequality implies that

Area∆∞(f) = 0 or Area∆∞(g) = 0. Suppose, without loss of generality, that
Area∆∞(f) = 0. Since the set ∆∞(f) is convex, (0, 0) ∈ ∆∞(f), and deg f > 0,
we get that ∆∞(f) is a segment included in a straight line passing through the
origin. Moreover,

Area∆∞(fg) = Area∆∞(g).

It is easy to check that the diagram ∆∞(g) does not contain a point not be-
longing to the straight line including ∆∞(f). Indeed, otherwise we would have
Area∆∞(fg) > Area∆∞(g). This last observation proves 2◦.

Proof of Theorem 1.3. Let us suppose, contrary to our claim, that there exist poly-
nomials g(X,Y ), h(X,Y ) ∈ C[X,Y ] of positive degrees being divisors of the poly-
nomial f(X,Y ) such that ∑

P∈C2

(g, h)P = 0.

Obviously, the polynomials g(X,Y ) and h(X,Y ) are coprime and they are quasi–
convenient. From Lemma 3.1 it follows that the pair (g, h) is nondegenerate at
infinity. Using now Kouchnirenko–Bernstein Theorem (Theorem 2.2) we state that

ν∞(g, h) = 0.
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Therefore, Lemma 3.2 implies that the diagrams ∆∞(g) and ∆∞(h) are segments
included in the same straight line pα + qβ = 0, where ~w = [p, q] 6= ~0 and pq 6 0.
So, we have

in(g, ~w)(X,Y ) = in(g,−~w)(X,Y ) = g(X,Y ),
in(h, ~w)(X,Y ) = in(h,−~w)(X,Y ) = h(X,Y ).

There exists a polynomial P (X,Y ) such that

f(X,Y ) = g(X,Y )h(X,Y )P (X,Y ),

hence

in(f, ~w)(X,Y ) = in(g, ~w)(X,Y )in(h, ~w)(X,Y )in(P, ~w)(X,Y ),
in(f,−~w)(X,Y ) = in(g,−~w)(X,Y )in(h,−~w)(X,Y )in(P,−~w)(X,Y ),

so

in(f, ~w)(X,Y ) = g(X,Y )h(X,Y )in(P, ~w)(X,Y ),
in(f,−~w)(X,Y ) = g(X,Y )h(X,Y )in(P,−~w)(X,Y ).

By condition 2◦ of our assumptions we see that {g(X,Y ) = 0} ⊂ {XY = 0} and
{h(X,Y ) = 0} ⊂ {XY = 0}. Let us recall that the polynomials g and h are
coprime. Using Hilbert Nullstellensatz we conclude that the polynomials g and h
are powers (up to a constant) of different variables. Therefore the point (0, 0) is
the solution of the system g(X,Y ) = h(X,Y ) = 0, which is a contradiction.

4. Proof of Theorem 2.2

Let f(X,Y ) =
∑
cαβX

αY β ∈ C[X,Y ] be a nonzero polynomial of positive
degree. Recall that the Newton diagram of the polynomial f is, by definition,
∆(f) := convex(suppf).

For every quasi–convenient polynomial we consider additionally its Newton
diagram at zero, which is the closure of the set ∆∞(f) \ ∆(f) in the natural
topology of the real plane. We denote it by ∆0(f).

Obviously ∆∞(f) = ∆0(f)∪∆(f). If (0, 0) ∈ suppf , then ∆∞(f) = ∆(f) and
∆0(f) = ∅ (see Figure 4).

For any quasi-convenient polynomial f we consider polygons ∆I(f) and ∆II(f)
such that the triangle with vertices (0, 0), (deg f, 0), (0,deg f) is the union of the
sets ∆∞(f), ∆I(f) and ∆II(f), whose interiors are pairwise disjoint and such
that (deg f, 0) ∈ ∆I(f) \∆∞(f) or ∆I(f) = ∅ and (0,deg f) ∈ ∆II(f) \∆∞(f) or
∆II(f) = ∅ (see Figure 5).
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α

β

∆(f)

∆0(f)

(0, 0) (deg f, 0)

(0, deg f)

Fig. 4: Newton diagram at zero of f .

α

β

∆∞(f)

∆I(f)

∆II(f)

(0, 0) (deg f, 0)

(0, deg f)

Fig. 5: Polygons ∆I(f) and ∆II(f).
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Let F (X,Y, Z) be the homogenization of the polynomial f(X,Y ) given by the
formula F (X,Y, Z) = Zmf(X/Z, Y/Z), where m = deg f . It is well-known that
the projective curve F (X,Y, Z) = 0 is a projective closure of the affine curve
f(X,Y ) = 0 and it is natural to consider the affine curves F (1, Y, Z) = 0 and
F (X, 1, Z) = 0. If the polynomial f(X,Y ) is quasi–convenient, then the polyno-
mials f1(Y, Z) := F (1, Y, Z) and f2(X,Z) := F (X, 1, Z) are also quasi–convenient
and the polynomial F (X,Y, Z) is the homogenization of each of them.

After [13, Corollary 2.2, page 183] we have

Area∆I(f) = Area∆0(f1) and Area∆II(f) = Area∆0(f2).

For a pair of quasi–convenient polynomials f(X,Y ), g(X,Y ) ∈ C[X,Y ] we
denote ν0(f, g) := Area∆0(fg)−Area∆0(f)−Area∆0(g). The pair (f, g) is non-
degenerate at zero if for any real vector ~w = [p, q] such that p < 0 and q < 0
the system of equations in(f, ~w)(X,Y ) = in(g, ~w)(X,Y ) = 0 has no solutions in
C∗ ×C∗.

Let us recall the estimation of the intersection multiplicity due to Kouchnirenko
(see [10, Theorem 1] and [15, Theorem 1.2]). By (f, g)0 we denote the intersection
multiplicity of f and g at O = (0, 0) ∈ C2.

Theorem 4.1 (Kouchnirenko)
If f(X,Y ), g(X,Y ) are quasi–convenient polynomials then

1◦ (f, g)0 ≥ ν0(f, g),

2◦ (f, g)0 = ν0(f, g) if and only if the pair (f, g) is nondegenerate at zero.

A short and elegant proof of Theorem 4.1 is given in [15], which is based on the
Newton–Puisseux theorem. Let us note that the above estimation is interesting
only for a pair of quasi-convenient polynomials without constant terms. Indeed,
if f(0, 0) 6= 0 or g(0, 0) 6= 0, then (f, g)0 = ν0(f, g) = 0 and at the same time the
condition of nondegeneracy is trivially satisfied.

Apart from Theorem 4.1, in order to prove Theorem 2.2, we need the next
lemma, which follows immediately from Bézout theorem for projective curves.

Lemma 4.2 (Bézout)
Let f(X,Y ), g(X,Y ) ∈ C[X,Y ] be coprime polynomials of degree m and n, respec-
tively, and let F (X,Y, Z) and G(X,Y, Z) be their homogenizations. If P1 = (1:0:0),
P2 = (0:1:0) ∈ P2(C), where P2(C) is the projective plane, then

1◦
∑
P∈C2(f, g)P ≤ mn − (F,G)P1 − (F,G)P2 , where (F,G)P1 and (F,G)P2

denote the intersection multiplicity of the projective curves F (X,Y, Z) = 0
and G(X,Y, Z) = 0 at the points P1 and P2, respectively,

2◦
∑
P∈C2(f, g)P = mn − (F,G)P1 − (F,G)P2 if and only if the projective

curves F (X,Y, Z) = 0 and G(X,Y, Z) = 0 intersect simultaneously the line
at infinity L∞ = {(x:y:z) ∈ P2(C) : z = 0} at most at the points P1 and
P2.
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Proof of Theorem 2.2. Let f(X,Y ), g(X,Y ) ∈ C[X,Y ] be quasi-convenient poly-
nomials of positive degrees m and n, respectively.

We may write

m2

2 = Area∆∞(f) + Area∆I(f) + Area∆II(f)

= Area∆∞(f) + Area∆0(f1) + Area∆0(f2),

n2

2 = Area∆∞(g) + Area∆I(g) + Area∆II(g)

= Area∆∞(g) + Area∆0(g1) + Area∆0(g2)

and

(m+ n)2

2 = Area∆∞(fg) + Area∆I(fg) + Area∆II(fg)

= Area∆∞(fg) + Area∆0(f1g1) + Area∆0(f2g2).

Hence
ν∞(f, g) = mn− ν0(f1, g1)− ν0(f2, g2). (1)

Since (F,G)P1 = (f1, g1)0 and (F,G)P2 = (f2, g2)0, using the estimation of
intersection multiplicity (Theorem 4.1, 1◦) we state that (F,G)P1 = (f1, g1)0 ≥
ν0(f1, g1) and (F,G)P2 = (f2, g2)0 ≥ ν0(f2, g2). By Bézout Lemma (Lemma 4.2,
1◦) and the equality (1) we conclude that∑

P∈C2

(f, g)P ≤ mn− ν0(f1, g1)− ν0(f2, g2) = ν∞(f, g),

provided that the polynomials f and g are coprime. So, we proved estimation
1◦ of Theorem 2.2. To prove condition 2◦ let us note that for any real vector
~w = [p, q] 6= ~0 we have

in(f1, ~u)(Y,Z) = Zmin(f, ~w)
( 1
Z
,
Y

Z

)
and

in(g1, ~u)(Y, Z) = Znin(g, ~w)
( 1
Z
,
Y

Z

)
,

where ~u = [q−p,−p]. Hence, the pair (f1, g1) is nondegenerate at zero if and only
if for any real vector ~w = [p, q] such that p > 0 and p > q, the system of equations
in(f, ~w)(X,Y ) = in(g, ~w)(X,Y ) = 0 has no solutions in C∗ × C∗. Similarly, we
have

in(f2, ~v)(X,Z) = Zmin(f, ~w)
(X
Z
,

1
Z

)
and

in(g2, ~v)(X,Z) = Znin(g, ~w)
(X
Z
,

1
Z

)
,



[76] Mateusz Masternak

where ~v = [p− q,−q]. Hence, the pair (f2, g2) is nondegenerate at zero if and only
if for any real vector ~w = [p, q] such that q > 0 and q > p, the system of equations
in(f, ~w)(X,Y ) = in(g, ~w)(X,Y ) = 0 has no solutions in C∗ ×C∗.

Moreover, let us note that if ~w = [p, q] and p = q > 0 then the sytem of
equations in(f, ~w)(X,Y ) = in(g, ~w)(X,Y ) = 0 has no solutions in C∗ ×C∗ if and
only if the projective curves {F (X,Y, Z) = 0} and {G(X,Y, Z) = 0} intersect
simultaneously the line at infinity L∞ at most at the points P1 and P2.

Therefore, one can see that the pair (f, g) is nondegenerate at infinity if and
only if both pairs (f1, g1), (f2, g2) are nondegenerate at zero and it holds the
inclusion {F (X,Y, Z) = 0} ∩ {G(X,Y, Z) = 0} ∩ L∞ ⊂ {P1, P2}.

Note that if the pair (f, g) is nondegenerate at infinity then f and g are co-
prime. Since (F,G)P1 = (f1, g1)0 and (F,G)P2 = (f2, g2)0, to finish the proof of
2◦ of Theorem 2.2, it is enough to apply 2◦ of Theorem 4.1 to the pairs (f1, g1)
and (f2, g2) and to use Bézout Lemma (Lemma 4.2, 2◦) and the equality (1).
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