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On the Chow ring of certain Fano fourfolds

Abstract. We prove that certain Fano fourfolds of K3 type constructed by
Fatighenti–Mongardi have a multiplicative Chow–Künneth decomposition.
We present some consequences for the Chow ring of these fourfolds.

1. Introduction

This note is a part of a program aimed at understanding the class of varieties
admitting a multiplicative Chow–Künneth decomposition, in the sense of [18]. The
concept of multiplicative Chow–Künneth decomposition was introduced in order
to better understand the (conjectural) behaviour of the Chow ring of hyperkähler
varieties, while also providing a systematic explanation of the peculiar behaviour of
the Chow ring of K3 surfaces and abelian varieties. In [12], the following conjecture
is raised.

Conjecture 1.1
Let X be a smooth projective Fano variety of K3 type (i.e. dimX = 2m and
the Hodge numbers hp,q(X) are 0 for all p 6= q except for hm−1,m+1(X) = 1 and
hm+1,m−1(X) = 1). Then X has a multiplicative Chow–Künneth decomposition.

This conjecture is verified in some special cases [11], [10], [12]. The aim of the
present note is to provide some more evidence for Conjecture 1.1. We consider
two families of Fano fourfolds of K3 type (these are the families labelled B1 and
B2 in [5]).
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Theorem 1 (=Theorem 4.1)
Let X be a smooth fourfold of one of the following types

(i) a hypersurface of multidegree (2, 1, 1) in M = P3 × P1 × P1;

(ii) a hypersurface of multidegree (2, 1) in M = Gr(2, 4) × P1 (with respect to
the Plücker embedding).

Then X has a multiplicative Chow–Künneth decomposition.

Theorem 4.1 has interesting consequences for the Chow ring A∗(X)Q of these
fourfolds:

Corollary 1 (=Corollary 5.1)
Let X and M be as in Theorem 4.1. Let R3(X) ⊂ A3(X)Q be the subgroup
generated by the Chern class c3(TX), the image of the restriction map A3(M)Q →
A3(X)Q, and intersections A1(X)Q · A2(X)Q of divisors with 2-cycles. The cycle
class map induces an injection

R3(X) ↪→ H6(X,Q).

This is reminiscent of the famous result of Beauville–Voisin describing the Chow
ring of a K3 surface [2]. More generally, there is a similar injectivity result for the
Chow ring of certain self-products Xm (Corollary 5.1).

Another consequence is the existence of a multiplicative decomposition in the
derived category for families of Fano fourfolds as in Theorem 4.1 (Corollary 5.4).

Conventions 1
In this note, the word variety will refer to a reduced irreducible scheme of finite
type over C. For a smooth variety X, we will denote by Aj(X) the Chow group
of codimension j cycles on X with Q-coefficients.
The notation Ajhom(X) will be used to indicate the subgroups of homologically
trivial cycles.
For a morphism between smooth varieties f : X → Y , we will write Γf ∈ A∗(X×Y )
for the graph of f . The contravariant category of Chow motives (i.e. pure motives
with respect to rational equivalence as in [17], [15]) will be denoted byMrat.
We will write H∗(X) := H∗(X,Q) for a singular cohomology with Q-coefficients.

2. The Fano fourfolds

Proposition 2.1

(i) Let X ⊂ P3 × P1 × P1 be a smooth hypersurface of multidegree (2, 1, 1)
(following [5], we will say X is “of type B1”). Then X is Fano, and the
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Hodge numbers of X are

1
0 0

0 3 0
0 0 0 0

0 1 22 1 0
0 0 0 0

0 3 0
0 0

1

(ii) Let X ⊂ Gr(2, 4) × P1 be a smooth hypersurface of multidegree (2, 1) with
respect to the Plücker embedding (following [5], we will say X is “of type
B2”). Then X is Fano, and the Hodge numbers of X are

1
0 0

0 2 0
0 0 0 0

0 1 22 1 0
0 0 0 0

0 2 0
0 0

1

Proof. An easy way to determine the Hodge numbers is to use the following iden-
tification:

Lemma 2.2
Let Z be a smooth projective variety of Picard number 1, and X ⊂ Z×P1 a general
hypersurface of bidegree (d, 1). Then X is isomorphic to the blow-up of Z with
centre S, where S ⊂ Z is a smooth dimensionally transversal intersection of 2
divisors of degree d.

Conversely, given a smooth dimensionally transversal intersection S ⊂ Z of
2 divisors of degree d, the blow-up of Z with centre S is isomorphic to a smooth
hypersurface X ⊂ Z × P1 of bidegree (d, 1).

Proof. This is [5, Lemma 2.2]. The gist of the argument is that X determines
a pencil of divisors in Z, of which S is the base locus. In terms of equations, if X
is defined by y0f + y1g = 0 (where [y0 : y1] ∈ P1 and f, g ∈ H0(Z,OZ(d))) then S
is defined by f = g = 0. It follows that for X general (in the usual sense of “being
parametrized by a Zariski open in the parameter space”) the locus S is smooth.

In the case (i), Z = P3 × P1 and S is a genus 7 K3 surface. In the case (ii),
Z = Gr(2, 4) (which is a quadric in P5), and S is a genus 5 K3 surface. This
readily gives the Hodge numbers.
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Remark 2.3
Fatighenti–Mongardi [5] give a long list of Fano varieties of K3 type. The Fano
fourfolds of Proposition 2.1 (i) and (ii) are labelled B1 resp. B2 in their list.

3. Multiplicative Chow–Künneth decomposition

Definition 3.1 (Murre [14])
Let X be a smooth projective variety of dimension n. We say that X has a CK
decomposition if there exists a decomposition of the diagonal

∆X = π0
X + π1

X + · · ·+ π2n
X in An(X ×X),

such that the πiX are mutually orthogonal idempotents and the action of πiX on
Hj(X) is the identity for i = j and zero for i 6= j. Given a CK decomposition for
X, we set

Ai(X)(j) := (π2i−j
X )∗Ai(X).

The CK decomposition is said to be self-dual if

πiX = tπ2n−i
X in An(X ×X) for all i.

Here tπ denotes the transpose of a cycle π. (NB: “CK decomposition” is short-hand
for “Chow–Künneth decomposition”.)

Remark 3.2
The existence of a Chow–Künneth decomposition for any smooth projective variety
is part of Murre’s conjectures [14], [15]. It is expected that for any X with a CK
decomposition, one has

Ai(X)(j)
??= 0 for j < 0, Ai(X)(0) ∩Ainum(X) ??= 0.

These are Murre’s conjectures B and D, respectively.

Definition 3.3 (Definition 8.1 in [18])
Let X be a smooth projective variety of dimension n. Let ∆sm

X ∈ A2n(X×X×X)
be the class of the small diagonal

∆sm
X := {(x, x, x) : x ∈ X} ⊂ X ×X ×X.

A CK decomposition {πiX} of X is multiplicative if it satisfies

πkX ◦∆sm
X ◦ (πiX ⊗ π

j
X) = 0 in A2n(X ×X ×X) for all i+ j 6= k.

In that case,
Ai(X)(j) := (π2i−j

X )∗Ai(X)
defines a bigraded ring structure on the Chow ring ; that is, the intersection prod-
uct has the property that

Im
(
Ai(X)(j) ⊗Ai

′
(X)(j′)

·−→ Ai+i
′
(X)

)
⊆ Ai+i

′
(X)(j+j′).

(For brevity, we will write MCK decomposition for “multiplicative Chow–Künneth
decomposition”.)
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Remark 3.4
The property of having an MCK decomposition is severely restrictive, and is closely
related to Beauville’s “(weak) splitting property” [1]. For more ample discussion,
and examples of varieties admitting a MCK decomposition, we refer to [18, Chapter
8], as well as [20], [19], [7], [13].

Remark 3.5
It turns out that any MCK decomposition is self-dual, cf. [8, Footnote 24].

There are the following useful general results.

Proposition 3.6 (Shen–Vial [18])
Let M,N be smooth projective varieties that have an MCK decomposition. Then
the product M ×N has an MCK decomposition.

Proof. This is [18, Theorem 8.6], which shows more precisely that the product CK
decomposition

πiM×N :=
∑
k+`=i

πkM × π`N ∈ AdimM+dimN ((M ×N)× (M ×N))

is multiplicative.

Proposition 3.7 (Shen–Vial [19])
Let M be a smooth projective variety, and let f : M̃ → M be the blow-up with
centre a smooth closed subvariety N ⊂M . Assume that

1◦ M and N have an MCK decomposition;
2◦ the Chern classes of the normal bundle NN/M are in A∗(0)(N);

3◦ the graph of the inclusion morphism N →M is in A∗(0)(N ×M);

4◦ the Chern classes cj(TM ) are in A∗(0)(M).

Then M̃ has an MCK decomposition, the Chern classes cj(TM̃ ) are in A∗(0)(M̃),
and the graph Γf is in A∗(0)(M̃ ×M).

Proof. This is [19, Proposition 2.4]. (NB: in loc. cit.,M andN are required to have
a self-dual MCK decomposition; however, the self-duality is actually a redundant
hypothesis, cf. Remark 3.5.)

In a nutshell, the construction of loc. cit. is as follows. Given MCK decom-
positions π∗M and π∗N (of M resp. N), one defines

πj
M̃

:= Ψ ◦
(
πjM ⊕

r⊕
k=1

πj−2k
N

)
◦Ψ−1 ∈ Adim M̃ (M̃ × M̃), (1)

where r + 1 is the codimension of N in M , and Ψ, Ψ−1 are certain explicit cor-
respondences (this is [19, Equation (13)]). Then one checks that the π∗

M̃
form an

MCK decomposition.
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4. Main result

Theorem 4.1
Let X be a smooth fourfold of one of the following types:

• a hypersurface of multidegree (2, 1, 1) in P3 × P1 × P1;
• a hypersurface of multidegree (2, 1) in Gr(2, 4) × P1 (with respect to the
Plücker embedding).

Then X has an MCK decomposition. Moreover, the Chern classes cj(TX) are in
A∗(0)(X).

Proof. The argument relies on the alternative description of the general X given
by Lemma 2.2.
Step 1: We restrict to X sufficiently general, in the sense that X is a blow-up as
in Lemma 2.2 with smooth centre S.

To construct an MCK decomposition for X, we apply the general Proposition
3.7, with M being either P3 × P1 or Gr(2, 4), and N being the K3 surface S ⊂M
determined by Lemma 2.2. All we need to do is to check that the assumptions of
Proposition 3.7 are met with.

Assumption 1◦ is verified, since both varieties with trivial Chow groupsM and
K3 surfaces S have an MCK decomposition. For M there is no choice involved
(M has a unique CK decomposition which is MCK). For S, we choose

π0
S := oS × S, π4

S := S × oS , π
2
S := ∆S − π0

S − π4
S ∈ A2(S × S), (2)

where oS ∈ A2(S) is the distinguished zero-cycle of [2]. This is an MCK decom-
position for S [18, Example 8.17].

Assumption 4◦ is trivially satisfied: one has A∗hom(M) = 0 and so (because
πjM acts as zero on H2i(M) for j 6= 2i) one has A∗(M) = A∗(0)(M).

To check assumptions 2◦ and 3◦, we consider things family-wise. That is, we
write

B̄ := PH0(M,L⊕2),
where the line bundle L is either OM (2, 1) (in case M = P3 × P1) or OM (2) (in
case M = Gr(2, 4)), and we consider the universal complete intersection

S̄ → B̄.

We write B0 ⊂ B̄ for the Zariski open parametrizing smooth dimensionally trans-
versal intersections, and S → B0 for the base change (so the fibres Sb of S → B0
are exactly the K3 surfaces that are the centres of the blow-up occurring in Lemma
2.2). We now make the following claim.

Claim 4.2
Let Γ ∈ Ai(S) be such that

Γ|Sb
= 0 in H2i(Sb) for all b ∈ B0.

Then also
Γ|Sb

= 0 in Ai(Sb) for all b ∈ B0.
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We argue that the claim implies that assumptions 2◦ and 3◦ of Proposition
3.7 are met with (and thus Proposition 3.7 can be applied to prove Theorem 4.1).
Indeed, let pj : S ×B0 S → S, j = 1, 2, denote the two projections. We observe
that

π0
S := 1

24(p1)∗c2(TS/B0) ∈ A4(S ×B0 S),

π4
S := 1

24(p2)∗c2(TS/B0) ∈ A4(S ×B0 S),

π2
S := ∆S − π0

S − π4
S ∈ A4(S ×B0 S)

defines a “relative MCK decomposition”, in the sense that for any b ∈ B0, the
restriction πiS |Sb×Sb

defines an MCK decomposition for Sb which agrees with (2).
Let us now check that assumption 2◦ is satisfied. Since A1(Sb) = A1

(0)(Sb), we
only need to consider c2 of the normal bundle. That is, we need to check that for
any b ∈ B0 there is vanishing

(π2
Sb

)∗c2(NSb/M ) ??= 0 in A2(Sb). (3)

But we can write

(π2
Sb

)∗c2(NSb/M ) =
(
(π2
S)∗c2(NS/(M×B0))

)
|Sb

in A2(Sb)

(for the formalism of relative correspondences, cf. [15, Chapter 8]), and besides we
know that (π2

Sb
)∗c2(NSb/M ) is homologically trivial (π2

Sb
acts as zero on H4(Sb)).

Thus, Claim (4.2) implies the necessary vanishing (3).
Assumption 3◦ is checked similarly. Let ιb : Sb →M and ι : S →M×B denote

the inclusion morphisms. To check assumption 3◦, we need to convince ourselves
of the vanishing

(π`Sb×M )∗(Γιb) ??= 0 in A4(Sb ×M) for all ` 6= 8 and for all b ∈ B0. (4)

Since Γιb ∈ A4(Sb×M), one knows that (π`Sb×M )∗(Γιb) is homologically trivial
for any ` 6= 8. Furthermore, we can write the cycle we are interested in as the
restriction of a universal cycle

(π`Sb×M )∗(Γιb) =
(( ∑

j+k=`
πjS × π

k
M

)
∗
(Γι)

)
|Sb×M in A4(Sb ×M).

For any b ∈ B0, there is a commutative diagram

A4(S ×M) → A4(Sb ×M)

↓ ∼= ↓ ∼=⊕
A∗(S) →

⊕
A∗(Sb)

where horizontal arrows are restriction to a fibre, and where vertical arrows are
isomorphisms because M has trivial Chow groups. Claim 4.2 applied to the lower
horizontal arrow shows the vanishing (4), and so assumption 3◦ holds.
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It is only left to prove the claim. Since Aihom(Sb) = 0 for i ≤ 1, the only
non-trivial case is i = 2. Given Γ ∈ A2(S) as in the claim, let Γ̄ ∈ A2(S̄) be
a cycle restricting to Γ. We consider the two projections

S̄ π−→ M

↓ φ

B̄

Since any point of M imposes exactly one condition on B̄, the morphism π has
the structure of a projective bundle. As such, any Γ̄ ∈ A2(S̄) can be written

Γ̄ =
2∑
`=0

π∗(a`) · ξ` in A2(S̄),

where a` ∈ A2−`(M) and ξ ∈ A1(S̄) is the relative hyperplane class.
Let h := c1(OB̄(1)) ∈ A1(B̄). There is a relation

φ∗(h) = αξ + π∗(h1) in A1(S̄),

where α ∈ Q and h1 ∈ A1(M). As in [16, Proof of Lemma 1.1], one checks that
α 6= 0 (if α were 0, we would have φ∗(hdim B̄) = π∗(hdim B̄

1 ), which is absurd since
dim B̄ > 4 and so the right-hand side must be 0). Hence, there is a relation

ξ = 1
α

(φ∗(h)− π∗(h1)) in A1(S̄).

For any b ∈ B0, the restriction of φ∗(h) to the fibre Sb vanishes, and so it follows
that

Γ̄|Sb
= a′0|Sb

in A2(Sb)

for some a′0 ∈ A2(M). But A2(M) is generated by intersections of divisors in case
M = P3×P1, and A2(M) is generated by divisors and c2 of the tautological bundle
in case M = Gr(2, 4). In both cases, it follows that

Γ̄|Sb
= a′0|Sb

∈ Q[oSb
] ⊂ A2(Sb),

(in the second case, this is proven as in [16, Proposition 2.1]). Given Γ ∈ A2(S)
a cycle such that the fibrewise restriction has degree zero, this shows that the
fibrewise restriction is zero in A2(Sb). Claim 4.2 is proven.

Step 2: It remains to extend to all smooth hypersurfaces as in the theorem. That
is, let B ⊂ B̄ be the open such that the Fano fourfold Xb (which is the blow-up of
M with centre Sb) is smooth. One has B ⊃ B0. Let X → B and X 0 → B0 denote
the universal families of Fano fourfolds over B resp. B0.
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From step 1, one knows that Xb has an MCK decomposition for any b ∈ B0.
A closer look at the proof reveals more: the family X 0 → B0 has a “universal
MCK decomposition”, in the sense that there exist relative correspondences π∗X 0 ∈
A4(X 0 ×B0 X 0) such that for each b ∈ B0 the restriction

π∗Xb
:= π∗X 0 |b ∈ A4(Xb ×Xb)

forms an MCK decomposition for Xb. (To see this, one observes that Proposition
2.2 is “universal”: given familiesM→ B, N → B and universal MCK decompo-
sitions π∗M, π∗N , the result of (1) is a universal MCK decomposition for M̃ → B.)

A standard argument now allows to spread out the MCK property from B0 to
the larger base B. That is, we define

πjX := π̄jX 0 ∈ A4(X ×B X ),

where π̄ refers to the closure of a representative of π. The “spread lemma” [22,
Lemma 3.2] (applied to X ×B X ) gives that the π∗X are a fibrewise CK decompo-
sition, and the same spread lemma (applied to X ×B X ×B X ) gives that the π∗X
are a fibrewise MCK decomposition. This ends step 2.

Remark 4.3
Claim 4.2 states that the families S → B0 verify the “Franchetta property” as
studied in [6]. It is worth mentioning that the Franchetta property for the universal
K3 surface of genus g ≤ 10 (and for some other values of g) was already proven
in [16]; the families considered in Claim 4.2 are different, however, so Claim 4.2 is
not covered by [16] (e.g. in case M = P3 × P1 the K3 surfaces of Claim 4.2 have
Picard number at least 2, so they correspond to a Noether–Lefschetz divisor in
F7).

As a corollary of Claim 4.2, the universal families X → B of Fano fourfolds
of type B1 or B2 also verify the Franchetta property. (Indeed, in view of [22,
Lemma 3.2] it suffices to prove this for X 0 → B0. In view of Lemma 2.2, X 0 can
be constructed as the blow-up of M × B0 with centre S. This blow-up yields a
relative correspondence from X 0 to S, inducing a commutative diagram

Aj(X 0) → Aj−1(S)⊕
⊕

Q

↓ ↓

Aj(Xb) → Aj−1(Sb)⊕
⊕

Q

where horizontal arrows are injective (by the blow-up formula). The Franchetta
property for S → B0 thus implies the Franchetta property for X 0 → B0.)

Remark 4.4
One would expect that for Fano varieties of K3 type, there is a unique MCK
decomposition. I cannot prove this unicity for the Fano fourfolds of Theorem 4.1.
(At least, one may observe that for X as in Theorem 4.1 the induced splitting of
the Chow ring is canonical, since Aj(X) = Aj(0)(X) for j 6= 3, whereas A3(X) =
A3

(0)(X)⊕A3
(2)(X) with A3

(0) = A2(X) ·A1(X) and A3
(2)(X) = A3

hom(X)).
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5. Some consequences

5.1. An injectivity result

Corollary 5.1
Let X and M be as in Theorem 4.1, and let m ∈ N. Let R∗(Xm) ⊂ A∗(Xm) be
the Q–subalgebra

R∗(Xm) := 〈(pi)∗A1(X), (pi)∗A2(X), (pij)∗(∆X), (pi)∗cj(TX),
(pi)∗Im(Ai(M)→ Ai(X))〉 ⊂ A∗(Xm).

(Here pi : Xm → X and pij : Xm → X2 denote a projection to the ith factor, resp.
to the ith and jth factor.)

The cycle class map induces injections Rj(Xm) ↪→ H2j(Xm) in the following
cases:

1. m = 1 and j arbitrary;
2. m = 2 and j ≥ 5;
3. m = 3 and j ≥ 9.

Proof. Theorem 4.1, in combination with Proposition 3.6, ensures that Xm has an
MCK decomposition, and so A∗(Xm) has the structure of a bigraded ring under
the intersection product. The corollary is now implied by the conjunction of the
two following claims.

Claim 5.2
There is inclusion

R∗(Xm) ⊂ A∗(0)(Xm).

Claim 5.3
The cycle class map induces injections

Aj(0)(X
m) ↪→ H2j(Xm)

provided m = 1, or m = 2 and j ≥ 5, or m = 3 and j ≥ 9.

To prove Claim 5.2, we note that Akhom(X) = 0 for k 6= 3, which readily implies
the equality Ak(X) = Ak(0)(X) for k 6= 3. The fact that c3(TX) is in A3

(0)(X) is
part of Theorem 4.1. The fact that ∆X ∈ A4

(0)(X ×X) is a general fact for any
X with a (necessarily self-dual) MCK decomposition [19, Lemma 1.4]. It remains
to prove that codimension three cycles coming from the ambient space M are in
A3

(0)(X). To this end, we observe that such cycles are universally defined, i.e.

Im(A3(M)→ A3(X)) ⊂ Im(A3(X )→ A3(X)),

where X → B is the universal family as before, and X = Xb0 for some b0 ∈ B.
Given a ∈ A3(X ), applying the Franchetta property (Remark 4.3) to

Γ := (πjX )∗(a) ∈ A3(X ), j 6= 6,
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one finds that the restriction a|X ∈ A3(X) lives in A3
(0)(X). In particular, it

follows that
Im(A3(M)→ A3(X)) ⊂ A3

(0)(X),
as desired. Since the projections pi and pij are pure of grade 0 [19, Corollary 1.6],
and A∗(0)(Xm) is a ring under the intersection product, this proves Claim 5.2.

To prove Claim 5.3, we observe that Manin’s blow-up formula [17, Theorem
2.8] gives an isomorphism of motives

h(X) ∼= h(S)(1)⊕
⊕

1(∗) inMrat.

Moreover, in view of Proposition 3.7 (cf. also [19, Proposition 2.4]), the correspon-
dence inducing this isomorphism is of pure grade 0. In particular, for any m ∈ N
we have isomorphisms of Chow groups

Aj(Xm) ∼= Aj−m(Sm)⊕
4⊕
k=0

Aj−m+1−k(Sm−1)bk ⊕
⊕

A∗(Sm−2)⊕
⊕
`≥3

A∗(Sm−`),

and this isomorphism respects the A∗(0)() parts. Claim 5.3 now follows from the
fact that for any surface S with an MCK decomposition, and any m ∈ N, the cycle
class map induces injections

Ai(0)(Sm) ↪→ H2i(Sm) for all i ≥ 2m− 1

(this is noted in [20, Introduction], cf. also [9, Proof of Lemma 2.20]).

5.2. Decomposition in the derived category

Given a smooth projective morphism π : X → B, Deligne [3] has proven a de-
composition in the derived category of sheaves of Q-vector spaces on B:

Rπ∗Q ∼=
⊕
i

Riπ∗Q[−i]. (5)

As explained in [21], for both sides of this isomorphism there is a cup-product:
on the right-hand side, this is the direct sum of the usual cup-products of local
systems, while on the left-hand side, this is the derived cup-product (inducing
the usual cup-product in cohomology). In general, the isomorphism (5) is not
compatible with these cup-products, even after shrinking the base B (cf. [21]). In
some rare cases, however, there is such a compatibility (after shrinking): this is
the case for families of abelian varieties [4], and for families of K3 surfaces [21],
[22, Section 5.3] (cf. also [20, Theorem 4.3] and [7, Corollary 8.4] for some further
cases).

Given the close link to K3 surfaces, it is not surprising that the Fano fourfolds
of Theorem 4.1 also have such a multiplicative decomposition.

Corollary 5.4
Let X → B be a family of Fano fourfolds of type B1 or B2. There is a non-empty
Zariski open B′ ⊂ B, such that the isomorphism (5) becomes multiplicative after
shrinking to B′.
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Proof. This is a formal consequence of the existence of a relative MCK decompo-
sition, cf. [20, Proof of Theorem 4.2] and [7, Section 8].

Given a family X → B and m ∈ N, let us write Xm/B for the m-fold fibre
product

Xm/B := X ×B X ×B · · · ×B X .

Corollary 5.4 has the following concrete consequence, which is similar to a result
for families of K3 surfaces obtained by Voisin [21, Proposition 0.9]:

Corollary 5.5
Let X → B be a family of Fano fourfolds of type B1 or B2. Let z ∈ Ar(Xm/B) be
a polynomial in (pullbacks of) divisors and codimension 2 cycles on X . Assume
the fibrewise restriction z|b is homologically trivial, for some b ∈ B. Then there
exists a non-empty Zariski open B′ ⊂ B such that

z = 0 in H2r((X ′)m/B
′
,Q).

Proof. The argument is the same as [21, Proposition 0.9]. First, one observes that
divisors di and codimension 2 cycles ej on X admit a cohomological decomposition
(with respect to the Leray spectral sequence)

di = di0 + π∗(di2) in H0(B,R2π∗Q)⊕ π∗H2(B,Q) ∼= H2(X ,Q),

ej = ej0 + π∗(ej2) + π∗(ej4) in H0(B,R4π∗Q)⊕ π∗H2(B)⊕2

⊕ π∗H4(B) ∼= H4(X ,Q).

We claim that the cohomology classes dik and ejk are algebraic. This claim implies
the corollary: indeed, given a polynomial z = p(di, ej), one may take B′ to be the
complement of the support of the cycles di2, ej2 and ej4. Then over the restricted
base one has equality

z := p(di, ej) = p(di0, ej0) in H2r((X ′)m/B
′
,Q).

Multiplicativity of the decomposition ensures that (after shrinking the base some
more)

p(di0, ej0) ∈ H0(B′, R2r(πm)∗Q) ⊂ H2r((X ′)m/B
′
,Q),

and so the conclusion follows.
The claim is proven for divisor classes di in [21, Lemma 1.4]. For codimension

2 classes ej , the argument is similar to loc. cit.: let h ∈ H2(X ) be an ample divisor
class, and let h0 be the part that lives in H0(B,R2π∗Q). One has

ej(h0)4 = ej0(h0)4 + π∗(ej2)(h0)4 + π∗(ej4)(h0)4 in H12(X ,Q).

By multiplicativity, after some shrinking of the base the first two summands are
contained in H0(B′, R12π∗Q), resp. in H2(B′, R10π∗Q), hence they are zero as π
has 4-dimensional fibres. The above equality thus simplifies to

ej(h0)4 = π∗(ej4)(h0)4 in H12(X ,Q).
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Pushing forward to B′, one obtains

π∗(ej(h0)4) = π∗((h0)4)ej4 = λ ej4 in H4(B′),

for some λ ∈ Q∗. As the left-hand side is algebraic, so is ej4.
Next, one considers

ej(h0)3 = ej0(h0)3 + π∗(ej2)(h0)3 + π∗(ej4)(h0)3 in H10(X ,Q).

The first summand is again zero for dimension reasons, and so

π∗(ej2)(h0)3 = ej(h0)3 − π∗(ej4)(h0)3 ∈ H10(X ,Q)

is algebraic. A fortiori, π∗(ej2)(h0)4 is algebraic, and so

π∗(π∗(ej2)(h0)4) = π∗((h0)4)ej2 = µ ej2 in H2(B′), µ ∈ Q∗

is algebraic.
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