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Abstract. The idea presented here of a general quantization rule for bound
states is mainly based on the Riccati equation which is a result of the trans-
formed, time-independent, one-dimensional Schrödinger equation. The con-
dition imposed on the logarithmic derivative of the ground state function
W0 allows to present the Riccati equation as the unit circle equation with
winding number equal to one which, by appropriately chosen transforma-
tions, can be converted into the unit circle equation with multiple winding
number. As a consequence, a completely new quantization condition, which
gives exact results for any quantum number, is obtained.

1. Introduction

The most basic problem in quantum mechanics is to solve stationary, one-
dimensional Schrödinger equation with bound state spectrum

− ~2

2mψ′′n(x) + V (x)ψn(x) = Enψn(x), (1)

where V (x) is real-valued function, for the energy eigenvalues En and the asso-
ciated energy eigenfunctions ψn(x). Some general considerations regarding inte-
grability of equation (1) are presented in paper [3]. There are a few important
potentials for which the stationary Schroedinger equation can be solved analyti-
cally, like the harmonic oscillator, the Coulomb potential and the Morse potential
[2]. However, in most cases of the practical interest approximate methods must be
employed. Among them, the semiclassical WKBmethod and the Bohr-Sommerfeld
quantization rule are used [5].
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2. The Schrödinger and the Ricatti equations

Basing on the ideas presented in the articles [6, 7] we are able to transform
the Schrödinger equation (1), where ~ = 2m = 1, into the Ricatti equation

W ′n(x)−W 2
n(x) = En − V (x) (2)

by use of the logarithmic derivative

Wn(x) = −ψ
′
n(x)

ψn(x) . (3)

For the ground state we assume that the logarithmic derivative W0(x) has a zero
on interval I, where we look for the solutions of (2), and

W ′0(x) > 0 for all x ∈ I ⊂ R. (4)

The last assumption, which is concerned with normalizability of the ground wave-
function ψ0, results in reversibility of the function W0(x) on interval I. This
condition has its equivalents in article [3].

Condition (4) leads us to the equations

W ′0(x) = W 2
0 + f(W0), (5)

where
E0 − V (x) = f(W0).

An arbitrary function f(W0) has to satisfy only condition (4). Thus, we have an
opportunity to choose an appropriate potential by means of the function f(W0),
as it has been done in the paper [7] and, where (5) takes the form

W ′0 = AW 2
0 +BW0 + C. (6)

The solution of this equation is

W0(x) = − B

2A +
√
−B2 + 4AC

2A tan
(1

2
√
−B2 + 4AC(x− x0)

)
, (7)

where the interval I, which satisfy condition (4), is given by

x0 −
π√

−B2 + 4AC
≤ x ≤ x0 + π√

−B2 + 4AC
.

It is worth to notice that different values of A, B, C parameters lead us to different
sets of the orthogonal polynomials, as it was shown in [7].

3. The Ricatti [8] equation as the unit circle equation

Dividing (6) by W ′0 and introducing

q2
0 = W 2

0
AW 2

0 +BW0 + C
and p2

0 = 1− q2
0 = (A− 1)W 2

0 +BW0 + C

AW 2
0 +BW0 + C
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we obtain the unit circle equation

q2
0 + p2

0 = 1 for t0,0 ≤W0 ≤ t0,1. (8)

Classical turning points

t0,0 =
B −

√
B2 + 4(1−A)C
2(1−A)

and

t0,1 =
B +

√
B2 + 4(1−A)C
2(1−A) ,

are the solution of the equation q2
0 = 1. Parameters A, B and C should have

properly chosen values (t0,0 and t0,1 must exist and have opposite signs) to make
calculations reasonable.
Typical graph of the function q2

0 in the variable W0 is illustrated in Figure 1.
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Fig. 1: The graph of the function q2
0 for A = 0.7, B = −2, C = 3, where W0 is on the

horizontal axis and q2
0 on the vertical one. Classical turning points are determined by the

condition q2
0(t0,0) = q2

0(t0,1) = 1.

Thus, the area of the circle (equation (8)) can be calculated by the integral∮
p0dq0 = 2

∫ t0,1

t0,0

p0dq0 = π.

The bound state function W1 can be easily obtained in terms of the ground state
function W0, see [7]. Substituting

W1 = W0 −
a11

b11W0 − c11
(9)

and taking (6) into account we obtain

a11 = (A+ 2)C − B2(A+ 2)2

4(A+ 1)2 ,
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b11 = A+ 2,

c11 = −B(A+ 2)
2(A+ 1) .

Hence, the Riccati equation for the first excited state has the following form

W ′1 = W 2
1 + (A− 1)W 2

0 +BW0 + C + a11

or, dividing the last equation by W ′1 we have

q2
1 + p2

1 = 1, (10)

where
q2

1 = W 2
1

W ′1
and p2

1 = 1− q2
1 .

In analogy to eq.(8), classical (external) turning points

t1,0 =
(A+ 1)B −

√
A+ 3

√
(A2 +A− 1)B2 + 4(1−A)(1 +A)2C

2(1−A2)

and

t1,1 =
(A+ 1)B +

√
A+ 3

√
(A2 +A− 1)B2 + 4(1−A)(1 +A)2C

2(1−A2)

are obtained from the equation q2
1 = 1. In addition, the function q2

1 has a removable
singularity (internal turning point) at

W0 = c11

b11
= − B

2(A+ 1) ,

where
q2

1

(
− B

2(A+ 1)

)
= 1,

although W1 is singular at this point. The results are illustrated in Figure 2.
It shows that, in this case, the multiple of winding number is 2 and thus, the

area of the circle (10) can be calculated by the integral∮
p1dq1 = 2

∫ t1,1

t1,0

p1dq1 = 2π,

where the value 2π arises from the double rotation of this circle around the origin.
Repeating the procedure outlined above [7] for the n− th excited state function

Wn = W0 −
an1

bn1W0 −
cn1

bn2W0 − · · ·

(11)

we get
q2

n + p2
n = 1 for tn,0 ≤W0 ≤ tn,1, (12)
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Fig. 2: The graph of the function q2
1 for A = 0.7, B = −2, C = 3, where W0 is on the

horizontal axis and q2
1 on the vertical one. Classical (external and internal) turning points

can be seen.

where

q2
n = W 2

n

W ′n
.

Thus, we construct the circle (12) with winding number equal to n + 1 (see [4]),
where external turning points tn,0 and tn,1 are solutions of the equation q2

n = 1.
Finally, the area of this circle provides the strict quntization condition (see [1]) of
the form ∮

pndqn = 2
∫ tn,1

tn,0

pndqn = (n+ 1)π. (13)

In addition, the function q2
n has n removable singular points (internal turning

points) which are strictly connected with the multiple of the winding number
equal to n + 1. Therefore, they are important and have influence on the final
results of the above calculations.

4. Application to the classic potentials

Equation (7) offers a convenient way to link this simple method with well
known solutions of the Schrödinger equation.
For instance, choosing B = 0, C = 1 we get the following results

W ′0 = AW 2
0 + 1 and W1 = W0 −

1
W0

,

where
W ′1 = W 2

1 + (A− 1)W 2
0 +A+ 3.

Limits of the functions considered above as A→ 0 give solutions of the quantum
oscillator in variable W0. Corresponding functions can be seen in Figure 3.
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(a) Graph of the function q2
0 . Classical

turning points: t0,0 = −1, t0,1 = 1 as
A→ 0.
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(b) Graph of the function q2
1 . Classical

turning points: t1,0 = −
√

3, t1,1 =
√

3 as
A→ 0.

Fig. 3: Graphs of the functions q2
0 (left) and q2

1 (right) in variable W0 (horizontal axis) for
the quantum harmonic oscillator.

Another example, where C = B2

4 , B = −1, leads to well known solution of the
Schrödinger equation with the Coulomb potential (without angular momentum).
In this case we have

W ′0 = AW 2
0 −W0 + 1

4 and W1 = W0 −
A2 +A− 1

2(A+ 1)
1

2(A+ 1)W0 − 1 ,

where

W ′1 = W 2
1 + (A− 1)W 2

0 −W0 + A3 + 4A2 + 3A− 1
4(A+ 1)2 .

As in the previous case, we evaluate limits of the functions q2
0 and q2

1 but this time
for A→ 1. Results of this evaluation can be seen in Figure 4.
As we see the results are valuable and consistent with our earlier considerations.
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(a) Graph of the function q2
0 . Classical

turning points: t0,0 = −∞, t0,1 = 1
4 as

A→ 1.
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(b) Graph of the function q2
1 . Classical

turning points: t1,0 = −∞, t1,1 = 7
16 as

A→ 1.

Fig. 4: Graphs of the functions q2
0 (left) and q2

1 (right) in variable W0 (horizontal axis) for
the quantum Coulomb potential.
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5. The general quantization condition in variable x

All previous calculations can be presented in variable x. It is sufficient to
express W0 = W0(x) (see (7)) and repeat earlier considerations. In particular

q2
n(x) = W 2

n(x)
W ′n(x) , p2

n(x) = En − V (x)
W ′n(x) , (14)

where (11) remains valid. Thus, the quantization condition (13) takes the form∮
pndqn = 2

∫ xn,1

xn,0

pn(x)dqn(x)

= 2
∫ xn,1

xn,0

√
En − V (x)

(
1− 1

2
Wn(x)W ′′n (x)

(W ′n(x))2

)
dx

= (n+ 1)π,

(15)

where external classical turning points xn,0, xn,1 satisfy the following equation
En − V (x) = 0.

By direct calculations we can see, that (15) is fulfilled not only for all analyt-
ically solvable potentials but also for those which need numerical calculations to
solve the Schrödinger equation.

6. Application to the new analytically solvable potential

In paper [7] we considered a more general form of (6),

W ′0 = AW 2
0 + Pl+1(W0)

Ql(W0) = Rl+2,l(W0),

which leads to a new class of the solvable potentials. In this equation Pl+1(W0) is
a polynomial in W0 with degree no greater than l + 1, Ql(W0) is a polynomial in
W0 with degree equal to l. Rl+2,l(W0) is a rational function. Taking

W ′0 = W 2
0 + 3W0 − 1

W0 − 3 = (W0 − 1)3

W0 − 3 ,

as the example, we get

W0(x) =
2
√
x+ 1

4 − 3

2
√
x+ 1

4 − 1
,

where the potential is

V (x) = − 2√
x+ 1

4

for x ≥ 0 (16)

and the corresponding eigenvalue E0 = −1. Thus the ground state function,
without normalization constant, has the form

ψ0(x) = e−x+2
√

x+ 1
4

(
2
√
x+ 1

4 − 1
)
.
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Substituting

W1 = P2(W0)
Q1(W0) ,

which is more general form then (9), in equation (2) and taking into account (16)
we obtain the unnormalized wavefunction of the first excited state

ψ1(x) = e−0.79x+2.52
√

x+ 1
4

(
2
√
x+ 1

4 − 1
)(

2
√
x+ 1

4 − 3.74
)
, (17)

where all decimal numbers are approximated and E1 ≈ −0.63.
As a consequence, the corresponding functions q2

0(x), q2
1(x) are easily determined

by use of (3) and (14). These functions are illustrated in Figure 5.
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(a) Graph of the function q2
0(x). Classical

turning points: x0,0 = 0, x0,1 = 15/4.
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(b) Graph of the function q2
1(x). Classical

turning points: x1,0 = 0, x1,1 ≈ 9.86.

Fig. 5: Graphs of the functions q2
0(x) (left) and q2

1(x) (right) for the potential V (x) =
− 2√

x+1/4
, where variable x is on the horizontal axis.

The results are in accordance with our considerations and they confirm the
correctness of (15) and, what should be emphasized, these equation is fulfilled
regardless of the value of quantum number.

7. Conclusions

The form of Riccati equation and features of its solutions play basic role in
the method, considered in this paper, which leads to the new form of the quan-
tization condition. As a result we get the formula where the energy eigenvalues
and the associated energy eigenfunctions are involved. Equation (15) gives ex-
act results not only for potentials which are explicitly known in the closed form
in terms of simple functions, but also for other potentials which are only known
formally. It has been confirmed in many numerical calculations. Moreover, this
quantization condition can be understood in terms of a few basic ideas which in-
clude Pythagorean theorem and the area of the unit circle. These considerations
may serve as an aid for further investigations concerning the relationship between
geometry and quantization conditions.
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