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Second Hukuhara derivative and cosine family

of linear set-valued functions

Abstract. Let K be a closed convex cone with the nonempty interior in
a real Banach space and let cc(K) denote the family of all nonempty
convex compact subsets of K. If {F; : t > 0} is a regular cosine family
of continuous linear set-valued functions Fy: K — cc(K), « € Fy(x) for
t>0,z€ K and F; o Fs = Fs o F} for s,t > 0, then

D*Fy(z) = Fi(H())

for # € K and t > 0, where D?F;(z) denotes the second Hukuhara
derivative of F}(z) with respect to ¢ and H(z) is the second Hukuhara
derivative of this multifunction at ¢t = 0.

Let X be a vector space. Through this paper all vector spaces are supposed
to be real. We introduce the notations

A+B:={a+b: a€ A, be B},
M :={)da: a € A}

for A,B C X and X\ € R.

A subset K of X is called a cone if tK C K for all t € (0,+00). A cone is
said to be conver if it is a convex set.

Let X and Y be two vector spaces and let K C X be a convex cone. A set-
valued function F: K — n(Y"), where n(Y") denotes the family of all nonempty
subsets of Y, is called additive if

F(z+y) = F(z) + F(y)
for all z,y € K. If additionally F satisfies
F(A\x) = AF(x)

for all z € K and A > 0, then F' is called linear.
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A set-valued function F:[0,4+00) — n(Y) is said to be concave if
F(At+ (1 —=X)s) CAF(t)+ (1 = \)F(s)

for all s,t € [0, +00) and A € (0,1).

From now on we assume that X is a normed vector space, ¢(X) denotes the
family of all compact members of n(X) and cc(X) stands for the family of all
convex sets of ¢(X).

Let A, B, C be sets of cc(X). We say that the set C is the Hukuhara
difference of A and B when C' = A—B if B+C = A. By Radstrom Cancellation
Lemma [7] it follows that if this difference exists, then it is unique.

Let A, Ay, As, ... be elements of the space cc(X). We say that the sequence
(An)nen is convergent to A and we write A,, — A if d(A, A,) — 0, where d
denotes the Hausdorff metric induced by the norm in X.

LEMMA 1

Let X be a Banach space, A, A1, As,...,B,B1,Bs,... € ce(X). If A, — A,
B,, — B and there exist the Hukuhara differences A,, — By, in cc(X) for n € N,
then there exists the Hukuhara difference A — B and A, — B, — A — B.

Proof. Let C, = A, — B, for n € N. By the definition of the Hukuhara
difference A,, = B,, + C,, for n € N. By properties of the Hausdorff metric for
m,n € N we have

d(Cpm, Cp) = d(By, + By, + Cpy By + B + Ch)

=d(Bn+ Am, Bm + 4,)

< d(By, Bm) + d(Am, Ay).
Sequences (A, )neny and (By)nen are Cauchy sequences thus by the last in-
equality (Cy,)nen is a Cauchy sequence, too. By the completness of cc(X) (see
Theorem II.3 in [1]) there exists C' € cc(X) such that C,, — C. Moreover,
B, + C, — B+ C since

d(By + Cpy B+ C) < d(By, + Cyp, By + C) + d(By,, + C, B+ O)
=d(Cy,C) + d(Byn, B).

On the other hand A,, — A and A, = B, +C,, so A= B+, i.e., there exists
the Hukuhara difference A — B = C.

Let F,G: K — cc(K). We can define the multifunctions F 4+ G and F — G
on K as follows

(F 4+ G)(z) := F(x) + G(z) forx e K
and
(F — G)(z) := F(x) — G(x)
if the Hukuhara differences F(z) — G(x) exist for all z € K.
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LEMMA 2
For each set A C K the inclusion

(F+@G)(A) C F(A) +G(A) (1)

holds. Moreover, if there exist the Hukuhara difference F(A) — G(A) and the
multifunction F — G, then

F(A) = G(A) € (F = G)(A). (2)

Proof. Inclusion (1) is obvious. To prove (2) we observe that (F—G)+G =
F'. Hence by (1) we obtain

F(A) C (F - G)(A) + G(A). (3)

Since F(A) = G(A) + (F(A) — G(A)), (3) and Radstrom Cancellation Lemma
yield inclusion (2).

LEMMA 3 (Lemma 3 in [8])

Let X andY be two normed vector spaces and let K be a closed convexr cone in
X. Assume that F: K — cc(K) is continuous additive set-valued function and
A, B € ce(K). If there exists the difference A— B, then there exists F(A)—F(B)
and F(A) — F(B) = F(A - B).

LEMMA 4 (Lemma 3 in [5])
If (An)nen is a sequence of elements of the set ¢(X) such that Ap41 C Ay for
n € N, then

nh_)rr;o A, = Dl A, .
LEMMA 5 (Lemma 3 in [9])
Let K be a closed convex cone such that int K # () in a Banach space X and
let Y be a normed space. If (F)nen is a sequence of continuous additive set-
valued functions Fy: K — cc(Y') such that F,y1(x) C Fu(x) for all z € K
and n € N, then the formula

Fo(z) = an(Z)a z €K,

defines a continuous additive set-valued function Fo: K — cc(Y'). Moreover,

lim F,(z) = Fy(x), z e K, (4)

n—oo

and the convergence in (4) is uniform on every nonempty compact subset of K.
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LEMMA 6 (Lemma 4 in [5])
If (Ap)nen is a sequence of elements of ¢(X) satisfying A, C Any1 C B for
n € N and a compact set B, then

(oo}
nlLIEOAn =cl ( U An> .
n=1

LEMMA 7

Let K be a closed convex cone such that int K # () in a Banach space X and let
Y be a normed space. If (Fy,)nen 18 a sequence of continuous additive set-valued
functions F,: K — cc(Y') such that

1) Fp(x) C Fhya(x) for allxz € K and n € N,

2) Fp(x) C G(z) for all x € K, n € N and a set-valued function G: K —
oY),

then the formula

Fy(z) :=cl ( D Fn(:c)) ) z €K, (5)

defines a continuous additive set-valued function Fy: K — cc(Y'). Moreover,
lim F,(z) = Fy(x), r €K, (6)
n—0o0

and the convergence in (6) is uniform on every nonempty compact subset of K.

Proof. The sets Fy(z) defined by the formula (5) are obviously closed and
convex. Since Fy(z) C G(z) and G(x) are compact, they belong to cc(Y) for
every x € K. Equality (6) holds according to Lemma 6. By Lemma 5.6 in [4]
we have

Fo(z +y) = lim Fy(z+y) = lm (Fu(z) + Fa(y)) = Fo(x) + Fo(y)

n—00

for all x,y € K. Thus the set-valued function Fy is additive. Since Fj(z) C
Fy(z) for x € K and F; is continuous, the set-valued function Fy is continuous
on int K (see Theorem 5.2 in [4]). Fix y € int K and 2 € K, then 22 € int K
(see Chapter V, §1, Lemma 8 in [3]). Let (z,,) be a sequence of elements of K
convergent to xg. Then

d (Fo(zn), Fo(zo)) = d (Fo(zn) + Fo(y), Fo(zo) + Fo(y))

({2 (252).

implies that

10+y

The continuity of Fy at
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lim Fo(xn) = Fo(xo).

n—oo

This means that Fp is continuous on K. The sequence (d(F,(x), Fo(z))) n € N
is a decreasing sequence of continuous functions convergent to the zero func-
tion and according to Dini Theorem this function is the uniform limit of this
sequence on every nonempty compact subset of K.

Let F: [0, +00) — cc(X) be a set-valued function such that there exist the
Hukuhara differences F'(t) — F(s) for 0 < s < t. The Hukuhara derivative of F'
at t > 0 is defined by the formula

. t . F@t)—F(—-h)
DF(t)= 1 — 7 27— Il S ST
*) hi»r{)l+ h hi%l+ h

)

Let (K,+) be a semigroup. A one-parameter family {F; : ¢ > 0} of set-
valued functions Fy: K — n(K) is said to be a cosine family if

Fo(z) = {z} forz e K
and
Fiys(z) + Fios(z) = 2F(Fu(2)) =2 {F.(y) : y € Fu(a)} (7)

forr e Kand 0<s <t
Let X be a normed space. A cosine family {F} : ¢ > 0} is said to be regular
if
lim d(F; =0.
limy d(Fy (@), {z})

LEMMA 8

Let X be a Banach space and let K be a closed convexr cone in X such that
int K # (. Assume that {F; : t > 0} is a regular cosine family of continuous
additive set-valued functions Fy: K — cc(K) and x € Fy(x) for ollx € K and
t > 0. Then there exist the Hukuhara differences Fy(x) — Fs(x) for all0 < s <t
and z € K.

Proof. We first prove, by induction on n, that there exist the Hukuhara
differences

Fné(m) _F(nfl)S(m) (8)
forall s >0,z € K,n€N.
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For n =1 it suffices to show that
Fi(x)—z C K
for x € K and s > 0. Let € K and s > 0. Putting ¢t = s in (7) we have
Foule) 42 = 2F.(Fu(x)). (9)
Hence and by the assumption = € Fi(z) we get

1 1
FS(IC) C §FQS(IC) + 51‘

Replacing s by 2s in the last inclusion we obtain

1 1
Fos(x) C = Fys(z) + =,
2 2
whence

1 1 1
Fs(z) C ZF4S($) 78137

By induction we can prove that

1 1
FS(x) C §F2p5(l‘) —+ §z+...+

T

|~

for all p € N. Therefore
Fi(z)CK+ (1-277)x.

Let y € Fy(x). Theny—(1 — 27P) z € K and letting p — oo we havey—z € K.
Thus Fs(z) —z C K.
By (9) and by the additivity of Fs we obtain

Fos(x) + 2 = 2Fs(Fg(x) — ) + 2F,(x)
and
Fos(x) — Fs(z) = 2F4(Fs(x) — z) + Fs(x) — .

Let k € N. Assuming (8) to hold for n = k, we will prove it for n = k + 1.
Putting ¢ = ks in (7) we get

Flrgnys(T) + Fp1ys(z) = 2Fgs(Fs(z)),
whence and by the additivity of Fj

F(kJrl)S(aj) + F(k—l)s(m) = 2Fs(Fs(z) — z) + 2Fys ().
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By the induction assumption we obtain
Flrg1)s(@) = 2Fs(Fo(x) — o) + (Firs (@) — Fe—1)s(2)) + Fs().
Thus
Flg1)s(2) = Fis () = 2Fs (Fo(2) — ) + (Frs (@) — Fr—1)s(2)) -
From this we see that there exist the Hukuhara differences
Fos(z) = Fns () (10)

for all m,n € N, m < n, s > 0. Suppose that 0 < s < ¢. Replacing s by % in
(10) we can assert that there exist the Hukuhara differences

Fi(z) — F%t(x).

There exists a sequence a,, € QNJ0,1] such that a,t is convergent to s. By the
continuity of ¢ — F;(z) (Theorem 2 in [10]), F, :(z) — Fs(z) and by Lemma 1,
there exists the difference

Fil@) = Fu(e) = lim (Fi(x) = Fui(@)).
A cosine family {F; : t > 0} of set-valued functions Fy: K — cc(K) is said

to be differentiable if all set-valued functions ¢t — Fy(z), x € K, have Hukuhara
derivative on [0, +00).

LEMMA 9

Let X be a Banach space and let K be a closed convexr cone in X such that
int K # (. Suppose that {F; : ¢t > 0} is a regular cosine family of continuous
additive set-valued functions Fy: K — cc(K) and © € Fy(z) for all x € K
and t > 0. Then multifunctions t — Fi(x) (x € K) are concave, there exist
set-valued functions Gy : K — cc(K) and Gy : K — cc(K) such that

Fon(z) — F _ Fy(z) — F,_
G ) = Jim PTG ) = iy P —Tnl)

for allt >0, x € K and the convergence is uniform on every nonempty compact
subset of K. Moreover, G and Gy are additive, continuous,

o Ft h(z) — Ft(,fC) _ - Ft(,fC) — Ft,h(x)
Gf () = QO %7 Gy (z) =l tZLhJ>0 -

and Gy (z) C Gf (z) forz € K.
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Proof. Let us fix + € K. We consider the mutlifunction ¢ — Fi(zx) for
t > 0. Setting ¢t = 232, s =22% 0 <wu < wvin (7) we get

Since x € Fy(x) for all t > 0, we have

Fv(m) +FU(37)

FwTu(I)C 5

Hence, by the continuity (Theorem 2 in [10]) and by Theorem 4.1 in [4] the
multifunction ¢ — Fi(z) is concave. Moreover, by Lemma 8 there exist the
Hukuhara differences

Fopn(z) — Fi(z),  Fi(z) — Fion(z)
for all 0 < h <t. Thus (Theorem 3.2 in [6]) there exist limits

G (x) = lim —F”h(x)hf Fil@) = lim, Fla) = Fonl@) 7th’h(x) (11)

for all ¢ > 0. As ¢t — Fi(x) is concave we see that h — M is

increasing, h — M is decreasing in (0, ¢) and M C Gf (o).
Lemmas 5 and 7 respectively imply that the convergence in (11) is uni-

form on every nonempty compact subset of K and G;, G; are additive and
continuous.

THEOREM

Let X be a Banach space and let K be a closed convexr cone with the nonempty
interior. Suppose that {F; : t > 0} is a regular cosine family of continuous
linear set-valued functions Fy: K — cc(K), x € Fi(x) for all x € K and
t > 0 and Fy o Fs = Fs 0 Fy for all s,t > 0. Then this cosine family is twice
differentiable and

D?Fy(x) = Fy(H(x))
for v € K, t > 0, where D*F,(x) denotes the second Hukuhara derivative

of Fy(x) with respect to t and H(x) is the second Hukuhara derivative of this
multifunction at t = 0.

Proof. Let us fix x € K. Consider the multifunction ¢ — F;(z) for ¢t > 0.
By Lemma 8 there exist the Hukuhara differences Fy(x) — Fs(z) for 0 < s < .
By Lemma 9 the multifunction ¢t — F;(z) is concave and there exist

F; - F
0t ) = g DI a6 o) = g, B
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for t > 0 and G} (z) C G (). The same argument may be used to prove that
there exists

lim L(x) iy
t—0+

It follows from (7) that

th(;;i g <Ft(:c£ x> . Ft(:cz —x

Letting t — 0T we get

lim F, (W) = {0}

t—0+
and since
0c Fi(z) — =z cE (Ft(x) — a?)
t t
we have
DFy(r) = tim TZE gy (12)

Let 0 < h <t. By (7) and the additivity of F}; we obtain
Ft+h(ﬂj) - Ft(ﬂj) = 2Ft(Fh(m) - .T,‘) + Ft(.]?) - Ft_h(ﬂj).
Dividing the last equality by h we get

Fiipn(x) — Fi(x) F(z) —x Fi(x) — Fi_p(x)
% = 2Ft ( h ) -+ h h .

Letting h — 0", by Lemma 9 and (12) we have
G (z) = Gy (z) =: Gy(x) for t > 0.

This and (12) imply that the family {F} : ¢ > 0} is differentiable.

Next we will show that there exist the Hukuhara differences G¢(z) — Gs(z)
for 0 < s < t. It is enough to consider the case 0 < s < t. Let h > 0 be such
that t — s — h > 0. By Lemma 8 there exist the differences

Fiy agp(x) = Fiy1o1,(2),  Fin(e) — Fi(z) and  Fon(z) — Fi(2)

in ce(K). Since Fi4y 1441y is linear and continuous with respect to Lemma 3

there exists the difference

Fraoin(Fre11,(2) = Frypa g, (Fry o 1,(2).
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By (7) we have

2F 1y 1y in(Freo1oq1p(2) = 2F10 1001, (Fry_ 1, 1,(2))
= Fyyn(x) + Fo(x) — (Fy(x) + Fopn(2))
= (Ft-l—h(x) - Ft($)) - (Fs—i-h(m) - Fé(m)) .

Because of Lemma 1 there exists

Frn(z) — Fy(x)  Fopn(x) — Fs(fﬂ))
h h '

Gi(z) — Gy(z) = lim (

h—0t

Our next claim is that the multifunction ¢ — G¢(z) is concave and differ-
entiable. Replacing in (7) t by ¢ + h, h > 0 and substracting Fiys(x) + Fi—s(x)
from both the sides of this equality we get

Fpsin(@) = Fips (@) + Fiosin(x) — Fis(@) = 2F 0 (Fs (7)) — 2F(Fs()).

The equality F; o Fs = Fs o Fy, s,t > 0 leads to

Ft+s+h($) - Ft+s($) Ft—s-s-h(ﬂ?) - Ft—s(JC) o (Ft+h(30) - Ft(ﬂc))
+ =2F,( ————= ],
h h h
whence, as h — 07,
GH_S(J?) + Gt_s(ﬂf) = 2F5(Gt(33)) (13)

Setting ¢ = %, s = 5%, where 0 < u < v in (13) yields

By the assumption = € Fi(x) we get

Gy(z) + Gu(z) .

GwTu(I)C 5

Fix an interval [a,b] C [0,00) and let ¢ € [a,b]. Since the multifunctions
t — Fi(z), z € K, are concave and differences Fy(x) — Fy(x) exist for x € K
and 0 < s < ¢, the multifunctions ¢ — Gy(z) are increasing (Theorem 3.2
in [6]) and we have G¢(z) C Gp(x). Therefore the multifunctions ¢t — Gy (z)
are bounded on [a,b]. By Theorem 4.4 in [4] the multifunction ¢t — G:(z)
is continuous in (0,00) and by Theorem 4.1 in [4] it is concave. In virtue of
Theorem 3.2 in [6] there exist

Ht—i_(x) = hlir& Gt+h(x)h* Gi(x) and H; (2) = hlij(r)g Gi(x) *thfh(:C)
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for t > 0 and H, (v) C H; (x). Since G%t(x) C G’T(x) fort > 0 and A € (0,1),
there also exists
G
lim (z) =: H(x)
t—0t+ t

and H(x) € cc(K).
Let 0 < s < t. The relation F; o Fy = F o F; and Lemmas 2, 3 and 9 yield

Fs(Gy(w))
B o Fp(e) - F(@)\ L Fa(Fga(@) — Fo(Fi(x))
=5 <hlgf)l+ . h ) N hlg(r)l+ . A
L AalB@) - A(E)
h—0+ h
c lim (Fipn — Fy)(Fs(x))
h—0+ h
= Gy(Fs())

which together with (13) lead to
GH_S(J?) + Gt_s(ﬂf) C QGt(Fé(J?))
By the additivity of G; we get

GH_S(J?) + Gt_s(ﬂf) C 2Gt(Fé($) — a?) + 2Gt($),

whence
Giis(x) — Ge(x) C2Gi(Fs(x) — x) + Gi(x) — Gi—s(x).
Dividing the last inclusion by s and letting s — 0T we obtain

H; (z) C H] ().
Therefore
H (x) = Hy (z) =: Hy(z)
for t > 0 and the family {F} : ¢t > 0} is twice differentiable.

It remains to prove the equality in the assertion. Let 0 < s < ¢t. Lemmas 1,
3 and (7) lead to

2F(Gs(2)) = 2k, < lim M)

h—0+ h
o 2 (Fein(@) — 2B (Fy())
h—0+ h
I Fipsin(r) + Fios—n(x) — (Figs(2) + Fi—s(2))
im
h—0+ h




98 Magdalena Piszczek

~ lim [Ft+s+h(93) — Fiys(@)  Fis(@) = Fiosn(@)
h—0t h h

= Giys(v) — Gi—s(2)

= Giys(2) = Ge(x) + Ge(x) — Gr—s ().

Dividing the last equality by s we get

)

oF, (Gs(fﬂ)) _ Giis(x) — Gi(x) n Gi(z) — Gi—s()

S S S

letting s — 07 and dividing by 2 we have

Fi(H(z)) = Hi().
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