Annales Academiae Paedagogicae Cracoviensis

Folia 33

Magdalena Piszczek

Second Hukuhara derivative and cosine family of linear set-valued functions

$$
\begin{aligned}
& \text { Abstract. Let } K \text { be a closed convex cone with the nonempty interior in } \\
& \text { a real Banach space and let } c c(K) \text { denote the family of all nonempty } \\
& \text { convex compact subsets of } K \text {. If }\left\{F_{t}: t \geq 0\right\} \text { is a regular cosine family } \\
& \text { of continuous linear set-valued functions } F_{t}: K \longrightarrow c c(K), x \in F_{t}(x) \text { for } \\
& t \geq 0, x \in K \text { and } F_{t} \circ F_{s}=F_{s} \circ F_{t} \text { for } s, t \geq 0 \text {, then } \\
& \qquad D^{2} F_{t}(x)=F_{t}(H(x))
\end{aligned}
$$

for $x \in K$ and $t \geq 0$, where $D^{2} F_{t}(x)$ denotes the second Hukuhara derivative of $F_{t}(x)$ with respect to t and $H(x)$ is the second Hukuhara derivative of this multifunction at $t=0$.

Let X be a vector space. Through this paper all vector spaces are supposed to be real. We introduce the notations

$$
\begin{aligned}
A+B & :=\{a+b: a \in A, b \in B\}, \\
\lambda A & :=\{\lambda a: a \in A\}
\end{aligned}
$$

for $A, B \subset X$ and $\lambda \in \mathbb{R}$.
A subset K of X is called a cone if $t K \subset K$ for all $t \in(0,+\infty)$. A cone is said to be convex if it is a convex set.

Let X and Y be two vector spaces and let $K \subset X$ be a convex cone. A setvalued function $F: K \longrightarrow n(Y)$, where $n(Y)$ denotes the family of all nonempty subsets of Y, is called additive if

$$
F(x+y)=F(x)+F(y)
$$

for all $x, y \in K$. If additionally F satisfies

$$
F(\lambda x)=\lambda F(x)
$$

for all $x \in K$ and $\lambda \geq 0$, then F is called linear.

[^0]
88 Magdalena Piszczek

A set-valued function $F:[0,+\infty) \longrightarrow n(Y)$ is said to be concave if

$$
F(\lambda t+(1-\lambda) s) \subset \lambda F(t)+(1-\lambda) F(s)
$$

for all $s, t \in[0,+\infty)$ and $\lambda \in(0,1)$.
From now on we assume that X is a normed vector space, $c(X)$ denotes the family of all compact members of $n(X)$ and $c c(X)$ stands for the family of all convex sets of $c(X)$.

Let A, B, C be sets of $c c(X)$. We say that the set C is the Hukuhara difference of A and B when $C=A-B$ if $B+C=A$. By Rådström Cancellation Lemma [7] it follows that if this difference exists, then it is unique.

Let A, A_{1}, A_{2}, \ldots be elements of the space $c c(X)$. We say that the sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ is convergent to A and we write $A_{n} \rightarrow A$ if $d\left(A, A_{n}\right) \rightarrow 0$, where d denotes the Hausdorff metric induced by the norm in X.

Lemma 1
Let X be a Banach space, $A, A_{1}, A_{2}, \ldots, B, B_{1}, B_{2}, \ldots \in c c(X)$. If $A_{n} \rightarrow A$, $B_{n} \rightarrow B$ and there exist the Hukuhara differences $A_{n}-B_{n}$ in $c c(X)$ for $n \in \mathbb{N}$, then there exists the Hukuhara difference $A-B$ and $A_{n}-B_{n} \rightarrow A-B$.

Proof. Let $C_{n}=A_{n}-B_{n}$ for $n \in \mathbb{N}$. By the definition of the Hukuhara difference $A_{n}=B_{n}+C_{n}$ for $n \in \mathbb{N}$. By properties of the Hausdorff metric for $m, n \in \mathbb{N}$ we have

$$
\begin{aligned}
d\left(C_{m}, C_{n}\right) & =d\left(B_{n}+B_{m}+C_{m}, B_{m}+B_{n}+C_{n}\right) \\
& =d\left(B_{n}+A_{m}, B_{m}+A_{n}\right) \\
& \leq d\left(B_{n}, B_{m}\right)+d\left(A_{m}, A_{n}\right) .
\end{aligned}
$$

Sequences $\left(A_{n}\right)_{n \in \mathbb{N}}$ and $\left(B_{n}\right)_{n \in \mathbb{N}}$ are Cauchy sequences thus by the last inequality $\left(C_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence, too. By the completness of $c c(X)$ (see Theorem II. 3 in [1]) there exists $C \in c c(X)$ such that $C_{n} \rightarrow C$. Moreover, $B_{n}+C_{n} \rightarrow B+C$ since

$$
\begin{aligned}
d\left(B_{n}+C_{n}, B+C\right) & \leq d\left(B_{n}+C_{n}, B_{n}+C\right)+d\left(B_{n}+C, B+C\right) \\
& =d\left(C_{n}, C\right)+d\left(B_{n}, B\right) .
\end{aligned}
$$

On the other hand $A_{n} \rightarrow A$ and $A_{n}=B_{n}+C_{n}$ so $A=B+C$, i.e., there exists the Hukuhara difference $A-B=C$.

Let $F, G: K \longrightarrow c c(K)$. We can define the multifunctions $F+G$ and $F-G$ on K as follows

$$
(F+G)(x):=F(x)+G(x) \quad \text { for } x \in K
$$

and

$$
(F-G)(x):=F(x)-G(x)
$$

if the Hukuhara differences $F(x)-G(x)$ exist for all $x \in K$.

Lemma 2
For each set $A \subset K$ the inclusion

$$
\begin{equation*}
(F+G)(A) \subset F(A)+G(A) \tag{1}
\end{equation*}
$$

holds. Moreover, if there exist the Hukuhara difference $F(A)-G(A)$ and the multifunction $F-G$, then

$$
\begin{equation*}
F(A)-G(A) \subset(F-G)(A) \tag{2}
\end{equation*}
$$

Proof. Inclusion (1) is obvious. To prove (2) we observe that $(F-G)+G=$ F. Hence by (1) we obtain

$$
\begin{equation*}
F(A) \subset(F-G)(A)+G(A) \tag{3}
\end{equation*}
$$

Since $F(A)=G(A)+(F(A)-G(A)),(3)$ and Rådström Cancellation Lemma yield inclusion (2).

Lemma 3 (Lemma 3 in [8])
Let X and Y be two normed vector spaces and let K be a closed convex cone in X. Assume that $F: K \longrightarrow c c(K)$ is continuous additive set-valued function and $A, B \in c c(K)$. If there exists the difference $A-B$, then there exists $F(A)-F(B)$ and $F(A)-F(B)=F(A-B)$.

Lemma 4 (Lemma 3 in [5])
If $\left(A_{n}\right)_{n \in \mathbb{N}}$ is a sequence of elements of the set $c(X)$ such that $A_{n+1} \subset A_{n}$ for $n \in \mathbb{N}$, then

$$
\lim _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} A_{n} .
$$

Lemma 5 (Lemma 3 in [9])
Let K be a closed convex cone such that int $K \neq \emptyset$ in a Banach space X and let Y be a normed space. If $\left(F_{n}\right)_{n \in \mathbb{N}}$ is a sequence of continuous additive setvalued functions $F_{n}: K \longrightarrow c c(Y)$ such that $F_{n+1}(x) \subset F_{n}(x)$ for all $x \in K$ and $n \in \mathbb{N}$, then the formula

$$
F_{0}(x):=\bigcap_{n=1}^{\infty} F_{n}(x), \quad x \in K,
$$

defines a continuous additive set-valued function $F_{0}: K \longrightarrow c c(Y)$. Moreover,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{n}(x)=F_{0}(x), \quad x \in K \tag{4}
\end{equation*}
$$

and the convergence in (4) is uniform on every nonempty compact subset of K.

90 Magdalena Piszczek

Lemma 6 (Lemma 4 in [5])
If $\left(A_{n}\right)_{n \in \mathbb{N}}$ is a sequence of elements of $c(X)$ satisfying $A_{n} \subset A_{n+1} \subset B$ for $n \in \mathbb{N}$ and a compact set B, then

$$
\lim _{n \rightarrow \infty} A_{n}=\operatorname{cl}\left(\bigcup_{n=1}^{\infty} A_{n}\right) .
$$

Lemma 7

Let K be a closed convex cone such that int $K \neq \emptyset$ in a Banach space X and let Y be a normed space. If $\left(F_{n}\right)_{n \in \mathbb{N}}$ is a sequence of continuous additive set-valued functions $F_{n}: K \longrightarrow c c(Y)$ such that

1) $F_{n}(x) \subset F_{n+1}(x)$ for all $x \in K$ and $n \in \mathbb{N}$,
2) $F_{n}(x) \subset G(x)$ for all $x \in K, n \in \mathbb{N}$ and a set-valued function $G: K \longrightarrow$ $c(Y)$,
then the formula

$$
\begin{equation*}
F_{0}(x):=\operatorname{cl}\left(\bigcup_{n=1}^{\infty} F_{n}(x)\right), \quad x \in K \tag{5}
\end{equation*}
$$

defines a continuous additive set-valued function $F_{0}: K \longrightarrow c c(Y)$. Moreover,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{n}(x)=F_{0}(x), \quad x \in K \tag{6}
\end{equation*}
$$

and the convergence in (6) is uniform on every nonempty compact subset of K.
Proof. The sets $F_{0}(x)$ defined by the formula (5) are obviously closed and convex. Since $F_{0}(x) \subset G(x)$ and $G(x)$ are compact, they belong to $c c(Y)$ for every $x \in K$. Equality (6) holds according to Lemma 6. By Lemma 5.6 in [4] we have

$$
F_{0}(x+y)=\lim _{n \rightarrow \infty} F_{n}(x+y)=\lim _{n \rightarrow \infty}\left(F_{n}(x)+F_{n}(y)\right)=F_{0}(x)+F_{0}(y)
$$

for all $x, y \in K$. Thus the set-valued function F_{0} is additive. Since $F_{1}(x) \subset$ $F_{0}(x)$ for $x \in K$ and F_{1} is continuous, the set-valued function F_{0} is continuous on int K (see Theorem 5.2 in [4]). Fix $y \in \operatorname{int} K$ and $x_{0} \in K$, then $\frac{x_{0}+y}{2} \in \operatorname{int} K$ (see Chapter V, $\S 1$, Lemma 8 in [3]). Let $\left(x_{n}\right)$ be a sequence of elements of K convergent to x_{0}. Then

$$
\begin{aligned}
d\left(F_{0}\left(x_{n}\right), F_{0}\left(x_{0}\right)\right) & =d\left(F_{0}\left(x_{n}\right)+F_{0}(y), F_{0}\left(x_{0}\right)+F_{0}(y)\right) \\
& =2 d\left(F_{0}\left(\frac{x_{n}+y}{2}\right), F_{0}\left(\frac{x_{0}+y}{2}\right)\right) .
\end{aligned}
$$

The continuity of F_{0} at $\frac{x_{0}+y}{2}$ implies that

$$
\lim _{n \rightarrow \infty} F_{0}\left(x_{n}\right)=F_{0}\left(x_{0}\right)
$$

This means that F_{0} is continuous on K. The sequence $\left(d\left(F_{n}(x), F_{0}(x)\right)\right) n \in \mathbb{N}$ is a decreasing sequence of continuous functions convergent to the zero function and according to Dini Theorem this function is the uniform limit of this sequence on every nonempty compact subset of K.

Let $F:[0,+\infty) \longrightarrow c c(X)$ be a set-valued function such that there exist the Hukuhara differences $F(t)-F(s)$ for $0 \leq s \leq t$. The Hukuhara derivative of F at $t>0$ is defined by the formula

$$
D F(t)=\lim _{h \rightarrow 0^{+}} \frac{F(t+h)-F(t)}{h}=\lim _{h \rightarrow 0^{+}} \frac{F(t)-F(t-h)}{h},
$$

whenever both these limits exist (see [2]). Moreover,

$$
D F(0)=\lim _{h \rightarrow 0^{+}} \frac{F(h)-F(0)}{h} .
$$

Let $(K,+)$ be a semigroup. A one-parameter family $\left\{F_{t}: t \geq 0\right\}$ of setvalued functions $F_{t}: K \longrightarrow n(K)$ is said to be a cosine family if

$$
F_{0}(x)=\{x\} \quad \text { for } x \in K
$$

and

$$
\begin{equation*}
F_{t+s}(x)+F_{t-s}(x)=2 F_{t}\left(F_{s}(x)\right):=2 \bigcup\left\{F_{t}(y): y \in F_{s}(x)\right\} \tag{7}
\end{equation*}
$$

for $x \in K$ and $0 \leq s \leq t$.
Let X be a normed space. A cosine family $\left\{F_{t}: t \geq 0\right\}$ is said to be regular if

$$
\lim _{t \rightarrow 0^{+}} d\left(F_{t}(x),\{x\}\right)=0
$$

Lemma 8
Let X be a Banach space and let K be a closed convex cone in X such that int $K \neq \emptyset$. Assume that $\left\{F_{t}: t \geq 0\right\}$ is a regular cosine family of continuous additive set-valued functions $F_{t}: K \longrightarrow c c(K)$ and $x \in F_{t}(x)$ for all $x \in K$ and $t \geq 0$. Then there exist the Hukuhara differences $F_{t}(x)-F_{s}(x)$ for all $0 \leq s \leq t$ and $x \in K$.

Proof. We first prove, by induction on n, that there exist the Hukuhara differences

$$
\begin{equation*}
F_{n s}(x)-F_{(n-1) s}(x) \tag{8}
\end{equation*}
$$

for all $s \geq 0, x \in K, n \in \mathbb{N}$.

92 Magdalena Piszczek

For $n=1$ it suffices to show that

$$
F_{s}(x)-x \subset K
$$

for $x \in K$ and $s \geq 0$. Let $x \in K$ and $s \geq 0$. Putting $t=s$ in (7) we have

$$
\begin{equation*}
F_{2 s}(x)+x=2 F_{s}\left(F_{s}(x)\right) . \tag{9}
\end{equation*}
$$

Hence and by the assumption $x \in F_{t}(x)$ we get

$$
F_{s}(x) \subset \frac{1}{2} F_{2 s}(x)+\frac{1}{2} x .
$$

Replacing s by $2 s$ in the last inclusion we obtain

$$
F_{2 s}(x) \subset \frac{1}{2} F_{4 s}(x)+\frac{1}{2} x,
$$

whence

$$
F_{s}(x) \subset \frac{1}{4} F_{4 s}(x)+\frac{1}{4} x+\frac{1}{2} x .
$$

By induction we can prove that

$$
F_{s}(x) \subset \frac{1}{2^{p}} F_{2^{p}}(x)+\frac{1}{2^{p}} x+\cdots+\frac{1}{2} x
$$

for all $p \in \mathbb{N}$. Therefore

$$
F_{s}(x) \subset K+\left(1-2^{-p}\right) x .
$$

Let $y \in F_{s}(x)$. Then $y-\left(1-2^{-p}\right) x \in K$ and letting $p \rightarrow \infty$ we have $y-x \in K$. Thus $F_{s}(x)-x \subset K$.

By (9) and by the additivity of F_{s} we obtain

$$
F_{2 s}(x)+x=2 F_{s}\left(F_{s}(x)-x\right)+2 F_{s}(x)
$$

and

$$
F_{2 s}(x)-F_{s}(x)=2 F_{s}\left(F_{s}(x)-x\right)+F_{s}(x)-x .
$$

Let $k \in \mathbb{N}$. Assuming (8) to hold for $n=k$, we will prove it for $n=k+1$.
Putting $t=k s$ in (7) we get

$$
F_{(k+1) s}(x)+F_{(k-1) s}(x)=2 F_{k s}\left(F_{s}(x)\right),
$$

whence and by the additivity of F_{s}

$$
F_{(k+1) s}(x)+F_{(k-1) s}(x)=2 F_{k s}\left(F_{s}(x)-x\right)+2 F_{k s}(x) .
$$

By the induction assumption we obtain

$$
F_{(k+1) s}(x)=2 F_{k s}\left(F_{s}(x)-x\right)+\left(F_{k s}(x)-F_{(k-1) s}(x)\right)+F_{k s}(x) .
$$

Thus

$$
F_{(k+1) s}(x)-F_{k s}(x)=2 F_{k s}\left(F_{s}(x)-x\right)+\left(F_{k s}(x)-F_{(k-1) s}(x)\right) .
$$

From this we see that there exist the Hukuhara differences

$$
\begin{equation*}
F_{n s}(x)-F_{m s}(x) \tag{10}
\end{equation*}
$$

for all $m, n \in \mathbb{N}, m \leq n, s \geq 0$. Suppose that $0 \leq s \leq t$. Replacing s by $\frac{t}{n}$ in (10) we can assert that there exist the Hukuhara differences

$$
F_{t}(x)-F_{\frac{m}{n} t}(x)
$$

There exists a sequence $a_{n} \in \mathbb{Q} \cap[0,1]$ such that $a_{n} t$ is convergent to s. By the continuity of $t \mapsto F_{t}(x)$ (Theorem 2 in [10]), $F_{a_{n} t}(x) \rightarrow F_{s}(x)$ and by Lemma 1, there exists the difference

$$
F_{t}(x)-F_{s}(x)=\lim _{n \rightarrow \infty}\left(F_{t}(x)-F_{a_{n} t}(x)\right) .
$$

A cosine family $\left\{F_{t}: t \geq 0\right\}$ of set-valued functions $F_{t}: K \longrightarrow c c(K)$ is said to be differentiable if all set-valued functions $t \mapsto F_{t}(x), x \in K$, have Hukuhara derivative on $[0,+\infty)$.

Lemma 9
Let X be a Banach space and let K be a closed convex cone in X such that int $K \neq \emptyset$. Suppose that $\left\{F_{t}: t \geq 0\right\}$ is a regular cosine family of continuous additive set-valued functions $F_{t}: K \longrightarrow c c(K)$ and $x \in F_{t}(x)$ for all $x \in K$ and $t \geq 0$. Then multifunctions $t \mapsto F_{t}(x)(x \in K)$ are concave, there exist set-valued functions $G_{t}^{+}: K \longrightarrow c c(K)$ and $G_{t}^{-}: K \longrightarrow c c(K)$ such that

$$
G_{t}^{+}(x)=\lim _{h \rightarrow 0^{+}} \frac{F_{t+h}(x)-F_{t}(x)}{h}, \quad G_{t}^{-}(x)=\lim _{h \rightarrow 0^{+}} \frac{F_{t}(x)-F_{t-h}(x)}{h}
$$

for all $t>0, x \in K$ and the convergence is uniform on every nonempty compact subset of K. Moreover, G_{t}^{+}and G_{t}^{-}are additive, continuous,

$$
G_{t}^{+}(x)=\bigcap_{h>0} \frac{F_{t+h}(x)-F_{t}(x)}{h}, \quad G_{t}^{-}(x)=\mathrm{cl}\left(\bigcup_{t \geq h>0} \frac{F_{t}(x)-F_{t-h}(x)}{h}\right)
$$

and $G_{t}^{-}(x) \subset G_{t}^{+}(x)$ for $x \in K$.

94 Magdalena Piszczek

Proof. Let us fix $x \in K$. We consider the mutlifunction $t \mapsto F_{t}(x)$ for $t \geq 0$. Setting $t=\frac{v+u}{2}, s=\frac{v-u}{2}, 0 \leq u \leq v$ in (7) we get

$$
F_{v}(x)+F_{u}(x)=2 F_{\frac{v+u}{2}}\left(F_{\frac{v-u}{2}}(x) .\right.
$$

Since $x \in F_{t}(x)$ for all $t \geq 0$, we have

$$
F_{\frac{v+u}{2}}(x) \subset \frac{F_{v}(x)+F_{u}(x)}{2} .
$$

Hence, by the continuity (Theorem 2 in [10]) and by Theorem 4.1 in [4] the multifunction $t \mapsto F_{t}(x)$ is concave. Moreover, by Lemma 8 there exist the Hukuhara differences

$$
F_{t+h}(x)-F_{t}(x), \quad F_{t}(x)-F_{t-h}(x)
$$

for all $0 \leq h \leq t$. Thus (Theorem 3.2 in [6]) there exist limits

$$
\begin{equation*}
G_{t}^{+}(x)=\lim _{h \rightarrow 0^{+}} \frac{F_{t+h}(x)-F_{t}(x)}{h}, \quad G_{t}^{-}(x)=\lim _{h \rightarrow 0^{+}} \frac{F_{t}(x)-F_{t-h}(x)}{h} \tag{11}
\end{equation*}
$$

for all $t>0$. As $t \mapsto F_{t}(x)$ is concave we see that $h \mapsto \frac{F_{t+h}(x)-F_{t}(x)}{h}$ is increasing, $h \mapsto \frac{F_{t}(x)-F_{t-h}(x)}{h}$ is decreasing in $(0, t)$ and $\frac{F_{t}(x)-F_{t-h}(x)}{h} \subset G_{t}^{+}(x)$.

Lemmas 5 and 7 respectively imply that the convergence in (11) is uniform on every nonempty compact subset of K and G_{t}^{+}, G_{t}^{-}are additive and continuous.

Theorem

Let X be a Banach space and let K be a closed convex cone with the nonempty interior. Suppose that $\left\{F_{t}: t \geq 0\right\}$ is a regular cosine family of continuous linear set-valued functions $F_{t}: K \longrightarrow c c(K), x \in F_{t}(x)$ for all $x \in K$ and $t>0$ and $F_{t} \circ F_{s}=F_{s} \circ F_{t}$ for all $s, t>0$. Then this cosine family is twice differentiable and

$$
D^{2} F_{t}(x)=F_{t}(H(x))
$$

for $x \in K, t \geq 0$, where $D^{2} F_{t}(x)$ denotes the second Hukuhara derivative of $F_{t}(x)$ with respect to t and $H(x)$ is the second Hukuhara derivative of this multifunction at $t=0$.

Proof. Let us fix $x \in K$. Consider the multifunction $t \mapsto F_{t}(x)$ for $t \geq 0$. By Lemma 8 there exist the Hukuhara differences $F_{t}(x)-F_{s}(x)$ for $0 \leq s \leq t$. By Lemma 9 the multifunction $t \mapsto F_{t}(x)$ is concave and there exist

$$
G_{t}^{+}(x)=\lim _{h \rightarrow 0^{+}} \frac{F_{t+h}(x)-F_{t}(x)}{h} \quad \text { and } \quad G_{t}^{-}(x)=\lim _{h \rightarrow 0^{+}} \frac{F_{t}(x)-F_{t-h}(x)}{h}
$$

for $t>0$ and $G_{t}^{-}(x) \subset G_{t}^{+}(x)$. The same argument may be used to prove that there exists

$$
\lim _{t \rightarrow 0^{+}} \frac{F_{t}(x)-x}{t}
$$

It follows from (7) that

$$
\frac{F_{2 t}(x)-x}{2 t}=F_{t}\left(\frac{F_{t}(x)-x}{t}\right)+\frac{F_{t}(x)-x}{t}
$$

Letting $t \rightarrow 0^{+}$we get

$$
\lim _{t \rightarrow 0^{+}} F_{t}\left(\frac{F_{t}(x)-x}{t}\right)=\{0\}
$$

and since

$$
0 \in \frac{F_{t}(x)-x}{t} \subset F_{t}\left(\frac{F_{t}(x)-x}{t}\right)
$$

we have

$$
\begin{equation*}
D F_{0}(x)=\lim _{t \rightarrow 0^{+}} \frac{F_{t}(x)-x}{t}=\{0\} . \tag{12}
\end{equation*}
$$

Let $0<h \leq t$. By (7) and the additivity of F_{t} we obtain

$$
F_{t+h}(x)-F_{t}(x)=2 F_{t}\left(F_{h}(x)-x\right)+F_{t}(x)-F_{t-h}(x)
$$

Dividing the last equality by h we get

$$
\frac{F_{t+h}(x)-F_{t}(x)}{h}=2 F_{t}\left(\frac{F_{h}(x)-x}{h}\right)+\frac{F_{t}(x)-F_{t-h}(x)}{h} .
$$

Letting $h \rightarrow 0^{+}$, by Lemma 9 and (12) we have

$$
G_{t}^{+}(x)=G_{t}^{-}(x)=: G_{t}(x) \quad \text { for } t>0
$$

This and (12) imply that the family $\left\{F_{t}: t \geq 0\right\}$ is differentiable.
Next we will show that there exist the Hukuhara differences $G_{t}(x)-G_{s}(x)$ for $0 \leq s \leq t$. It is enough to consider the case $0<s<t$. Let $h>0$ be such that $t-s-h \geq 0$. By Lemma 8 there exist the differences

$$
F_{\frac{1}{2} t-\frac{1}{2} s+\frac{1}{2} h}(x)-F_{\frac{1}{2} t-\frac{1}{2} s-\frac{1}{2} h}(x), \quad F_{t+h}(x)-F_{t}(x) \quad \text { and } \quad F_{s+h}(x)-F_{s}(x)
$$

in $c c(K)$. Since $F_{\frac{1}{2} t+\frac{1}{2} s+\frac{1}{2} h}$ is linear and continuous with respect to Lemma 3 there exists the difference

$$
F_{\frac{1}{2} t+\frac{1}{2} s+\frac{1}{2} h}\left(F_{\frac{1}{2} t-\frac{1}{2} s+\frac{1}{2} h}(x)\right)-F_{\frac{1}{2} t+\frac{1}{2} s+\frac{1}{2} h}\left(F_{\frac{1}{2} t-\frac{1}{2} s-\frac{1}{2} h}(x)\right) .
$$

96 Magdalena Piszczek

By (7) we have

$$
\begin{aligned}
& 2 F_{\frac{1}{2} t+\frac{1}{2} s+\frac{1}{2} h}\left(F_{\frac{1}{2} t-\frac{1}{2} s+\frac{1}{2} h}(x)\right)-2 F_{\frac{1}{2} t+\frac{1}{2} s+\frac{1}{2} h}\left(F_{\frac{1}{2} t-\frac{1}{2} s-\frac{1}{2} h}(x)\right) \\
& \quad=F_{t+h}(x)+F_{s}(x)-\left(F_{t}(x)+F_{s+h}(x)\right) \\
& \quad=\left(F_{t+h}(x)-F_{t}(x)\right)-\left(F_{s+h}(x)-F_{s}(x)\right) .
\end{aligned}
$$

Because of Lemma 1 there exists

$$
G_{t}(x)-G_{s}(x)=\lim _{h \rightarrow 0^{+}}\left(\frac{F_{t+h}(x)-F_{t}(x)}{h}-\frac{F_{s+h}(x)-F_{s}(x)}{h}\right) .
$$

Our next claim is that the multifunction $t \mapsto G_{t}(x)$ is concave and differentiable. Replacing in (7) t by $t+h, h>0$ and substracting $F_{t+s}(x)+F_{t-s}(x)$ from both the sides of this equality we get

$$
F_{t+s+h}(x)-F_{t+s}(x)+F_{t-s+h}(x)-F_{t-s}(x)=2 F_{t+h}\left(F_{s}(x)\right)-2 F_{t}\left(F_{s}(x)\right)
$$

The equality $F_{t} \circ F_{s}=F_{s} \circ F_{t}, s, t \geq 0$ leads to

$$
\frac{F_{t+s+h}(x)-F_{t+s}(x)}{h}+\frac{F_{t-s+h}(x)-F_{t-s}(x)}{h}=2 F_{s}\left(\frac{F_{t+h}(x)-F_{t}(x)}{h}\right)
$$

whence, as $h \rightarrow 0^{+}$,

$$
\begin{equation*}
G_{t+s}(x)+G_{t-s}(x)=2 F_{s}\left(G_{t}(x)\right) \tag{13}
\end{equation*}
$$

Setting $t=\frac{v+u}{2}, s=\frac{v-u}{2}$, where $0 \leq u \leq v$ in (13) yields

$$
G_{v}(x)+G_{u}(x)=2 F_{\frac{v-u}{2}}\left(G_{\frac{v+u}{2}}(x)\right)
$$

By the assumption $x \in F_{t}(x)$ we get

$$
G_{\frac{v+u}{2}}(x) \subset \frac{G_{v}(x)+G_{u}(x)}{2}
$$

Fix an interval $[a, b] \subset[0, \infty)$ and let $t \in[a, b]$. Since the multifunctions $t \mapsto F_{t}(x), x \in K$, are concave and differences $F_{t}(x)-F_{s}(x)$ exist for $x \in K$ and $0 \leq s \leq t$, the multifunctions $t \mapsto G_{t}(x)$ are increasing (Theorem 3.2 in [6]) and we have $G_{t}(x) \subset G_{b}(x)$. Therefore the multifunctions $t \mapsto G_{t}(x)$ are bounded on $[a, b]$. By Theorem 4.4 in [4] the multifunction $t \mapsto G_{t}(x)$ is continuous in $(0, \infty)$ and by Theorem 4.1 in [4] it is concave. In virtue of Theorem 3.2 in [6] there exist

$$
H_{t}^{+}(x)=\lim _{h \rightarrow 0^{+}} \frac{G_{t+h}(x)-G_{t}(x)}{h} \quad \text { and } \quad H_{t}^{-}(x)=\lim _{h \rightarrow 0^{+}} \frac{G_{t}(x)-G_{t-h}(x)}{h}
$$

for $t>0$ and $H_{t}^{-}(x) \subset H_{t}^{+}(x)$. Since $\frac{G_{\lambda t}(x)}{\lambda t} \subset \frac{G_{t}(x)}{t}$ for $t>0$ and $\lambda \in(0,1)$, there also exists

$$
\lim _{t \rightarrow 0^{+}} \frac{G_{t}(x)}{t}=: H(x)
$$

and $H(x) \in c c(K)$.
Let $0<s \leq t$. The relation $F_{t} \circ F_{s}=F_{s} \circ F_{t}$ and Lemmas 2, 3 and 9 yield

$$
\begin{aligned}
& F_{s}\left(G_{t}(x)\right) \\
& \quad=F_{s}\left(\lim _{h \rightarrow 0^{+}} \frac{F_{t+h}(x)-F_{t}(x)}{h}\right)=\lim _{h \rightarrow 0^{+}} \frac{F_{s}\left(F_{t+h}(x)\right)-F_{s}\left(F_{t}(x)\right)}{h} \\
& \quad=\lim _{h \rightarrow 0^{+}} \frac{F_{t+h}\left(F_{s}(x)\right)-F_{t}\left(F_{s}(x)\right)}{h} \\
& \quad \subset \lim _{h \rightarrow 0^{+}} \frac{\left(F_{t+h}-F_{t}\right)\left(F_{s}(x)\right)}{h} \\
& \quad=G_{t}\left(F_{s}(x)\right)
\end{aligned}
$$

which together with (13) lead to

$$
G_{t+s}(x)+G_{t-s}(x) \subset 2 G_{t}\left(F_{s}(x)\right) .
$$

By the additivity of G_{t} we get

$$
G_{t+s}(x)+G_{t-s}(x) \subset 2 G_{t}\left(F_{s}(x)-x\right)+2 G_{t}(x)
$$

whence

$$
G_{t+s}(x)-G_{t}(x) \subset 2 G_{t}\left(F_{s}(x)-x\right)+G_{t}(x)-G_{t-s}(x) .
$$

Dividing the last inclusion by s and letting $s \rightarrow 0^{+}$we obtain

$$
H_{t}^{+}(x) \subset H_{t}^{-}(x) .
$$

Therefore

$$
H_{t}^{+}(x)=H_{t}^{-}(x)=: H_{t}(x)
$$

for $t>0$ and the family $\left\{F_{t}: t \geq 0\right\}$ is twice differentiable.
It remains to prove the equality in the assertion. Let $0<s<t$. Lemmas 1, 3 and (7) lead to

$$
\begin{aligned}
2 F_{t}\left(G_{s}(x)\right) & =2 F_{t}\left(\lim _{h \rightarrow 0^{+}} \frac{F_{s+h}(x)-F_{s}(x)}{h}\right) \\
& =\lim _{h \rightarrow 0^{+}} \frac{2 F_{t}\left(F_{s+h}(x)\right)-2 F_{t}\left(F_{s}(x)\right)}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{F_{t+s+h}(x)+F_{t-s-h}(x)-\left(F_{t+s}(x)+F_{t-s}(x)\right)}{h}
\end{aligned}
$$

98 Magdalena Piszczek

$$
\begin{aligned}
& =\lim _{h \rightarrow 0^{+}}\left[\frac{F_{t+s+h}(x)-F_{t+s}(x)}{h}-\frac{F_{t-s}(x)-F_{t-s-h}(x)}{h}\right] \\
& =G_{t+s}(x)-G_{t-s}(x) \\
& =G_{t+s}(x)-G_{t}(x)+G_{t}(x)-G_{t-s}(x) .
\end{aligned}
$$

Dividing the last equality by s we get

$$
2 F_{t}\left(\frac{G_{s}(x)}{s}\right)=\frac{G_{t+s}(x)-G_{t}(x)}{s}+\frac{G_{t}(x)-G_{t-s}(x)}{s},
$$

letting $s \rightarrow 0^{+}$and dividing by 2 we have

$$
F_{t}(H(x))=H_{t}(x) .
$$

References

[1] Ch. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Math. 580, Springer-Verlag, 1977.
[2] M. Hukuhara, Intégration des application mesurables dont la valeur est un compact convexe, Funkcial. Ekvac. 10 (1967), 205-223.
[3] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe and Uniwersytet Śląski, Warszawa-Kraków - Katowice, 1985.
[4] K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Naukowe Politech. Łódz. Mat. 559, Rozprawy Nauk. 144, 1989.
[5] K. Nikodem, On Jensen's functional equation for set-valued functions, Rad. Mat. 3 (1987), 23-33.
[6] M. Piszczek, Integral representations of convex and concave set-valued functions, Demonstratio Math. 35 (2002), 727-742.
[7] H. Rådström, An embeldding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
[8] A. Smajdor, Hukuhara's derivative and concave iteration semigrups of linear set-valued functions, J. Appl. Anal. 8 (2002), 297-305.
[9] A. Smajdor, Increasing iteration semigroup of Jensen set-valued functions, Aequationes Math. 56 (1998), 131-142.
[10] A. Smajdor, On regular multivalued cosine families, Ann. Math. Sil. 13 (1999), 271-280.

Institute of Mathematics
Pedagogical University
Podchorażych 2
PL-30-084 Kraków
Poland
E-mail: magdap@ap.krakow.pl

[^0]: AMS (2000) Subject Classification: 26E25, 39B52, 47D09.

