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Let K be a closed convex cone with the nonempty interior in

a real Banach space and let cc(K) denote the family of all nonempty
convex compact subsets of K. If {Ft : t ≥ 0} is a regular cosine family
of continuous linear set-valued functions Ft: K −→ cc(K), x ∈ Ft(x) for
t ≥ 0, x ∈ K and Ft ◦ Fs = Fs ◦ Ft for s, t ≥ 0, then

D
2
Ft(x) = Ft(H(x))

for x ∈ K and t ≥ 0, where D2Ft(x) denotes the second Hukuhara
derivative of Ft(x) with respect to t and H(x) is the second Hukuhara
derivative of this multifunction at t = 0.

Let X be a vector space. Through this paper all vector spaces are supposed
to be real. We introduce the notations

A + B := {a + b : a ∈ A, b ∈ B},

λA := {λa : a ∈ A}

for A, B ⊂ X and λ ∈ R.
A subset K of X is called a cone if tK ⊂ K for all t ∈ (0, +∞). A cone is

said to be convex if it is a convex set.
Let X and Y be two vector spaces and let K ⊂ X be a convex cone. A set-

valued function F : K −→ n(Y ), where n(Y ) denotes the family of all nonempty
subsets of Y , is called additive if

F (x + y) = F (x) + F (y)

for all x, y ∈ K. If additionally F satisfies

F (λx) = λF (x)

for all x ∈ K and λ ≥ 0, then F is called linear.
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A set-valued function F : [0, +∞) −→ n(Y ) is said to be concave if

F (λt + (1 − λ)s) ⊂ λF (t) + (1 − λ)F (s)

for all s, t ∈ [0, +∞) and λ ∈ (0, 1).
From now on we assume that X is a normed vector space, c(X) denotes the

family of all compact members of n(X) and cc(X) stands for the family of all
convex sets of c(X).

Let A, B, C be sets of cc(X). We say that the set C is the Hukuhara

difference of A and B when C = A−B if B+C = A. By R̊adström Cancellation
Lemma [7] it follows that if this difference exists, then it is unique.

Let A, A1, A2, . . . be elements of the space cc(X). We say that the sequence

(An)n∈N is convergent to A and we write An → A if d(A, An) → 0, where d

denotes the Hausdorff metric induced by the norm in X .

Lemma 1
Let X be a Banach space, A, A1, A2, . . . , B, B1, B2, . . . ∈ cc(X). If An → A,

Bn → B and there exist the Hukuhara differences An −Bn in cc(X) for n ∈ N,

then there exists the Hukuhara difference A − B and An − Bn → A − B.

Proof. Let Cn = An − Bn for n ∈ N. By the definition of the Hukuhara
difference An = Bn + Cn for n ∈ N. By properties of the Hausdorff metric for
m, n ∈ N we have

d(Cm, Cn) = d(Bn + Bm + Cm, Bm + Bn + Cn)

= d(Bn + Am, Bm + An)

≤ d(Bn, Bm) + d(Am, An).

Sequences (An)n∈N and (Bn)n∈N are Cauchy sequences thus by the last in-
equality (Cn)n∈N is a Cauchy sequence, too. By the completness of cc(X) (see
Theorem II.3 in [1]) there exists C ∈ cc(X) such that Cn → C. Moreover,
Bn + Cn → B + C since

d(Bn + Cn, B + C) ≤ d(Bn + Cn, Bn + C) + d(Bn + C, B + C)

= d(Cn, C) + d(Bn, B).

On the other hand An → A and An = Bn +Cn so A = B +C, i.e., there exists
the Hukuhara difference A − B = C.

Let F, G: K −→ cc(K). We can define the multifunctions F +G and F −G

on K as follows

(F + G)(x) := F (x) + G(x) for x ∈ K

and

(F − G)(x) := F (x) − G(x)

if the Hukuhara differences F (x) − G(x) exist for all x ∈ K.
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Lemma 2
For each set A ⊂ K the inclusion

(F + G)(A) ⊂ F (A) + G(A) (1)

holds. Moreover, if there exist the Hukuhara difference F (A) − G(A) and the

multifunction F − G, then

F (A) − G(A) ⊂ (F − G)(A). (2)

Proof. Inclusion (1) is obvious. To prove (2) we observe that (F −G)+G =
F . Hence by (1) we obtain

F (A) ⊂ (F − G)(A) + G(A). (3)

Since F (A) = G(A) + (F (A) −G(A)), (3) and R̊adström Cancellation Lemma
yield inclusion (2).

Lemma 3 (Lemma 3 in [8])
Let X and Y be two normed vector spaces and let K be a closed convex cone in

X. Assume that F : K −→ cc(K) is continuous additive set-valued function and

A, B ∈ cc(K). If there exists the difference A−B, then there exists F (A)−F (B)
and F (A) − F (B) = F (A − B).

Lemma 4 (Lemma 3 in [5])
If (An)n∈N is a sequence of elements of the set c(X) such that An+1 ⊂ An for

n ∈ N, then

lim
n→∞

An =
∞
⋂

n=1

An .

Lemma 5 (Lemma 3 in [9])
Let K be a closed convex cone such that int K 6= ∅ in a Banach space X and

let Y be a normed space. If (Fn)n∈N is a sequence of continuous additive set-

valued functions Fn: K −→ cc(Y ) such that Fn+1(x) ⊂ Fn(x) for all x ∈ K

and n ∈ N, then the formula

F0(x) :=

∞
⋂

n=1

Fn(x), x ∈ K,

defines a continuous additive set-valued function F0: K −→ cc(Y ). Moreover,

lim
n→∞

Fn(x) = F0(x), x ∈ K, (4)

and the convergence in (4) is uniform on every nonempty compact subset of K.
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Lemma 6 (Lemma 4 in [5])
If (An)n∈N is a sequence of elements of c(X) satisfying An ⊂ An+1 ⊂ B for

n ∈ N and a compact set B, then

lim
n→∞

An = cl

(

∞
⋃

n=1

An

)

.

Lemma 7
Let K be a closed convex cone such that int K 6= ∅ in a Banach space X and let

Y be a normed space. If (Fn)n∈N is a sequence of continuous additive set-valued

functions Fn: K −→ cc(Y ) such that

1) Fn(x) ⊂ Fn+1(x) for all x ∈ K and n ∈ N,

2) Fn(x) ⊂ G(x) for all x ∈ K, n ∈ N and a set-valued function G: K −→
c(Y ),

then the formula

F0(x) := cl

(

∞
⋃

n=1

Fn(x)

)

, x ∈ K, (5)

defines a continuous additive set-valued function F0: K −→ cc(Y ). Moreover,

lim
n→∞

Fn(x) = F0(x), x ∈ K, (6)

and the convergence in (6) is uniform on every nonempty compact subset of K.

Proof. The sets F0(x) defined by the formula (5) are obviously closed and
convex. Since F0(x) ⊂ G(x) and G(x) are compact, they belong to cc(Y ) for
every x ∈ K. Equality (6) holds according to Lemma 6. By Lemma 5.6 in [4]
we have

F0(x + y) = lim
n→∞

Fn(x + y) = lim
n→∞

(Fn(x) + Fn(y)) = F0(x) + F0(y)

for all x, y ∈ K. Thus the set-valued function F0 is additive. Since F1(x) ⊂
F0(x) for x ∈ K and F1 is continuous, the set-valued function F0 is continuous
on int K (see Theorem 5.2 in [4]). Fix y ∈ int K and x0 ∈ K, then x0+y

2 ∈ int K

(see Chapter V, §1, Lemma 8 in [3]). Let (xn) be a sequence of elements of K

convergent to x0 . Then

d (F0(xn), F0(x0)) = d (F0(xn) + F0(y), F0(x0) + F0(y))

= 2d

(

F0

(

xn + y

2

)

, F0

(

x0 + y

2

))

.

The continuity of F0 at x0+y

2 implies that
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lim
n→∞

F0(xn) = F0(x0).

This means that F0 is continuous on K. The sequence (d(Fn(x), F0(x))) n ∈ N

is a decreasing sequence of continuous functions convergent to the zero func-
tion and according to Dini Theorem this function is the uniform limit of this
sequence on every nonempty compact subset of K.

Let F : [0, +∞) −→ cc(X) be a set-valued function such that there exist the
Hukuhara differences F (t)−F (s) for 0 ≤ s ≤ t. The Hukuhara derivative of F

at t > 0 is defined by the formula

DF (t) = lim
h→0+

F (t + h) − F (t)

h
= lim

h→0+

F (t) − F (t − h)

h
,

whenever both these limits exist (see [2]). Moreover,

DF (0) = lim
h→0+

F (h) − F (0)

h
.

Let (K, +) be a semigroup. A one-parameter family {Ft : t ≥ 0} of set-
valued functions Ft: K −→ n(K) is said to be a cosine family if

F0(x) = {x} for x ∈ K

and

Ft+s(x) + Ft−s(x) = 2Ft(Fs(x)) := 2
⋃

{Ft(y) : y ∈ Fs(x)} (7)

for x ∈ K and 0 ≤ s ≤ t.
Let X be a normed space. A cosine family {Ft : t ≥ 0} is said to be regular

if

lim
t→0+

d(Ft(x), {x}) = 0.

Lemma 8
Let X be a Banach space and let K be a closed convex cone in X such that

int K 6= ∅. Assume that {Ft : t ≥ 0} is a regular cosine family of continuous

additive set-valued functions Ft: K −→ cc(K) and x ∈ Ft(x) for all x ∈ K and

t ≥ 0. Then there exist the Hukuhara differences Ft(x)−Fs(x) for all 0 ≤ s ≤ t

and x ∈ K.

Proof. We first prove, by induction on n, that there exist the Hukuhara
differences

Fns(x) − F(n−1)s(x) (8)

for all s ≥ 0, x ∈ K, n ∈ N.



�/��f"g�hjijg�k ljmjgon\p qjrjs^rjljt

For n = 1 it suffices to show that

Fs(x) − x ⊂ K

for x ∈ K and s ≥ 0. Let x ∈ K and s ≥ 0. Putting t = s in (7) we have

F2s(x) + x = 2Fs(Fs(x)). (9)

Hence and by the assumption x ∈ Ft(x) we get

Fs(x) ⊂
1

2
F2s(x) +

1

2
x.

Replacing s by 2s in the last inclusion we obtain

F2s(x) ⊂
1

2
F4s(x) +

1

2
x,

whence

Fs(x) ⊂
1

4
F4s(x) +

1

4
x +

1

2
x.

By induction we can prove that

Fs(x) ⊂
1

2p
F2ps(x) +

1

2p
x + · · · +

1

2
x

for all p ∈ N. Therefore

Fs(x) ⊂ K +
(

1− 2−p
)

x.

Let y ∈ Fs(x). Then y−(1 − 2−p) x ∈ K and letting p → ∞ we have y−x ∈ K.
Thus Fs(x) − x ⊂ K.

By (9) and by the additivity of Fs we obtain

F2s(x) + x = 2Fs(Fs(x) − x) + 2Fs(x)

and

F2s(x) − Fs(x) = 2Fs(Fs(x) − x) + Fs(x) − x.

Let k ∈ N. Assuming (8) to hold for n = k, we will prove it for n = k + 1.
Putting t = ks in (7) we get

F(k+1)s(x) + F(k−1)s(x) = 2Fks(Fs(x)),

whence and by the additivity of Fs

F(k+1)s(x) + F(k−1)s(x) = 2Fks(Fs(x) − x) + 2Fks(x).
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By the induction assumption we obtain

F(k+1)s(x) = 2Fks(Fs(x) − x) +
(

Fks(x) − F(k−1)s(x)
)

+ Fks(x).

Thus

F(k+1)s(x) − Fks(x) = 2Fks(Fs(x) − x) +
(

Fks(x) − F(k−1)s(x)
)

.

From this we see that there exist the Hukuhara differences

Fns(x) − Fms(x) (10)

for all m, n ∈ N, m ≤ n, s ≥ 0. Suppose that 0 ≤ s ≤ t. Replacing s by t
n

in
(10) we can assert that there exist the Hukuhara differences

Ft(x) − Fm
n

t(x).

There exists a sequence an ∈ Q∩ [0, 1] such that ant is convergent to s. By the
continuity of t 7→ Ft(x) (Theorem 2 in [10]), Fant(x) → Fs(x) and by Lemma 1,
there exists the difference

Ft(x) − Fs(x) = lim
n→∞

(Ft(x) − Fant(x)) .

A cosine family {Ft : t ≥ 0} of set-valued functions Ft: K −→ cc(K) is said
to be differentiable if all set-valued functions t 7→ Ft(x), x ∈ K, have Hukuhara
derivative on [0, +∞).

Lemma 9
Let X be a Banach space and let K be a closed convex cone in X such that

int K 6= ∅. Suppose that {Ft : t ≥ 0} is a regular cosine family of continuous

additive set-valued functions Ft: K −→ cc(K) and x ∈ Ft(x) for all x ∈ K

and t ≥ 0. Then multifunctions t 7→ Ft(x) (x ∈ K) are concave, there exist

set-valued functions G+
t : K −→ cc(K) and G−

t : K −→ cc(K) such that

G+
t (x) = lim

h→0+

Ft+h(x) − Ft(x)

h
, G−

t (x) = lim
h→0+

Ft(x) − Ft−h(x)

h

for all t > 0, x ∈ K and the convergence is uniform on every nonempty compact

subset of K. Moreover, G+
t and G−

t are additive, continuous,

G+
t (x) =

⋂

h>0

Ft+h(x) − Ft(x)

h
, G−

t (x) = cl





⋃

t≥h>0

Ft(x) − Ft−h(x)

h





and G−
t (x) ⊂ G+

t (x) for x ∈ K.
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Proof. Let us fix x ∈ K. We consider the mutlifunction t 7→ Ft(x) for
t ≥ 0. Setting t = v+u

2 , s = v−u
2 , 0 ≤ u ≤ v in (7) we get

Fv(x) + Fu(x) = 2F v+u
2

(F v−u
2

(x).

Since x ∈ Ft(x) for all t ≥ 0, we have

F v+u
2

(x) ⊂
Fv(x) + Fu(x)

2
.

Hence, by the continuity (Theorem 2 in [10]) and by Theorem 4.1 in [4] the
multifunction t 7→ Ft(x) is concave. Moreover, by Lemma 8 there exist the
Hukuhara differences

Ft+h(x) − Ft(x), Ft(x) − Ft−h(x)

for all 0 ≤ h ≤ t. Thus (Theorem 3.2 in [6]) there exist limits

G+
t (x) = lim

h→0+

Ft+h(x) − Ft(x)

h
, G−

t (x) = lim
h→0+

Ft(x) − Ft−h(x)

h
(11)

for all t > 0. As t 7→ Ft(x) is concave we see that h 7→ Ft+h(x)−Ft(x)
h

is

increasing, h 7→ Ft(x)−Ft−h(x)
h

is decreasing in (0, t) and
Ft(x)−Ft−h(x)

h
⊂ G+

t (x).
Lemmas 5 and 7 respectively imply that the convergence in (11) is uni-

form on every nonempty compact subset of K and G+
t , G−

t are additive and
continuous.

Theorem
Let X be a Banach space and let K be a closed convex cone with the nonempty

interior. Suppose that {Ft : t ≥ 0} is a regular cosine family of continuous

linear set-valued functions Ft: K −→ cc(K), x ∈ Ft(x) for all x ∈ K and

t > 0 and Ft ◦ Fs = Fs ◦ Ft for all s, t > 0. Then this cosine family is twice

differentiable and

D2Ft(x) = Ft(H(x))

for x ∈ K, t ≥ 0, where D2Ft(x) denotes the second Hukuhara derivative

of Ft(x) with respect to t and H(x) is the second Hukuhara derivative of this

multifunction at t = 0.

Proof. Let us fix x ∈ K. Consider the multifunction t 7→ Ft(x) for t ≥ 0.
By Lemma 8 there exist the Hukuhara differences Ft(x)− Fs(x) for 0 ≤ s ≤ t.
By Lemma 9 the multifunction t 7→ Ft(x) is concave and there exist

G+
t (x) = lim

h→0+

Ft+h(x) − Ft(x)

h
and G−

t (x) = lim
h→0+

Ft(x) − Ft−h(x)

h
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for t > 0 and G−
t (x) ⊂ G+

t (x). The same argument may be used to prove that
there exists

lim
t→0+

Ft(x) − x

t
.

It follows from (7) that

F2t(x) − x

2t
= Ft

(

Ft(x) − x

t

)

+
Ft(x) − x

t
.

Letting t → 0+ we get

lim
t→0+

Ft

(

Ft(x) − x

t

)

= {0}

and since

0 ∈
Ft(x) − x

t
⊂ Ft

(

Ft(x) − x

t

)

we have

DF0(x) = lim
t→0+

Ft(x) − x

t
= {0}. (12)

Let 0 < h ≤ t. By (7) and the additivity of Ft we obtain

Ft+h(x) − Ft(x) = 2Ft(Fh(x) − x) + Ft(x) − Ft−h(x).

Dividing the last equality by h we get

Ft+h(x) − Ft(x)

h
= 2Ft

(

Fh(x) − x

h

)

+
Ft(x) − Ft−h(x)

h
.

Letting h → 0+, by Lemma 9 and (12) we have

G+
t (x) = G−

t (x) =: Gt(x) for t > 0.

This and (12) imply that the family {Ft : t ≥ 0} is differentiable.
Next we will show that there exist the Hukuhara differences Gt(x)−Gs(x)

for 0 ≤ s ≤ t. It is enough to consider the case 0 < s < t. Let h > 0 be such
that t − s − h ≥ 0. By Lemma 8 there exist the differences

F 1
2
t− 1

2
s+ 1

2
h(x) − F 1

2
t− 1

2
s− 1

2
h(x), Ft+h(x) − Ft(x) and Fs+h(x) − Fs(x)

in cc(K). Since F 1
2
t+ 1

2
s+ 1

2
h is linear and continuous with respect to Lemma 3

there exists the difference

F 1
2
t+ 1

2
s+ 1

2
h(F 1

2
t− 1

2
s+ 1

2
h(x)) − F 1

2
t+ 1

2
s+ 1

2
h(F 1

2
t− 1

2
s− 1

2
h(x)).
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By (7) we have

2F 1
2
t+ 1

2
s+ 1

2
h(F 1

2
t− 1

2
s+ 1

2
h(x)) − 2F 1

2
t+ 1

2
s+ 1

2
h(F 1

2
t− 1

2
s− 1

2
h(x))

= Ft+h(x) + Fs(x) − (Ft(x) + Fs+h(x))

= (Ft+h(x) − Ft(x)) − (Fs+h(x) − Fs(x)) .

Because of Lemma 1 there exists

Gt(x) − Gs(x) = lim
h→0+

(

Ft+h(x) − Ft(x)

h
−

Fs+h(x) − Fs(x)

h

)

.

Our next claim is that the multifunction t 7→ Gt(x) is concave and differ-
entiable. Replacing in (7) t by t+h, h > 0 and substracting Ft+s(x)+Ft−s(x)
from both the sides of this equality we get

Ft+s+h(x) − Ft+s(x) + Ft−s+h(x) − Ft−s(x) = 2Ft+h(Fs(x)) − 2Ft(Fs(x)).

The equality Ft ◦ Fs = Fs ◦ Ft, s, t ≥ 0 leads to

Ft+s+h(x) − Ft+s(x)

h
+

Ft−s+h(x) − Ft−s(x)

h
= 2Fs

(

Ft+h(x) − Ft(x)

h

)

,

whence, as h → 0+,

Gt+s(x) + Gt−s(x) = 2Fs(Gt(x)). (13)

Setting t = v+u
2 , s = v−u

2 , where 0 ≤ u ≤ v in (13) yields

Gv(x) + Gu(x) = 2F v−u
2

(G v+u
2

(x)).

By the assumption x ∈ Ft(x) we get

G v+u
2

(x) ⊂
Gv(x) + Gu(x)

2
.

Fix an interval [a, b] ⊂ [0,∞) and let t ∈ [a, b]. Since the multifunctions
t 7→ Ft(x), x ∈ K, are concave and differences Ft(x) − Fs(x) exist for x ∈ K

and 0 ≤ s ≤ t, the multifunctions t 7→ Gt(x) are increasing (Theorem 3.2
in [6]) and we have Gt(x) ⊂ Gb(x). Therefore the multifunctions t 7→ Gt(x)
are bounded on [a, b]. By Theorem 4.4 in [4] the multifunction t 7→ Gt(x)
is continuous in (0,∞) and by Theorem 4.1 in [4] it is concave. In virtue of
Theorem 3.2 in [6] there exist

H+
t (x) = lim

h→0+

Gt+h(x) − Gt(x)

h
and H−

t (x) = lim
h→0+

Gt(x) − Gt−h(x)

h
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for t > 0 and H−
t (x) ⊂ H+

t (x). Since Gλt(x)
λt

⊂ Gt(x)
t

for t > 0 and λ ∈ (0, 1),
there also exists

lim
t→0+

Gt(x)

t
=: H(x)

and H(x) ∈ cc(K).
Let 0 < s ≤ t. The relation Ft ◦ Fs = Fs ◦ Ft and Lemmas 2, 3 and 9 yield

Fs(Gt(x))

= Fs

(

lim
h→0+

Ft+h(x) − Ft(x)

h

)

= lim
h→0+

Fs(Ft+h(x)) − Fs(Ft(x))

h

= lim
h→0+

Ft+h(Fs(x)) − Ft(Fs(x))

h

⊂ lim
h→0+

(Ft+h − Ft)(Fs(x))

h

= Gt(Fs(x))

which together with (13) lead to

Gt+s(x) + Gt−s(x) ⊂ 2Gt(Fs(x)).

By the additivity of Gt we get

Gt+s(x) + Gt−s(x) ⊂ 2Gt(Fs(x) − x) + 2Gt(x),

whence

Gt+s(x) − Gt(x) ⊂ 2Gt(Fs(x) − x) + Gt(x) − Gt−s(x).

Dividing the last inclusion by s and letting s → 0+ we obtain

H+
t (x) ⊂ H−

t (x).

Therefore

H+
t (x) = H−

t (x) =: Ht(x)

for t > 0 and the family {Ft : t ≥ 0} is twice differentiable.
It remains to prove the equality in the assertion. Let 0 < s < t. Lemmas 1,

3 and (7) lead to

2Ft(Gs(x)) = 2Ft

(

lim
h→0+

Fs+h(x) − Fs(x)

h

)

= lim
h→0+

2Ft(Fs+h(x)) − 2Ft(Fs(x))

h

= lim
h→0+

Ft+s+h(x) + Ft−s−h(x) − (Ft+s(x) + Ft−s(x))

h
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= lim
h→0+

[

Ft+s+h(x) − Ft+s(x)

h
−

Ft−s(x) − Ft−s−h(x)

h

]

= Gt+s(x) − Gt−s(x)

= Gt+s(x) − Gt(x) + Gt(x) − Gt−s(x).

Dividing the last equality by s we get

2Ft

(

Gs(x)

s

)

=
Gt+s(x) − Gt(x)

s
+

Gt(x) − Gt−s(x)

s
,

letting s → 0+ and dividing by 2 we have

Ft(H(x)) = Ht(x).
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[2] M. Hukuhara, Intégration des application mesurables dont la valeur est un

compact convexe, Funkcial. Ekvac. 10 (1967), 205-223.

[3] M. Kuczma, An Introduction to the Theory of Functional Equations and
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