FOLIA 340

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XIX (2020)

Hikmet Seyhan Özarslan
 A new result on the quasi power increasing sequences

Abstract

This paper presents a theorem dealing with absolute matrix summability of infinite series. This theorem has been proved taking quasi β-power increasing sequence instead of almost increasing sequence.

1. Introduction

The following notations and notions will be used in this paper. If $g>0$, then $f=O(g)$ means that $|f|<K . g$, for some constant $K>0$ (see [5]). Let (u_{n}) be a sequence. We write that $\Delta u_{n}=u_{n}-u_{n+1}, \Delta^{0} u_{n}=u_{n}$ and $\Delta^{k} u_{n}=\Delta \Delta^{k-1} u_{n}$ for $k=1,2, \ldots$ (see [5]).

Abel's transformation ([7]): Let $\left(a_{k}\right)$ and $\left(b_{k}\right)$ be complex sequences, and write $s_{n}=a_{1}+a_{2}+\ldots+a_{n}$. Then

$$
\sum_{k=1}^{n} a_{k} b_{k}=\sum_{k=1}^{n-1} s_{k} \Delta b_{k}+s_{n} b_{n}
$$

HÖLDER'S INEQUALITY ([7]): If $p>1, \frac{1}{p}+\frac{1}{q}=1$ and $a_{1}, a_{2}, a_{3}, \ldots, a_{n} \geq 0$, and $b_{1}, b_{2}, b_{3}, \ldots, b_{n} \geq 0$, then

$$
\sum_{k=1}^{n} a_{k} b_{k} \leq\left(\sum_{k=1}^{n} a_{k}^{p}\right)^{1 / p}\left(\sum_{k=1}^{n} b_{k}^{q}\right)^{1 / q}
$$

[^0]A positive sequence $\left(d_{n}\right)$ is said to be almost increasing if there exist a positive increasing sequence $\left(c_{n}\right)$ and two positive constants K and M such that $K c_{n} \leq d_{n} \leq M c_{n}$ (see [1]). Let $\sum a_{n}$ be an infinite series with its partial sums $\left(s_{n}\right)$. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right)
$$

Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e. a lower triangular matrix of nonzero diagonal entries. Here, A defines the sequence-to-sequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots
$$

Let $\left(\varphi_{n}\right)$ be any sequence of positive real numbers. The series $\sum a_{n}$ is said to be summable $\varphi-\left|A, p_{n}\right|_{k}, k \geq 1$, if (see [14]),

$$
\sum_{n=1}^{\infty} \varphi_{n}^{k-1}\left|A_{n}(s)-A_{n-1}(s)\right|^{k}<\infty
$$

If we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$, then we get $\left|A, p_{n}\right|_{k}$ summability (see [21]). If we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get $\left|\bar{N}, p_{n}\right|_{k}$ summability (see [2]). Also, if we take $\varphi_{n}=n, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n, then $\varphi-\left|A, p_{n}\right|_{k}$ summability reduces to $|C, 1|_{k}$ summability (see [4]).

2. Known result

Mazhar (9] has proved the following theorem.
Theorem 2.1
If $\left(X_{n}\right)$ is an almost increasing sequence and the conditions:

$$
\begin{gather*}
\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty \tag{1}\\
\sum_{n=1}^{m} n X_{n}\left|\Delta^{2} \lambda_{n}\right|=O(1) \quad \text { as } \quad m \rightarrow \infty \tag{2}\\
\sum_{n=1}^{m} \frac{P_{n}}{n}=O\left(P_{m}\right) \quad \text { as } \quad m \rightarrow \infty \\
\sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty
\end{gather*}
$$

and

$$
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty
$$

are satisfied, where $\left(t_{n}\right)$ is the n-th $(C, 1)$ mean of the sequence $\left(n a_{n}\right)$, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

Before introducing main result, we need some notations. Let $A=\left(a_{n v}\right)$ be a normal matrix. Two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ are defined as follows

$$
\begin{gather*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots, \tag{3}\\
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots, \tag{4}
\end{gather*}
$$

and

$$
\begin{gather*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{5}\\
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \tag{6}
\end{gather*}
$$

3. Main Result

There are some papers on absolute matrix summability (see [10, 11, 12, 13,15 , [16, 17, 18, 19, 20). The aim of this paper is to obtain a theorem dealing with the absolute matrix summability of infinite series. A positive sequence $\left(\gamma_{n}\right)$ is said to be a quasi β-power increasing sequence if there exists a constant $K=K(\beta, \gamma) \geq 1$ such that $K n^{\beta} \gamma_{n} \geq m^{\beta} \gamma_{m}$ holds for all $n \geq m \geq 1$ (see [6]). It should be noted that every almost increasing sequence is a quasi β-power increasing sequence for any nonnegative β, but the converse need not be true as can be seen by taking the example, say $\gamma_{n}=n^{-\beta}$ for $\beta>0$. A sequence $\left(\lambda_{n}\right)$ is said to be of bounded variation, denoted by $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$, if $\sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right|<\infty$.

Now, we prove the following result dealing with absolute matrix summability.

Theorem 3.1

Let $\left(X_{n}\right)$ be quasi β-power increasing sequence for some $0<\beta<1$ and $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{gather*}
\bar{a}_{n 0}=1, \quad n=0,1, \ldots, \tag{7}\\
a_{n-1, v} \geq a_{n v} \quad \text { for } n \geq v+1, \tag{8}\\
a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right), \tag{9}\\
\sum_{v=1}^{n-1} \frac{\left|\hat{a}_{n, v+1}\right|}{v}=O\left(a_{n n}\right) . \tag{10}
\end{gather*}
$$

Let $\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)$ be a non-increasing sequence and $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$. If conditions (1)-(2) of Theorem 2.1 and

$$
\begin{align*}
& \sum_{n=1}^{m}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{\left|t_{n}\right|^{k}}{n}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{11}\\
& \sum_{n=1}^{m} \varphi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{12}
\end{align*}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-\left|A, p_{n}\right|_{k}, k \geq 1$.
Taking $\left(X_{n}\right)$ as an almost increasing sequence, $\varphi_{n}=\frac{P_{n}}{p_{n}}$ and $a_{n v}=\frac{p_{v}}{P_{n}}$ in Theorem 3.1 we get Theorem 2.1

Lemma 3.2 ([3])
If $\left(X_{n}\right)$ is quasi β-power increasing sequence for some $0<\beta<1$, then under the conditions (1) and (2), we have

$$
\begin{gather*}
n X_{n}\left|\Delta \lambda_{n}\right|=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{13}\\
\sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty \tag{14}
\end{gather*}
$$

4. Proof of Theorem 3.1

Proof of Theorem 3.1. Let $\left(M_{n}\right)$ denotes A-transform of the series $\sum a_{n} \lambda_{n}$. We get by (5) and (6),

$$
\bar{\Delta} M_{n}=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \lambda_{v}=\sum_{v=1}^{n} \frac{\hat{a}_{n v} \lambda_{v}}{v} v a_{v} .
$$

Then, using Abel's transformation, we obtain

$$
\begin{aligned}
\bar{\Delta} M_{n}= & \sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} \lambda_{n}}{n} \sum_{r=1}^{n} r a_{r} \\
= & \sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v} t_{v}+\sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n, v+1} \Delta \lambda_{v} t_{v} \\
& +\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \frac{t_{v}}{v}+\frac{n+1}{n} a_{n n} \lambda_{n} t_{n} \\
= & M_{n, 1}+M_{n, 2}+M_{n, 3}+M_{n, 4} .
\end{aligned}
$$

For the proof of Theorem 3.1. we prove

$$
\sum_{n=1}^{\infty} \varphi_{n}^{k-1}\left|M_{n, r}\right|^{k}<\infty \quad \text { for } r=1,2,3,4
$$

For $r=1$, applying Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|M_{n, 1}\right|^{k}= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|^{\frac{1}{k}}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|^{\frac{k-1}{k}}\left|\lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\left(\sum_{v=1}^{n-1}\left(\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|^{\frac{1}{k}}\left|\lambda_{v}\right|\left|t_{v}\right|\right)^{k}\right)^{\frac{1}{k}}\right)^{k} \\
& \times\left(\left(\sum_{v=1}^{n-1}\left(\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|^{\frac{k-1}{k}}\right)^{k^{\prime}}\right)^{\frac{1}{k^{\prime}}}\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1}
\end{aligned}
$$

Using (4) and (3), we can easily show that $\Delta_{v}\left(\hat{a}_{n v}\right)=a_{n v}-a_{n-1, v}$. Then, by (8), (3) and (7), we have

$$
\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|=\sum_{v=1}^{n-1}\left(a_{n-1, v}-a_{n v}\right) \leq a_{n n}
$$

Now, (9) gives

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|M_{n, 1}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|
\end{aligned}
$$

Here, (8) implies that

$$
\sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|=\sum_{n=v+1}^{m+1}\left(a_{n-1, v}-a_{n v}\right) \leq a_{v v}
$$

so, by using the conditions (9), 12), (14) and (1), we obtain

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|M_{n, 1}\right|^{k}= & O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} a_{v v} \\
= & O(1) \sum_{v=1}^{m} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v} \varphi_{r}^{k-1}\left(\frac{p_{r}}{P_{r}}\right)^{k}\left|t_{r}\right|^{k} \\
& +O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|t_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
= & O(1) \text { as } m \rightarrow \infty .
\end{aligned}
$$

For $r=2$, again using Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|M_{n, 2}\right|^{k}= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left(\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\right)^{\frac{1}{k}}\left(\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\right)^{\frac{k-1}{k}}\left|t_{v}\right|\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\left(\sum_{v=1}^{n-1}\left(\left(\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\right)^{\frac{1}{k}}\left|t_{v}\right|\right)^{k}\right)^{\frac{1}{k}}\right)^{k} \\
& \times\left(\left(\sum_{v=1}^{n-1}\left(\left(\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\right)^{\frac{k-1}{k}}\right)^{k^{\prime}}\right)^{\frac{1}{k^{\prime}}}\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1} \| \Delta \lambda_{v}\right|\right)^{k-1}
\end{aligned}
$$

Here, by (4), (3) and (8),

$$
\begin{aligned}
\hat{a}_{n, v+1} & =\bar{a}_{n, v+1}-\bar{a}_{n-1, v+1}=\sum_{i=v+1}^{n} a_{n i}-\sum_{i=v+1}^{n-1} a_{n-1, i} \\
& =a_{n n}+\sum_{i=v+1}^{n-1}\left(a_{n i}-a_{n-1, i}\right) \leq a_{n n} .
\end{aligned}
$$

Then considering the fact that $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$ and the condition (9), we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|M_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v} \| t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v} \| t_{v}\right|^{k}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1}\left|\hat{a}_{n, v+1}\right| .
\end{aligned}
$$

Hence, by (4), (3), (7) and (8), it is clear that $\left|\hat{a}_{n, v+1}\right|=\sum_{i=0}^{v}\left(a_{n-1, i}-a_{n i}\right)$. Then, in view of (3) and (7) we get

$$
\begin{equation*}
\sum_{n=v+1}^{m+1}\left|\hat{a}_{n, v+1}\right|=\sum_{n=v+1}^{m+1} \sum_{i=0}^{v}\left(a_{n-1, i}-a_{n i}\right) \leq 1 \tag{15}
\end{equation*}
$$

Therefore, by using Abel's transformation, and (11), (2), (14), (13) we obtain

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|M_{n, 2}\right|^{k}= & O(1) \sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} v\left|\Delta \lambda_{v}\right| \frac{\left|t_{v}\right|^{k}}{v} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v}\left(\frac{\varphi_{r} p_{r}}{P_{r}}\right)^{k-1} \frac{\left|t_{r}\right|^{k}}{r} \\
& +O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{\left|t_{v}\right|^{k}}{v} \\
= & O(1) \sum_{v=1}^{m-1} v X_{v}\left|\Delta^{2} \lambda_{v}\right|+O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v} \\
& +O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
= & O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|M_{n, 3}\right|^{k} & \leq \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|}{v}\right)^{k} \\
& \leq \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1} \frac{\left|\hat{a}_{n, v+1}\right|}{v}\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k}\right)\left(\sum_{v=1}^{n-1} \frac{\left|\hat{a}_{n, v+1}\right|}{v}\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right|^{k} \frac{\left|t_{v}\right|^{k}}{v}\right) \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|^{k-1}\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v} \sum_{n=v+1}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left|\hat{a}_{n, v+1}\right|
\end{aligned}
$$

$$
\begin{aligned}
= & O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1}\left|\hat{a}_{n, v+1}\right| \\
= & O(1) \sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1}\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v+1}\right| \sum_{r=1}^{v}\left(\frac{\varphi_{r} p_{r}}{P_{r}}\right)^{k-1} \frac{\left|t_{r}\right|^{k}}{r} \\
& +O(1)\left|\lambda_{m+1}\right| \sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{\left|t_{v}\right|^{k}}{v} \\
= & O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v+1}\right| X_{v+1}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
= & O(1) \quad \text { as } \quad m \rightarrow \infty,
\end{aligned}
$$

by (10), (9), 15), 11), (14) and (1). Finally,

$$
\begin{aligned}
\sum_{n=1}^{m} \varphi_{n}^{k-1}\left|M_{n, 4}\right|^{k} & =O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} a_{n n}^{k}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

as in $M_{n, 1}$. This completes the proof.
If we take $\left(X_{n}\right)$ as an almost increasing sequence and $\varphi_{n}=\frac{P_{n}}{p_{n}}$, then we get a theorem dealing with $\left|A, p_{n}\right|_{k}$ summability (see [10]). Also, if we take (X_{n}) as a positive non-decreasing sequence, $\varphi_{n}=n, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n, then we get a theorem dealing with $|C, 1|_{k}$ summability (see [8]).

References

[1] Bari, Nina Karlovna, and Sergey B. Stečkin. "Best approximations and differential properties of two conjugate functions." Trudy Moskov. Mat. Obšč. 5 (1956): 483522. Cited on 96
[2] Bor, Hüseyin. "On two summability methods." Math. Proc. Cambridge Philos. Soc. 97, no. 1 (1985): 147-149. Cited on 96
[3] Bor, Hüseyin, and Lokenath Debnath. "Quasi β-power increasing sequences." Int. J. Math. Math. Sci. no. 41-44 (2004): 2371-2376. Cited on 98
[4] Flett, Thomas Muirhead. "On an extension of absolute summability and some theorems of Littlewood and Paley." Proc. London Math. Soc. (3) 7 (1957): 113141. Cited on 96
[5] Hardy, Godfrey Harold. Divergent Series. Oxford: Oxford University Press, 1949. Cited on 95
[6] Leindler, László. "A new application of quasi power increasing sequences." Publ. Math. Debrecen 58, no. 4 (2001): 791-796. Cited on 97
[7] Maddox, Ivor John. Introductory Mathematical Analysis. Bristol: Adam Hilger Ltd., 1977. Cited on 95
[8] Mazhar, Syed Mohammad. "On $|C, 1|_{k}$ summability factors of infinite series." Indian J. Math. 14 (1972): 45-48. Cited on 102
[9] Mazhar, Syed Mohammad. "Absolute summability factors of infinite series." Kyungpook Math. J. 39, no. 1 (1999): 67-73. Cited on 96
[10] Öğdük, H. Nedret. "A summability factor theorem by using an almost increasing sequence." J. Comput. Anal. Appl. 11, no. 1 (2009): 45-53. Cited on 97 and 102
[11] Özarslan, Hikmet Seyhan, and Enes Yavuz. "A new note on absolute matrix summability." J. Inequal. Appl. (2013): Article 474. Cited on 97
[12] Özarslan, Hikmet Seyhan, and Ayşegül Keten. "On a new application of almost increasing sequences." J. Inequal. Appl. (2013): Article 13. Cited on 97
[13] Özarslan, Hikmet Seyhan, and Enes Yavuz. "New theorems for absolute matrix summability factors." Gen. Math. Notes 23 , no. 2 (2014): 63-70. Cited on 97
[14] Özarslan, Hikmet Seyhan. "On generalized absolute matrix summability methods." Int. J. Anal. Appl. 12, no. 1 (2016): 66-70. Cited on 96
[15] Özarslan, Hikmet Seyhan, and Ahmet Karakaş. "A new result on the almost increasing sequences." J. Comput. Anal. Appl. 22, no. 6 (2017): 989-998. Cited on 97.
[16] Özarslan, Hikmet Seyhan, and Bağdagül Kartal. "A generalization of a theorem of Bor." J. Inequal. Appl. (2017): Article 179. Cited on 97
[17] Özarslan, Hikmet Seyhan. "A new application of quasi power increasing sequences." AIP Conference Proceedings 1926, (2018): 1-6. Cited on 97 .
[18] Özarslan, Hikmet Seyhan. "A new factor theorem for absolute matrix summability." Quaest. Math. 42, no. 6 (2019): 803-809. Cited on 97
[19] Özarslan, Hikmet Seyhan. "Generalized quasi power increasing sequences." Appl. Math. E-Notes 19 (2019): 38-45. Cited on 97
[20] Özarslan, Hikmet Seyhan. "An application of absolute matrix summability using almost increasing and δ-quasi-monotone sequences." Kyungpook Math. J. 59, no. 2 (2019): 233-240. Cited on 97
[21] Sulaiman, Waadallah Tawfeeq. "Inclusion theorems for absolute matrix summability methods of an infinite series. IV." Indian J. Pure Appl. Math. 34, no. 11 (2003): 1547-1557. Cited on 96

Hikmet Seyhan Özarslan
Department of Mathematics
Erciyes University
38039, Kayseri
Turkey
E-mail: seyhan@erciyes.edu.tr

Received: April 11, 2019; final version: October 21, 2019; available online: February 7, 2020.

[^0]: AMS (2010) Subject Classification: 26D15, 40D15, 40F05, 40G99.
 Keywords and phrases: almost increasing sequence, Hölder inequality, infinite series, Minkowski inequality, Riesz mean, quasi power increasing sequence, summability factor.

 ISSN: 2081-545X, e-ISSN: 2300-133X.

