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Abstract. This paper presents a theorem dealing with absolute matrix summa-
bility of infinite series. This theorem has been proved taking quasi β-power
increasing sequence instead of almost increasing sequence.

1. Introduction

The following notations and notions will be used in this paper. If g > 0, then
f = O(g) means that |f | < K.g, for some constant K > 0 (see [5]). Let (un) be
a sequence. We write that ∆un = un − un+1, ∆0un = un and ∆kun = ∆∆k−1un
for k = 1, 2, . . . (see [5]).

Abel’s transformation ([7]): Let (ak) and (bk) be complex sequences, and
write sn = a1 + a2 + . . .+ an. Then

n∑
k=1

akbk =
n−1∑
k=1

sk∆bk + snbn.

Hölder’s inequality ([7]): If p > 1, 1
p + 1

q = 1 and a1, a2, a3, . . . , an ≥ 0,
and b1, b2, b3, . . . , bn ≥ 0, then

n∑
k=1

akbk ≤
( n∑
k=1

apk

)1/p( n∑
k=1

bqk

)1/q
.
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A positive sequence (dn) is said to be almost increasing if there exist a pos-
itive increasing sequence (cn) and two positive constants K and M such that
Kcn ≤ dn ≤ Mcn (see [1]). Let

∑
an be an infinite series with its partial sums

(sn). Let (pn) be a sequence of positive numbers such that

Pn =
n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1).

Let A = (anv) be a normal matrix, i.e. a lower triangular matrix of nonzero
diagonal entries. Here, A defines the sequence-to-sequence transformation, map-
ping the sequence s = (sn) to As = (An(s)), where

An(s) =
n∑
v=0

anvsv, n = 0, 1, . . . .

Let (ϕn) be any sequence of positive real numbers. The series
∑
an is said to be

summable ϕ− |A, pn|k, k ≥ 1, if (see [14]),
∞∑
n=1

ϕk−1
n |An(s)−An−1(s)|k <∞.

If we take ϕn = Pn

pn
, then we get |A, pn|k summability (see [21]). If we take

ϕn = Pn

pn
and anv = pv

Pn
, then we get |N̄ , pn|k summability (see [2]). Also, if we

take ϕn = n, anv = pv

Pn
and pn = 1 for all values of n, then ϕ−|A, pn|k summability

reduces to |C, 1|k summability (see [4]).

2. Known result

Mazhar [9] has proved the following theorem.
Theorem 2.1
If (Xn) is an almost increasing sequence and the conditions:

|λm|Xm = O(1) as m→∞, (1)
m∑
n=1

nXn|∆2λn| = O(1) as m→∞, (2)

m∑
n=1

Pn
n

= O(Pm) as m→∞,

m∑
n=1

|tn|k

n
= O(Xm) as m→∞,

and
m∑
n=1

pn
Pn
|tn|k = O(Xm) as m→∞

are satisfied, where (tn) is the n-th (C, 1) mean of the sequence (nan), then the
series

∑
anλn is summable |N̄ , pn|k, k ≥ 1.
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Before introducing main result, we need some notations. Let A = (anv) be
a normal matrix. Two lower semimatrices Ā = (ānv) and Â = (ânv) are defined
as follows

ānv =
n∑
i=v

ani, n, v = 0, 1, . . . , (3)

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, . . . , (4)

and

An(s) =
n∑
v=0

anvsv =
n∑
v=0

ānvav, (5)

∆̄An(s) =
n∑
v=0

ânvav. (6)

3. Main Result

There are some papers on absolute matrix summability (see [10, 11, 12, 13, 15,
16, 17, 18, 19, 20]). The aim of this paper is to obtain a theorem dealing with the
absolute matrix summability of infinite series. A positive sequence (γn) is said to
be a quasi β-power increasing sequence if there exists a constant K = K(β, γ) ≥ 1
such that Knβγn ≥ mβγm holds for all n ≥ m ≥ 1 (see [6]). It should be noted
that every almost increasing sequence is a quasi β-power increasing sequence for
any nonnegative β, but the converse need not be true as can be seen by taking
the example, say γn = n−β for β > 0. A sequence (λn) is said to be of bounded
variation, denoted by (λn) ∈ BV, if

∑∞
n=1 |∆λn| <∞.

Now, we prove the following result dealing with absolute matrix summability.

Theorem 3.1
Let (Xn) be quasi β-power increasing sequence for some 0 < β < 1 and A = (anv)
be a positive normal matrix such that

ān0 = 1, n = 0, 1, . . . , (7)
an−1,v ≥ anv for n ≥ v + 1, (8)

ann = O
( pn
Pn

)
, (9)

n−1∑
v=1

|ân,v+1|
v

= O(ann). (10)
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Let
(
ϕnpn

Pn

)
be a non-increasing sequence and (λn) ∈ BV. If conditions (1)–(2) of

Theorem 2.1 and
m∑
n=1

(ϕnpn
Pn

)k−1 |tn|k

n
= O(Xm) as m→∞, (11)

m∑
n=1

ϕk−1
n

( pn
Pn

)k
|tn|k = O(Xm) as m→∞, (12)

are satisfied, then the series
∑
anλn is summable ϕ− |A, pn|k, k ≥ 1.

Taking (Xn) as an almost increasing sequence, ϕn = Pn

pn
and anv = pv

Pn
in

Theorem 3.1, we get Theorem 2.1.

Lemma 3.2 ([3])
If (Xn) is quasi β-power increasing sequence for some 0 < β < 1, then under the
conditions (1) and (2), we have

nXn|∆λn| = O(1) as n→∞, (13)
∞∑
n=1

Xn|∆λn| <∞. (14)

4. Proof of Theorem 3.1

Proof of Theorem 3.1. Let (Mn) denotes A-transform of the series
∑
anλn. We

get by (5) and (6),

∆̄Mn =
n∑
v=0

ânvavλv =
n∑
v=1

ânvλv
v

vav.

Then, using Abel’s transformation, we obtain

∆̄Mn =
n−1∑
v=1

∆v

( ânvλv
v

) v∑
r=1

rar + ânnλn
n

n∑
r=1

rar

=
n−1∑
v=1

v + 1
v

∆v(ânv)λvtv +
n−1∑
v=1

v + 1
v

ân,v+1∆λvtv

+
n−1∑
v=1

ân,v+1λv+1
tv
v

+ n+ 1
n

annλntn

= Mn,1 +Mn,2 +Mn,3 +Mn,4.

For the proof of Theorem 3.1, we prove

∞∑
n=1

ϕk−1
n |Mn,r|k <∞ for r = 1, 2, 3, 4.
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For r = 1, applying Hölder’s inequality with indices k and k′, where k > 1 and
1
k + 1

k′
= 1, we have

m+1∑
n=2

ϕk−1
n |Mn,1|k = O(1)

m+1∑
n=2

ϕk−1
n

( n−1∑
v=1
|∆v(ânv)||λv||tv|

)k

= O(1)
m+1∑
n=2

ϕk−1
n

( n−1∑
v=1
|∆v(ânv)|

1
k |∆v(ânv)|

k−1
k |λv||tv|

)k

= O(1)
m+1∑
n=2

ϕk−1
n

(( n−1∑
v=1

(
|∆v(ânv)|

1
k |λv||tv|

)k) 1
k
)k

×
(( n−1∑

v=1

(
|∆v(ânv)|

k−1
k

)k′) 1
k′
)k

= O(1)
m+1∑
n=2

ϕk−1
n

( n−1∑
v=1
|∆v(ânv)||λv|k|tv|k

)

×
( n−1∑
v=1
|∆v(ânv)|

)k−1
.

Using (4) and (3), we can easily show that ∆v(ânv) = anv − an−1,v. Then, by (8),
(3) and (7), we have

n−1∑
v=1
|∆v(ânv)| =

n−1∑
v=1

(an−1,v − anv) ≤ ann.

Now, (9) gives

m+1∑
n=2

ϕk−1
n |Mn,1|k = O(1)

m+1∑
n=2

(
ϕnpn
Pn

)k−1( n−1∑
v=1
|∆v(ânv)||λv|k|tv

|k
)

= O(1)
m∑
v=1
|λv|k|tv|k

m+1∑
n=v+1

(ϕnpn
Pn

)k−1
|∆v(ânv)|

= O(1)
m∑
v=1
|λv|k|tv|k

(ϕvpv
Pv

)k−1 m+1∑
n=v+1

|∆v(ânv)|.

Here, (8) implies that

m+1∑
n=v+1

|∆v(ânv)| =
m+1∑
n=v+1

(an−1,v − anv) ≤ avv,



[100] Hikmet Seyhan Özarslan

so, by using the conditions (9), (12), (14) and (1), we obtain

m+1∑
n=2

ϕk−1
n |Mn,1|k = O(1)

m∑
v=1
|λv|k−1|λv||tv|k

(ϕvpv
Pv

)k−1
avv

= O(1)
m∑
v=1

ϕk−1
v

( pv
Pv

)k
|λv||tv|k

= O(1)
m−1∑
v=1

∆|λv|
v∑
r=1

ϕk−1
r

( pr
Pr

)k
|tr|k

+O(1)|λm|
m∑
v=1

ϕk−1
v

( pv
Pv

)k
|tv|k

= O(1)
m−1∑
v=1
|∆λv|Xv +O(1)|λm|Xm

= O(1) as m→∞.

For r = 2, again using Hölder’s inequality with indices k and k′, where k > 1 and
1
k + 1

k′ = 1, we have

m+1∑
n=2

ϕk−1
n |Mn,2|k = O(1)

m+1∑
n=2

ϕk−1
n

( n−1∑
v=1
|ân,v+1||∆λv||tv|

)k

= O(1)
m+1∑
n=2

ϕk−1
n

( n−1∑
v=1

(|ân,v+1||∆λv|)
1
k (|ân,v+1||∆λv|)

k−1
k |tv|

)k

= O(1)
m+1∑
n=2

ϕk−1
n

(( n−1∑
v=1

((|ân,v+1||∆λv|)
1
k |tv|)k

) 1
k
)k

×
(( n−1∑

v=1

(
(|ân,v+1||∆λv|)

k−1
k

)k′) 1
k′
)k

= O(1)
m+1∑
n=2

ϕk−1
n

( n−1∑
v=1
|ân,v+1||∆λv||tv|k

)

×
( n−1∑
v=1
|ân,v+1||∆λv|

)k−1
.

Here, by (4), (3) and (8),

ân,v+1 = ān,v+1 − ān−1,v+1 =
n∑

i=v+1
ani −

n−1∑
i=v+1

an−1,i

= ann +
n−1∑
i=v+1

(ani − an−1,i) ≤ ann.
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Then considering the fact that (λn) ∈ BV and the condition (9), we have
m+1∑
n=2

ϕk−1
n |Mn,2|k = O(1)

m+1∑
n=2

(ϕnpn
Pn

)k−1
( n−1∑
v=1
|ân,v+1||∆λv||tv|k

)

= O(1)
m∑
v=1
|∆λv||tv|k

m+1∑
n=v+1

(ϕnpn
Pn

)k−1
|ân,v+1|

= O(1)
m∑
v=1
|∆λv||tv|k

(ϕvpv
Pv

)k−1 m+1∑
n=v+1

|ân,v+1|.

Hence, by (4), (3), (7) and (8), it is clear that |ân,v+1| =
∑v
i=0(an−1,i − ani).

Then, in view of (3) and (7) we get
m+1∑
n=v+1

|ân,v+1| =
m+1∑
n=v+1

v∑
i=0

(an−1,i − ani) ≤ 1. (15)

Therefore, by using Abel’s transformation, and (11), (2), (14), (13) we obtain
m+1∑
n=2

ϕk−1
n |Mn,2|k = O(1)

m∑
v=1

(ϕvpv
Pv

)k−1
v|∆λv|

|tv|k

v

= O(1)
m−1∑
v=1

∆(v|∆λv|)
v∑
r=1

(ϕrpr
Pr

)k−1 |tr|k

r

+O(1)m|∆λm|
m∑
v=1

(ϕvpv
Pv

)k−1 |tv|k

v

= O(1)
m−1∑
v=1

vXv|∆2λv|+O(1)
m−1∑
v=1
|∆λv|Xv

+O(1)m|∆λm|Xm

= O(1) as m→∞.

Now, we have
m+1∑
n=2

ϕk−1
n |Mn,3|k ≤

m+1∑
n=2

ϕk−1
n

( n−1∑
v=1
|ân,v+1||λv+1|

|tv|
v

)k

≤
m+1∑
n=2

ϕk−1
n

( n−1∑
v=1

|ân,v+1|
v

|λv+1|k|tv|k
)( n−1∑

v=1

|ân,v+1|
v

)k−1

= O(1)
m+1∑
n=2

(ϕnpn
Pn

)k−1
( n−1∑
v=1
|ân,v+1||λv+1|k

|tv|k

v

)

= O(1)
m∑
v=1
|λv+1|k−1|λv+1|

|tv|k

v

m+1∑
n=v+1

(ϕnpn
Pn

)k−1
|ân,v+1|
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= O(1)
m∑
v=1
|λv+1|

|tv|k

v

(ϕvpv
Pv

)k−1 m+1∑
n=v+1

|ân,v+1|

= O(1)
m∑
v=1

(ϕvpv
Pv

)k−1
|λv+1|

|tv|k

v

= O(1)
m−1∑
v=1

∆|λv+1|
v∑
r=1

(ϕrpr
Pr

)k−1 |tr|k

r

+O(1)|λm+1|
m∑
v=1

(ϕvpv
Pv

)k−1 |tv|k

v

= O(1)
m−1∑
v=1
|∆λv+1|Xv+1 +O(1)|λm+1|Xm+1

= O(1) as m→∞,

by (10), (9), (15), (11), (14) and (1). Finally,
m∑
n=1

ϕk−1
n |Mn,4|k = O(1)

m∑
n=1

ϕk−1
n aknn|λn|k|tn|k

= O(1)
m∑
n=1

ϕk−1
n

( pn
Pn

)k
|λn|k−1|λn||tn|k

= O(1)
m∑
n=1

ϕk−1
n

( pn
Pn

)k
|λn||tn|k

= O(1) as m→∞,

as in Mn,1. This completes the proof.

If we take (Xn) as an almost increasing sequence and ϕn = Pn

pn
, then we get

a theorem dealing with |A, pn|k summability (see [10]). Also, if we take (Xn) as
a positive non-decreasing sequence, ϕn = n, anv = pv

Pn
and pn = 1 for all values of

n, then we get a theorem dealing with |C, 1|k summability (see [8]).
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