FOLIA 277

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XVIII (2019)

Bağdagül Kartal

New results for almost increasing sequences

Abstract

In the present paper, two theorems of absolute summability have been proved by using the definition of almost increasing sequence.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with its partial sums $\left(s_{n}\right)$. Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers. The series $\sum a_{n}$ is said to be summable $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [14])

$$
\sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1}\left|\gamma_{n}-\gamma_{n-1}\right|^{k}<\infty
$$

where $\left(p_{n}\right)$ is a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right)
$$

and the sequence-to-sequence transformation

$$
\gamma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}
$$

defines the sequence $\left(\gamma_{n}\right)$ of the Riesz mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [7]).

[^0]For $\varphi_{n}=\frac{P_{n}}{p_{n}}, \varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability (see [3). Also, for $\delta=0$ and $\varphi_{n}=\frac{P_{n}}{p_{n}}, \varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability (see [2]). Some different applications of absolute summability can be find in [4, 5, 6, 8, $9,10,11,12,13,14,15, ~ 16, ~ 17]$.

A positive sequence $\left(d_{n}\right)$ is said to be almost increasing if there is a positive increasing sequence $\left(c_{n}\right)$ and two positive constants M and N such that

$$
M c_{n} \leq d_{n} \leq N c_{n}
$$

(see [1]). In [10], the following theorems of absolute summability have been proved by means of this sequence.

Theorem 1 ([10])
Let $\left(X_{n}\right)$ be an almost increasing sequence and let there be sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{1}\\
\beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{2}\\
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{3}\\
\left|\lambda_{n}\right| X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{4}
\end{gather*}
$$

where $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$. If

$$
\begin{align*}
& \sum_{v=1}^{n} \frac{\left|s_{v}\right|^{k}}{v}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \\
& \sum_{v=1}^{n} \frac{p_{v}}{P_{v}}\left|s_{v}\right|^{k}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{5}
\end{align*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
Theorem 2 ([10])
Let $\left(X_{n}\right)$ be an almost increasing sequence. If conditions (1)-4, (5) of Theorem 1 and conditions

$$
\begin{gather*}
\sum_{n=1}^{\infty} P_{n} X_{n}\left|\Delta \beta_{n}\right|<\infty \tag{6}\\
\sum_{n=1}^{m} \frac{\left|s_{n}\right|^{k}}{P_{n}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty
\end{gather*}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

2. Main Results

In this section, two general theorems will be proved.
Theorem 3
Let $\left(X_{n}\right)$ be an almost increasing sequence and $\varphi_{n} p_{n}=O\left(P_{n}\right)$. If conditions (1) -(4) of Theorem 1 and

$$
\begin{align*}
\sum_{v=1}^{n} \varphi_{v}^{\delta k} \frac{1}{v}\left|s_{v}\right|^{k} & =O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{7}\\
\sum_{v=1}^{n} \varphi_{v}^{\delta k-1}\left|s_{v}\right|^{k} & =O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{8}\\
\sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} & =O\left(\varphi_{v}^{\delta k} \frac{1}{P_{v}}\right) \quad \text { as } \quad m \rightarrow \infty \tag{9}
\end{align*}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta<1 / k$.

Theorem 4
Let $\left(X_{n}\right)$ be an almost increasing sequence and $\varphi_{n} p_{n}=O\left(P_{n}\right)$. If conditions (1)-(4), (6), (8)-(9) and

$$
\begin{equation*}
\sum_{n=1}^{m} \varphi_{n}^{\delta k} \frac{\left|s_{n}\right|^{k}}{P_{n}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{10}
\end{equation*}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta<1 / k$.

For $\delta=0$ and $\varphi_{n}=\frac{P_{n}}{p_{n}}$, Theorem 3 and Theorem 4 reduce to Theorem 1 and Theorem 2 respectively.

Lemma 1 ([10)
If $\left(X_{n}\right)$ is an almost increasing sequence, then under conditions (2)-(3), we have

$$
\begin{gather*}
n X_{n} \beta_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{11}\\
\sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{12}
\end{gather*}
$$

Lemma 2 ([10])
If $\left(X_{n}\right)$ is an almost increasing sequence, then under conditions (2) and (6), we have

$$
\begin{gather*}
P_{n} X_{n} \beta_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{13}\\
\sum_{n=1}^{\infty} p_{n} X_{n} \beta_{n}<\infty \tag{14}
\end{gather*}
$$

Proof of Theorem [3. Let $\left(I_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum a_{n} \lambda_{n}$. Then, we have

$$
I_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{r=0}^{v} a_{r} \lambda_{r}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) a_{v} \lambda_{v}
$$

For $n \geq 1$, we get

$$
I_{n}-I_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} \lambda_{v}
$$

From Abel's transformation, we obtain

$$
\begin{aligned}
I_{n}-I_{n-1} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \Delta\left(P_{v-1} \lambda_{v}\right) s_{v}+\frac{p_{n} s_{n} \lambda_{n}}{P_{n}} \\
& =\frac{p_{n} s_{n} \lambda_{n}}{P_{n}}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} s_{v} \lambda_{v}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \Delta \lambda_{v} \\
& =I_{n, 1}+I_{n, 2}+I_{n, 3}
\end{aligned}
$$

In order to prove that $\sum a_{n} \lambda_{n}$ is summable $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$, we will show

$$
\sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1}\left|I_{n, r}\right|^{k}<\infty \quad \text { for } r=1,2,3
$$

First, using condition (4) and the fact that $\left(X_{n}\right)$ is an almost increasing sequence, we obtain $\left|\lambda_{n}\right|^{k-1}=O(1)$. Moreover, using the fact that $\varphi_{n} p_{n}=O\left(P_{n}\right)$, we have

$$
\sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1}\left|I_{n, 1}\right|^{k}=O(1) \sum_{n=1}^{m} \varphi_{n}^{\delta k-1}\left|\lambda_{n}\right|\left|s_{n}\right|^{k}
$$

By Abel's transformation,

$$
\begin{aligned}
\sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1}\left|I_{n, 1}\right|^{k} & =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{r=1}^{n} \varphi_{r}^{\delta k-1}\left|s_{r}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \varphi_{n}^{\delta k-1}\left|s_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of (1), (8), (12) and (4).
Now, by means of Hölder's inequality, using the fact that $\varphi_{n} p_{n}=O\left(P_{n}\right)$ and conditions (4) and (9), we get

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|I_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left(\sum_{v=1}^{n-1} p_{v}\left|s_{v}\right|\left|\lambda_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k}\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v}\right|\left|s_{v}\right|^{k} \sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k-1}\left|\lambda_{v}\right|\left|s_{v}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

as in $I_{n, 1}$.
Finally, again using the fact that $\varphi_{n} p_{n}=O\left(P_{n}\right)$, Hölder's inequality and condition (11), we obtain

$$
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|I_{n, 3}\right|^{k}=O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v}\left|s_{v}\right|^{k} \beta_{v}\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} \beta_{v}\right)^{k-1}
$$

Here, (12) yields

$$
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|I_{n, 3}\right|^{k}=O(1) \sum_{v=1}^{m} P_{v}\left|s_{v}\right|^{k} \beta_{v} \sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}}
$$

Now, from (9), we get

$$
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|I_{n, 3}\right|^{k}=O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k} v \beta_{v} \frac{\left|s_{v}\right|^{k}}{v}
$$

Then,

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|I_{n, 3}\right|^{k} & =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \varphi_{r}^{\delta k} \frac{1}{r}\left|s_{r}\right|^{k}+O(1) m \beta_{m} \sum_{v=1}^{m} \varphi_{v}^{\delta k} \frac{1}{v}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by using Abel's transformation, (7), (3), (12) and (11). Therefore, the proof of Theorem 3 is completed.

Proof of Theorem 4. For $r=1$ and $r=2$, the proof of Theorem 4 as in the proof of Theorem 3 Thus, they can be omitted. Now, we will show

$$
\sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1}\left|I_{n, r}\right|^{k}<\infty
$$

only for $r=3$, by using the hypotheses of Theorem 4, Lemma 1 and Lemma 2

For $r=3$, we get

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|I_{n, 3}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v}\left|s_{v}\right|^{k} \beta_{v}\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} \beta_{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} P_{v}\left|s_{v}\right|^{k} \beta_{v} \sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}}
\end{aligned}
$$

Here, from (9), we get

$$
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|I_{n, 3}\right|^{k}=O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k} P_{v} \beta_{v} \frac{\left|s_{v}\right|^{k}}{P_{v}}
$$

Thus, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|I_{n, 3}\right|^{k} & =O(1) \sum_{v=1}^{m-1} \Delta\left(P_{v} \beta_{v}\right) \sum_{r=1}^{v} \varphi_{r}^{\delta k} \frac{\left|s_{r}\right|^{k}}{P_{r}}+O(1) P_{m} \beta_{m} \sum_{v=1}^{m} \varphi_{v}^{\delta k} \frac{\left|s_{v}\right|^{k}}{P_{v}} \\
& =O(1) \sum_{v=1}^{m-1} P_{v}\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} p_{v} \beta_{v} X_{v}+O(1) P_{m} \beta_{m} X_{m} \\
& =O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by using Abel's transformation, (10), (6), (14) and (13). Hence, the proof of Theorem 4 is completed.

Acknowledgement. This work was supported by Research Fund of the Erciyes University, project number: FDK-2017-6945.

References

[1] Bari, N.K. and S.B. Stečkin. "Best approximations and differential properties of two conjugate functions." Trudy Moskov. Mat. Obš č. 5, (1956): 483-522. Cited on 86
[2] Bor, Hüseyin. "On two summability methods." Math. Proc. Cambridge Philos. Soc. 97, no. 1 (1985): 147-149. Cited on 86.
[3] Bor, Hüseyin. "On local property of $I \bar{N}, p_{n} ;\left.\delta\right|_{k}$ summability of factored Fourier series." J. Math. Anal. Appl. 179, no. 2 (1993): 646-649. Cited on 86
[4] Bor, Hüseyin, and Hikmet Seyhan. "On almost increasing sequences and its applications." Indian J. Pure Appl. Math. 30, no. 10 (1999): 1041-1046. Cited on 86
[5] Bor, Hüseyin, and Hikmet S. Özarslan. "On absolute Riesz summability factors." J. Math. Anal. Appl. 246, no. 2 (2000): 657-663. Cited on 86
[6] Bor, Hüseyin, and Hikmet S. Özarslan. "A note on absolute summability factors." Adv. Stud. Contemp. Math. (Kyungshang) 6, no. 1 (2003): 1-11. Cited on 86
[7] Hardy, Godfrey Harold. Divergent Series. Oxford: Oxford University Press, 1949. Cited on 85
[8] Karakaş, Ahmet. "A note on absolute summability method involving almost increasing and δ-quasi-monotone sequences." Int. J. Math. Comput. Sci. 13, no. 1 (2018): 73-81. Cited on 86
[9] Kartal, Bağdagül. "On generalized absolute Riesz summability method." Commun. Math. Appl. 8, no. 3 (2017): 359-364. Cited on 86
[10] Mazhar, Syed Mohammad. "A note on absolute summability factors." Bull. Inst. Math. Acad. Sinica 25, no. 3 (1997): 233-242. Cited on 86 and 87
[11] Özarslan, Hikmet S. "On almost increasing sequences and its applications." Int. J. Math. Math. Sci. 25, no. 5 (2001): 293-298. Cited on 86
[12] Özarslan, Hikmet S. "A note on $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors." Indian J. Pure Appl. Math. 33, no. 3 (2002): 361-366. Cited on 86
[13] Özarslan, Hikmet S. "On $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors." Kyungpook Math. J. 43, no. 1 (2003): 107-112. Cited on 86
[14] Seyhan, Hikmet. "On the local property of $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series." Bull. Inst. Math. Acad. Sinica 25, no. 4 (1997): 311-316. Cited on 85 and 86
[15] Seyhan, Hikmet, and Abdulcabbar Sönmez. "On $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors." Portugaliae Math. 54, no. 4 (1997): 393-398. Cited on 86
[16] Seyhan, Hikmet. "A note on absolute summability factors." Far East J. Math. Sci. 6 , no. 1 (1998): 157-162. Cited on 86 .
[17] Seyhan, Hikmet. "On the absolute summability factors of type (A,B)." Tamkang J. Math. 30, no. 1 (1999): 59-62. Cited on 86

Department of Mathematics
Erciyes University
38039 Kayseri
Turkey
E-mail: bagdagulkartal@erciyes.edu.tr

Received: February 7, 2019; final version: May 9, 2019; available online: May 16, 2019.

[^0]: AMS (2010) Subject Classification: 26D15, 40D15, 40F05, 40G99.
 Keywords and phrases: almost increasing sequences, Hölder inequality, infinite series, Minkowski inequality, Riesz mean, summability factor.

