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New results for almost increasing sequences

Abstract. In the present paper, two theorems of absolute summability have
been proved by using the definition of almost increasing sequence.

1. Introduction

Let
∑
an be a given infinite series with its partial sums (sn). Let (ϕn) be

a sequence of positive real numbers. The series
∑
an is said to be summable

ϕ− |N̄ , pn; δ|k, k ≥ 1 and δ ≥ 0, if (see [14])

∞∑
n=1

ϕδk+k−1
n |γn − γn−1|k <∞,

where (pn) is a sequence of positive numbers such that

Pn =
n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1),

and the sequence-to-sequence transformation

γn = 1
Pn

n∑
v=0

pvsv

defines the sequence (γn) of the Riesz mean of the sequence (sn), generated by the
sequence of coefficients (pn) (see [7]).
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For ϕn = Pn

pn
, ϕ − |N̄ , pn; δ|k summability reduces to |N̄ , pn; δ|k summability

(see [3]). Also, for δ = 0 and ϕn = Pn

pn
, ϕ − |N̄ , pn; δ|k summability reduces to

|N̄ , pn|k summability (see [2]). Some different applications of absolute summability
can be find in [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

A positive sequence (dn) is said to be almost increasing if there is a positive
increasing sequence (cn) and two positive constants M and N such that

Mcn ≤ dn ≤ Ncn

(see [1]). In [10], the following theorems of absolute summability have been proved
by means of this sequence.

Theorem 1 ([10])
Let (Xn) be an almost increasing sequence and let there be sequences (βn) and (λn)
such that

|∆λn| ≤ βn, (1)

βn → 0 as n→∞, (2)
∞∑
n=1

n|∆βn|Xn <∞, (3)

|λn|Xn = O(1) as n→∞, (4)

where ∆λn = λn − λn+1. If

n∑
v=1

|sv|k

v
= O(Xn) as n→∞,

n∑
v=1

pv
Pv
|sv|k = O(Xn) as n→∞, (5)

then the series
∑
anλn is summable |N̄ , pn|k, k ≥ 1.

Theorem 2 ([10])
Let (Xn) be an almost increasing sequence. If conditions (1)–(4), (5) of Theorem
1 and conditions

∞∑
n=1

PnXn|∆βn| <∞, (6)

m∑
n=1

|sn|k

Pn
= O(Xm) as m→∞,

are satisfied, then the series
∑
anλn is summable |N̄ , pn|k, k ≥ 1.
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2. Main Results

In this section, two general theorems will be proved.

Theorem 3
Let (Xn) be an almost increasing sequence and ϕnpn = O(Pn). If conditions
(1)–(4) of Theorem 1 and

n∑
v=1

ϕδkv
1
v
|sv|k = O(Xn) as n→∞, (7)

n∑
v=1

ϕδk−1
v |sv|k = O(Xn) as n→∞, (8)

m+1∑
n=v+1

ϕδk−1
n

1
Pn−1

= O

(
ϕδkv

1
Pv

)
as m→∞, (9)

are satisfied, then the series
∑
anλn is summable ϕ − |N̄ , pn; δ|k, k ≥ 1 and

0 ≤ δ < 1/k.

Theorem 4
Let (Xn) be an almost increasing sequence and ϕnpn = O(Pn). If conditions
(1)–(4), (6), (8)–(9) and

m∑
n=1

ϕδkn
|sn|k

Pn
= O(Xm) as m→∞, (10)

are satisfied, then the series
∑
anλn is summable ϕ − |N̄ , pn; δ|k, k ≥ 1 and

0 ≤ δ < 1/k.

For δ = 0 and ϕn = Pn

pn
, Theorem 3 and Theorem 4 reduce to Theorem 1 and

Theorem 2, respectively.

Lemma 1 ([10])
If (Xn) is an almost increasing sequence, then under conditions (2)–(3), we have

nXnβn = O(1) as n→∞, (11)
∞∑
n=1

βnXn <∞. (12)

Lemma 2 ([10])
If (Xn) is an almost increasing sequence, then under conditions (2) and (6), we
have

PnXnβn = O(1) as n→∞, (13)
∞∑
n=1

pnXnβn <∞. (14)
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Proof of Theorem 3. Let (In) be the sequence of (N̄ , pn) mean of the series
∑
anλn.

Then, we have

In = 1
Pn

n∑
v=0

pv

v∑
r=0

arλr = 1
Pn

n∑
v=0

(Pn − Pv−1)avλv.

For n ≥ 1, we get

In − In−1 = pn
PnPn−1

n∑
v=1

Pv−1avλv.

From Abel’s transformation, we obtain

In − In−1 = pn
PnPn−1

n−1∑
v=1

∆ (Pv−1λv) sv + pnsnλn
Pn

= pnsnλn
Pn

− pn
PnPn−1

n−1∑
v=1

pvsvλv + pn
PnPn−1

n−1∑
v=1

Pvsv∆λv

= In,1 + In,2 + In,3.

In order to prove that
∑
anλn is summable ϕ− |N̄ , pn; δ|k, we will show

∞∑
n=1

ϕδk+k−1
n |In,r|k <∞ for r = 1, 2, 3.

First, using condition (4) and the fact that (Xn) is an almost increasing sequence,
we obtain |λn|k−1 = O(1). Moreover, using the fact that ϕnpn = O(Pn), we have

m∑
n=1

ϕδk+k−1
n |In,1|k = O(1)

m∑
n=1

ϕδk−1
n |λn||sn|k.

By Abel’s transformation,

m∑
n=1

ϕδk+k−1
n |In,1|k = O(1)

m−1∑
n=1

∆|λn|
n∑
r=1

ϕδk−1
r |sr|k +O(1)|λm|

m∑
n=1

ϕδk−1
n |sn|k

= O(1)
m−1∑
n=1

βnXn +O(1)|λm|Xm = O(1) as m→∞,

by virtue of (1), (8), (12) and (4).
Now, by means of Hölder’s inequality, using the fact that ϕnpn = O(Pn) and

conditions (4) and (9), we get

m+1∑
n=2

ϕδk+k−1
n |In,2|k = O(1)

m+1∑
n=2

ϕδk−1
n

1
P kn−1

( n−1∑
v=1

pv|sv||λv|
)k

= O(1)
m+1∑
n=2

ϕδk−1
n

1
Pn−1

n−1∑
v=1

pv|λv|k|sv|k
(

1
Pn−1

n−1∑
v=1

pv

)k−1
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= O(1)
m∑
v=1

pv|λv||sv|k
m+1∑
n=v+1

ϕδk−1
n

1
Pn−1

= O(1)
m∑
v=1

ϕδk−1
v |λv||sv|k = O(1) as m→∞,

as in In,1.
Finally, again using the fact that ϕnpn = O(Pn), Hölder’s inequality and condition
(1), we obtain

m+1∑
n=2

ϕδk+k−1
n |In,3|k = O(1)

m+1∑
n=2

ϕδk−1
n

1
Pn−1

n−1∑
v=1

Pv|sv|kβv
(

1
Pn−1

n−1∑
v=1

Pvβv

)k−1
.

Here, (12) yields

m+1∑
n=2

ϕδk+k−1
n |In,3|k = O(1)

m∑
v=1

Pv|sv|kβv
m+1∑
n=v+1

ϕδk−1
n

1
Pn−1

.

Now, from (9), we get

m+1∑
n=2

ϕδk+k−1
n |In,3|k = O(1)

m∑
v=1

ϕδkv vβv
|sv|k

v
.

Then,

m+1∑
n=2

ϕδk+k−1
n |In,3|k = O(1)

m−1∑
v=1

∆(vβv)
v∑
r=1

ϕδkr
1
r
|sr|k +O(1)mβm

m∑
v=1

ϕδkv
1
v
|sv|k

= O(1)
m−1∑
v=1

v|∆βv|Xv +O(1)
m−1∑
v=1

βvXv +O(1)mβmXm

= O(1) as m→∞,

by using Abel’s transformation, (7), (3), (12) and (11). Therefore, the proof of
Theorem 3 is completed.

Proof of Theorem 4. For r = 1 and r = 2, the proof of Theorem 4 as in the proof
of Theorem 3. Thus, they can be omitted. Now, we will show

∞∑
n=1

ϕδk+k−1
n |In,r|k <∞

only for r = 3, by using the hypotheses of Theorem 4, Lemma 1 and Lemma 2.
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For r = 3, we get
m+1∑
n=2

ϕδk+k−1
n |In,3|k = O(1)

m+1∑
n=2

ϕδk−1
n

1
Pn−1

n−1∑
v=1

Pv|sv|kβv
(

1
Pn−1

n−1∑
v=1

Pvβv

)k−1

= O(1)
m∑
v=1

Pv|sv|kβv
m+1∑
n=v+1

ϕδk−1
n

1
Pn−1

.

Here, from (9), we get

m+1∑
n=2

ϕδk+k−1
n |In,3|k = O(1)

m∑
v=1

ϕδkv Pvβv
|sv|k

Pv
.

Thus, we have
m+1∑
n=2

ϕδk+k−1
n |In,3|k = O(1)

m−1∑
v=1

∆(Pvβv)
v∑
r=1

ϕδkr
|sr|k

Pr
+O(1)Pmβm

m∑
v=1

ϕδkv
|sv|k

Pv

= O(1)
m−1∑
v=1

Pv|∆βv|Xv +O(1)
m−1∑
v=1

pvβvXv +O(1)PmβmXm

= O(1) as m→∞,

by using Abel’s transformation, (10), (6), (14) and (13). Hence, the proof of
Theorem 4 is completed.

Acknowledgement. This work was supported by Research Fund of the Erciyes
University, project number: FDK-2017-6945.

References
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