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Abstract. In this manuscript, we study the existence, uniqueness and various
kinds of Ulam stability including Ulam–Hyers stability, generalized Ulam–
Hyers stability, Ulam–Hyers–Rassias stability, and generalized Ulam–Hyers–
Rassias stability of the solution to an implicit nonlinear fractional differential
equations corresponding to an implicit integral boundary condition. We
develop conditions for the existence and uniqueness by using the classical
fixed point theorems such as Banach contraction principle and Schaefer’s
fixed point theorem. For stability, we utilize classical functional analysis.
The main results are well illustrated with an example.

1. Introduction

A fractional order differential equation is a generalization of the integer or-
der differential equation. The idea of fractional calculus has been introduced at
the end of sixteenth century (1695). Fractional calculus is a generalization of or-
dinary differentiation and integration up to arbitrary order (non-integer). The
advantages of fractional derivative become apparent in modelling mechanical and
electrical properties of real materials, as well as in the description of properties of
gases, liquids, rocks and in many other fields, see [17, 32]. Fractional derivative is
used as a global operator for modelling of various processes and physical systems
which arises in subjects like physics, dynamics, fluid mechanics, control theory,
chemistry, mathematical biology, etc., see [6, 10, 12, 14, 13, 16, 7, 38]. It turns
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out that fractional differential equations (FDEs) can describe real world problems
more accurately comparing with integer order differential equations. Due to its
importance and large number of applications, this area has attracted attention of
many mathematicians and researchers in the last few decades. Also, rich material
on theoretical aspects and analytic methods for solving fractional order models,
attracts the researchers. More specifically, FDEs with an implicit boundary con-
dition are applicable in different fields of applied sciences, including population
dynamics, thermo-elasticity, blood flow, underground water flow, chemical engi-
neering and so on, see [2, 3, 25, 28].

Now we want to discuss another aspect of qualitative theory which is the notion
of stability analysis. In fields such as numerical analysis, optimization theory, and
nonlinear analysis, stability is very important. Various kinds of stability have
been investigated, for instance exponential, Lyapunov, asymptotic stability etc.,
see [18, 41, 27]. In this manuscript, we will discuss Hyers–Ulam stability (HUS).
The mentioned stability was first pointed out by Ulam [24] in 1940, which was
properly formulated by Hyers [11] in 1941, for problems of functional equations
in Banach space [15, 20]. Afterwards, the results were generalized and extended
by many researchers, for details we refer the reader to [1, 4, 18, 22, 23, 29, 31,
30, 33, 36, 37, 39, 40, 35, 34, 26]. The aforesaid stability is rarely studied for
FDEs and specially for fractional boundary value problems. We study approximate
solutions and investigate how close are these solutions to the actual solution of the
concerned system or systems. Many approaches can be used for this purpose, but
HUS approach seems to be the most important approach. Moreover, a fractional
order system may have additional attractive features over the integer order system.
Let us recall the following example from [19], showing more stable system in the
aforementioned (fractional order and integer order) systems.

Example 1.1
Consider the following two equations with the initial condition u(0),

d

dt
u(t) = υtυ−1, (1.1)

c
0D

p
t u(t) = υtυ−1, 0 < p < 1, (1.2)

where υ ∈ (0, 1). Then the analytical solutions of (1.1) and (1.2) are tυ +u(0) and
υΓ(υ)tυ+p−1

Γ(υ+p) +u(0), respectively. Clearly, the integer order system (1.1) is unstable
for any 0 < υ < 1, but the fractional order dynamic system (1.2) is stable for
each 0 < υ ≤ 1− p. Thus the fractional order system has better features than the
integer order system.

Benchohra and Lazreg in [8], investigated the existence theory and different
kinds of stability in the sense of Ulam for the following nonlinear implicit FDE:{cDpy(t) = f(t, y(t),cDpy(t)) for all t ∈ J, 0 < p ≤ 1,

y(0) = y0,

where cDp is the Caputo fractional derivative, f : J×R×R→ R is a given function
space, y0 ∈ R, and J = [0, T ], T > 0.
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Recently, Zeeshan et al. [5] studied the above problem with different boundary
conditions, particularly they modified it to the following:

Dpu(t) = f(t, u(t), Dpu(t)) for all t ∈ J = [0, T ], T > 0, p ∈ (1, 2],

Dp−2u(0+) = γDp−2u(T−),

Dp−1u(0+) = βDp−1u(T−),

whereDp is the Riemann–Liouville derivative of fractional order, f : [0, 1]×R×R→
R is continuous, and β, γ 6= 1.

In this manuscript, we study the following class of implicit FDE with implicit
integral boundary condition:

cDωp(t) = G(t, p(t),cDωp(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s),cDωp(s))ds

for all t ∈ X = [0, T ], T > 0, 0 < ω ≤ 1,

p(0) = −
∫ T

0

(T − ξ)ω−1

Γ(ω) F(ξ, p(ξ),cDωp(ξ))dξ,

(1.3)

where the notation cDω is used for Caputo fractional derivative of order 0 < ω ≤ 1,
G, F , f : [0, T ]× R2 → R, δ and σ are real constants greater than zero.

Using classical fixed point theorems of Banach and Schaefer’s, we derive nec-
essary conditions for the existence, uniqueness and stability of the concerned class
of FDE, given in (1.3).

The manuscript is structured as follows: In section 2, we present some basic
materials needed to prove our main results. In section 3, we set up some appro-
priate conditions for the existence and uniqueness of the solutions of the proposed
system (1.3) by applying some standard fixed point principles. In section 4, we
built up conditions for different kinds of Ulam stability to the solution of the
proposed system (1.3). An example illustrating our results is given in section 5.

2. Preliminaries

Let X = [0, T ], we represent the space of all continuous functions C(X ,R) by
A, i.e. A = {p : X → R; p ∈ C(X ,R)}. Clearly, A is a Banach space with the
norm defined by ‖p‖ := sup{‖p(t)‖, t ∈ X}. We recall the following definitions
from [14].

Definition 2.1
Let ω > 0, then the Riemann–Liouville integral of a function G ∈ L1([0, T ],R) is
defined by

IωG(t) = 1
Γ(ω)

∫ t

0
(t− s)ω−1G(s)ds,

provided the integral on the right is point-wise defined on (0,∞).
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Definition 2.2
If ω > 0, then the Caputo fractional derivative of a function G ∈ C(n)((0,∞),R)
is defined by

cDωG(t) = 1
Γ(n− ω)

∫ t

0
(t− s)n−ω−1G(n)(s)ds,

provided the integral on the right is point-wise defined on (0,∞), where n = [ω]+1
and [ω] represents the integer part of ω.

Lemma 2.3
For ω > 0 equation cDωG(t) = 0 has a solution of the form

G(t) = r0 + r1t+ r2t
2 + · · ·+ ri−1t

i−1,

where ri−1 are real numbers and i = 1, 2, . . . , n.

Here we mention that in this paper the definitions of stability have been
adopted from [21].

Definition 2.4
Problem (1.3) is HUS if there is a real number CG,f > 0 such that for each ε > 0
and each solution q ∈ A of∣∣∣cDωq(t)− G(t, q(t),cDωq(t))−

∫ t

0

(t− s)σ−1

Γ(δ) f(s, q(s),cDωq(s))ds
∣∣∣ ≤ ε

for all t ∈ X ,
(2.1)

there exists a solution p ∈ A of (1.3) with

|q(t)− p(t)| ≤ CG,f ε for all t ∈ X .

Definition 2.5
Problem (1.3) is generalized HUS (GHUS) if there is a function zG,f ∈ C(R+,R+),
zG,f (0) = 0 such that for each solution q ∈ A of (2.1) there exists a solution p ∈ A
of (1.3) with

|q(t)− p(t)| ≤ zG,f (ε) for all t ∈ X .

Definition 2.6
Problem (1.3) is Hyers–Ulam–Rassias stable (HURS) with respect to a function
ψ ∈ C(X ,R+) if there is a real number CG,f,ψ > 0 such that for each solution
q ∈ A of∣∣∣cDωq(t)− G(t, q(t), cDωq(t))−

∫ t

0

(t− s)σ−1

Γ(δ) f(s, q(s), cDωq(s))ds
∣∣∣ ≤ εψ(t)

for all t ∈ X ,
(2.2)

there is a solution p ∈ A to (1.3) with

|q(t)− p(t)| ≤ CG,fεψ(t) for all t ∈ X .
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Definition 2.7
Problem (1.3) is generalized HURS (GHURS) with respect to a function ψ ∈
C(X ,R+) if there is a real number CG,f,ψ > 0 such that for each solution q ∈ A of

∣∣∣cDωq(t)− G(t, q(t), cDωq(t))−
∫ t

0

(t− s)σ−1

Γ(δ) f(s, q(s), cDωq(s))ds
∣∣∣ ≤ ψ(t)

for all t ∈ X ,
(2.3)

there exists a solution p ∈ A to (1.3) with

|q(t)− p(t)| ≤ CG,f,ψψ(t) for all t ∈ X .

Remark 2.8
It is clear that

(i) Definition 2.4 implies Definition 2.5;

(ii) Definition 2.6 implies Definition 2.7.

Remark 2.9
A function q ∈ A is a solution of (2.1) if and only if there exists a function Ψ ∈ A
(depending on q) such that

(i) |Ψ(t)| ≤ ε for all t ∈ X ;

(ii) cDωq(t) = G(t, q(t), cDωq(t))+
∫ t

0

(t− s)σ−1

Γ(δ) f(s, q(s), cDωq(s))ds+Ψ(t) for

all t ∈ X .

Remark 2.10
A function q ∈ A is a solution of (2.3) if and only if there exists a function Ψ ∈ A
(depending on q) such that

(i) |Ψ(t)| ≤ εψ(t) for all t ∈ X ;

(ii) cDωq(t) = G(t, q(t), cDωq(t))+
∫ t

0

(t− s)σ−1

Γ(δ) f(s, q(s), cDωq(s))ds+Ψ(t) for

all t ∈ X .

Theorem 2.11 (Schaefer’s fixed point theorem [9, 22])
Let A be a Banach space, T : A → A is a completely continuous operator and
E = {p ∈ A : p = ξT p, 0 < ξ < 1} is bounded, then T has at least one fixed point
in A.

3. Existence and uniqueness results

In this section, we set up some adequate conditions for the existence and
uniqueness of solution to (1.3).
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Lemma 3.1
The system



cDωp(t) = G(t, p(t), cDωp(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), cDωp(s))ds

for all t ∈ X , 0 < ω ≤ 1,

p(0) = −
∫ T

0

(T − s)ω−1

Γ(ω) F(s, p(s), cDωp(s))ds,

(3.1)

has a solution p given by

p(t) = 1
Γ(ω)

∫ t

0
(t−s)ω−1α(s)ds− 1

Γ(ω)

∫ T

0
(T−s)ω−1F(s, p(s), cDωp(s))ds, (3.2)

where α ∈ A and it is given by

α(t) = G(t, p(t), cDωp(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), cDωp(s))ds.

Proof. Let
cDωp(s) = α(t).

Using Lemma 2.3 we have

p(t) = 1
Γ(ω)

∫ t

0
(t− s)ω−1α(t)ds+ r0. (3.3)

Applying the given condition, we obtain

r0 = − 1
Γ(ω)

∫ T

0
(T − s)ω−1β(s)ds, (3.4)

where
β(t) = F(t, p(t), cDωp(t)).

Putting (3.4) in (3.3), we get (3.2).

Corollary 3.2
In view of Lemma 3.1, problem (3.1) has the following solution

p(t) = 1
Γ(ω)

∫ t

0
(t− s)ω−1α(s)ds− 1

Γ(ω)

∫ T

0
(T − s)ω−1β(s)ds,

where

α(t) = G(t, p(t), cDωp(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), cDωp(s))ds

and
β(t) = F(t, p(t), cDωp(t)).
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We use the following notation for convenience

v(t) = G(t, p(t), cDωp(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), cDωp(s))ds,

= G(t, p(t), v(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), v(s))ds

and
z(t) = F(t, p(t),cDωp(t)) = F(t, p(t), z(t)).

Now, in order to study (1.3) using the fixed point theory, we consider an
operator T : A → A defined by

(T p)(t) = 1
Γ(ω)

∫ t

0
(t− s)ω−1v(s)ds− 1

Γ(ω)

∫ T

0
(T − s)ω−1z(s)ds, (3.5)

where v, z ∈ A.
The following hypotheses will be used in further results:

(H1) G,F , f : X × R2 → R are continuous functions;
(H2) there exist constants N1 > 0 and 0 < N2 < 1 such that for each t ∈ X and

for all σ, σ, θ, θ ∈ R, the following relation holds

|G(t, σ, θ)− G(t, σ, θ)| ≤ N1|σ − σ|+N2|θ − θ|;

(H3) there exist constants N3 > 0 and 0 < N4 < 1 such that for each t ∈ X and
for all σ, σ, θ, θ ∈ R, the following relation holds

|F(t, σ, θ)−F(t, σ, θ)| ≤ N3|σ − σ|+N4|θ − θ|;

(H4) there exist constants N5 > 0 and 0 < N6 < 1 such that for each t ∈ X and
for all σ, σ, θ, θ ∈ R, the following relation holds

|f(t, σ, θ)− f(t, σ, θ)| ≤ N5|σ − σ|+N6|θ − θ|;

(H5) there exist bounded functions l,m, n ∈ C(X ,R+) such that

|G(t, σ(t), θ(t))| ≤ l(t) +m(t)‖σ‖+ n(t)‖θ‖

with n∗ = supt∈X n(t) < 1;
(H6) there exist bounded functions b, c, e ∈ C(X ,R+) such that

|F(t, σ(t), θ(t))| ≤ b(t) + c(t)‖σ‖+ e(t)‖θ‖

with e∗ = supt∈X n(t) < 1;
(H7) there exist bounded functions i, j, k ∈ C(X ,R+) such that

|f(t, σ(t), θ(t))| ≤ i(t) + j(t)‖σ‖+ k(t)‖θ‖

with k∗ = supt∈X n(t) < 1.
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Theorem 3.3
If the hypotheses (H1)–(H4) and the inequality

Tω

Γ(ω + 1)

( N1

1−N2 −N6
Tσ

σΓ(δ)
+ N5T

σ

σΓ(δ)
(
1−N2 −N6

Tσ

σΓ(δ)
) + N3

1−N4

)
< 1 (3.6)

are satisfied, then (3.1) has a unique solution.

Proof. Consider the operator T defined in (3.5). We have to show that (3.1) has
a unique solution. We use the Banach contraction mapping principle. Consider
for p, q ∈ A,

|T p(t)− T q(t)| ≤ 1
Γ(ω)

∫ t

0
(t− s)ω−1|v(s)− v(s)|ds

+ 1
Γ(ω)

∫ T

0
(t− s)ω−1|z(s)− z(s)|ds,

(3.7)

where v, z ∈ A are given by

v(t) = G(t, q(t), v(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, q(s), v(s))ds

and
z(t) = F(t, q(t), z(t)).

Using (H2)–(H4) we have

|v(t)− v(t)| =
∣∣∣G(t, p(t), v(t)) +

∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), v(s))ds

− G(t, q(t), v(t))−
∫ t

0

(t− s)σ−1

Γ(δ) f(s, q(s), v(s))ds
∣∣∣

≤ |G(t, p(t), v(t))− G(t, q(t), v(t))|

+
∫ t

0

(t− s)σ−1

Γ(δ) |f(s, p(s), v(s))− f(s, q(s), v(s))|ds

≤ N1|p(t)− q(t)|+N2|v(t)− v(t)|

+
∫ t

0

(t− s)σ−1

Γ(δ)

(
N5|p(s)− q(s)|+N6|v(s)− v(s)|

)
ds

= N1|p(t)− q(t)|+N2|v(t)− v(t)|

+ tσ

σΓ(δ)N5|p(t)− q(t)|+
tσ

σΓ(δ)N6|v(t)− v(t)|.

Thus
|v(t)− v(t)| ≤ N1

1−N2 −N6
tσ

σΓ(δ)
|p(t)− q(t)|

+ N5t
σ

σΓ(δ)
(
1−N2 −N6

tσ

σΓ(δ)
) |p(t)− q(t)|. (3.8)
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Similarly,

|z(t)− z(t)| ≤ N3

1−N4
|p(t)− q(t)|. (3.9)

Using (3.8) and (3.9) in (3.7) we have

|T p(t)− T q(t)| ≤
[ tω

Γ(ω + 1)

( N1

1−N2 −N6
tσ

σΓ(δ)
+ N5t

σ

σΓ(δ)
(
1−N2 −N6

tσ

σΓ(δ)
))

+ Tω

Γ(ω + 1)
N3

1−N4

]
|p(t)− q(t)|.

Since t ∈ [0, T ]⇒ t ≤ T ⇒ tω ≤ Tω we get

|T p(t)− T q(t)| ≤
[ Tω

Γ(ω + 1)

( N1

1−N2 −N6
Tσ

σΓ(δ)
+ N5T

σ

σΓ(δ)
(
1−N2 −N6

Tσ

σΓ(δ)
))

+ Tω

Γ(ω + 1)
N3

1−N4

]
|p(t)− q(t)|.

Thus

‖T p− T q‖A ≤
Tω

Γ(ω + 1)

( N1

1−N2 −N6
Tσ

σΓ(δ)

+ N5T
σ

σΓ(δ)
(
1−N2 −N6

Tσ

σΓ(δ)
) + N3

1−N4

)
‖p− q‖A.

Moreover,

Tω

Γ(ω + 1)

( N1

1−N2 −N6
Tσ

σΓ(δ)
+ N5T

σ

σΓ(δ)(1−N2 −N6
Tσ

σΓ(δ) )
+ N3

1−N4

)
< 1,

Therefore, by the Banach contraction principle, T has a unique fixed point. Thus
(3.1) has a unique solution.

Theorem 3.4
Under the hypotheses (H1)–(H7), problem (3.1) has at least one solution.

Proof. We begin with recalling the Schaefer’s fixed point theorem and consider
the predefined operator T . The proof accomplishes in four steps.
Step 1: We claim that T is continuous. Consider a sequence {pn} in A such that
pn → p ∈ A. For t ∈ X we have

|T pn(t)− T p(t)| ≤ 1
Γ(ω)

∫ t

0
(t− s)ω−1|vn(s)− v(s)|ds

+ 1
Γ(ω)

∫ T

0
(T − s)ω−1|zn(s)− z(s)|ds,



[14] Akbar Zada and Hira Waheed

where vn, zn ∈ A are given by

vn = G(t, pn(t), vn(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), vn(t))ds

and
zn = F(t, pn(t), zn(t)).

Hence by (H2)–(H4) we obtain

|vn(t)− v(t)| ≤ N1

1−N2 −N6
tσ

σΓ(δ)
|pn(t)− p(t)|

+ N5t
σ

σΓ(δ)
(
1−N2 −N6

tσ

σΓ(δ)
) |pn(t)− p(t)|.

Similarly,
|zn(t)− z(t)| ≤ N3

1−N4
|pn(t)− p(t)|.

Thus

|T pn(t)− T p(t)| ≤
[ tω

Γ(ω + 1)

( N1

1−N2 −N6
tσ

σΓ(δ)
+ N5t

σ

σΓ(δ)
(
1−N2 −N6

tσ

σΓ(δ)
))

+ Tω

Γ(ω + 1)
N3

1−N4

]
|p(t)− q(t)|.

Since for each t ∈ X the sequence pn → p as n → ∞, we have, by Lebesgue
dominated convergence theorem,

|T pn(t)− T p(t)| → 0 as n→∞,

or
‖T pn − T p‖ → 0 as n→∞.

Which implies that T is continuous on X .
Step 2: In this step we claim that bounded sets in A are mapped into bounded
sets in A by T . Next for each p ∈ εk = {p ∈ A : ‖p‖ ≤ k} we have to prove
‖T (p)‖ ≤ N with some N > 0. For t ∈ X , we have

|T p(t)| =
∣∣∣ 1
Γ(ω)

∫ t

0
(t− s)ω−1v(s)ds− 1

Γ(ω)

∫ T

0
(T − s)ω−1z(s)ds

∣∣∣
≤ 1

Γ(ω)

∫ t

0
(t− s)ω−1|v(s)|ds− 1

Γ(ω)

∫ T

0
(T − s)ω−1|z(s)|ds,

(3.10)

where v, z ∈ A are given by

v(t) = G(t, p(t), v(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), v(s))ds
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and
z(t) = F(t, p(t), z(t)).

By (H5) and (H7) we have

v(t) = G(t, p(t), v(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), v(s))ds,

thus

|v(t)| =
∣∣∣G(t, p(t), v(t)) +

∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), v(s))ds
∣∣∣

≤ |G(t, p(t), v(t))|+
∫ t

0

(t− s)σ−1

Γ(δ) |f(s, p(s), v(s))|ds

≤ l(t) +m(t)|p|+ n(t)|v(t)|

+ 1
Γ(δ)

∫ t

0
(t− s)σ−1(i(s) + j(s)|p|+ k(s)|v(s)|)ds

≤ l∗ +m∗‖p‖A + n∗‖v‖A + (i∗ + j∗‖p‖A + k∗‖v‖A) tσ

σΓ(δ) ,

where

l∗ = sup
t∈X

l(t), m∗ = sup
t∈X

m(t), n∗ = sup
t∈X

n(t) < 1,

i∗ = sup
t∈X

i(t), j∗ = sup
t∈X

j(t), k∗ = sup
t∈X

k(t) < 1.

Thus

|v(t)| ≤ ‖v‖A ≤
l∗ +m∗‖p‖A

1− n∗ − k∗ tσ

σΓ(δ)
+ i∗ + j∗‖p‖A

1− n∗ − k∗ tσ

σΓ(δ)

tσ

σΓ(δ) =: ~.

Similarly, by (H6) we obtain

|z(t)| ≤ b∗ + c∗k

1− e∗ =: ~∗,

where ~ and ~∗ are positive constants. Thus from (3.10) we have

‖T p‖A = Tω

Γ(ω + 1)(~ + ~∗) =: N.

Step 3: We claim that a bounded set is mapped into equi–continuous set of A by
T . Take t1, t2 ∈ X such that t1 < t2 and assume that εk is a bounded set as in
the previous step. Then for p ∈ εk we have

|T p(t2)− T p(t1)| =
∣∣∣ 1
Γ(ω)

∫ t2

0
(t2 − s)ω−1v(s)ds− 1

Γ(ω)

∫ t1

0
(t1 − s)ω−1v(s)ds

∣∣∣.
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In Step 2 we obtained that

|v(t)| ≤ ‖v‖A ≤
l∗ +m∗‖p‖A

1− n∗ − k∗ tσ

σΓ(δ)
+ i∗ + j∗‖p‖A

1− n∗ − k∗ tσ

σΓ(δ)

tσ

σΓ(δ) =: ~.

Thus

|T p(t2)− T p(t1)| ≤ ~
∣∣∣ 1
Γ(ω)

∫ t2

0
(t2 − s)ω−1ds− 1

Γ(ω)

∫ t1

0
(t1 − s)ω−1ds

∣∣∣. (3.11)

We see that the right hand side of (3.11) tends to zero as t1 → t2. Therefore,
as a conclusion from Step 1–Step 3 and the Arzela–Ascoli theorem, T : A → A is
a completely continuous mapping.
Step 4: Define

L = {p ∈ A : p = $(T p) for some 0 < $ < 1}.

We need to show that L is bounded. Let p ∈ L, then for some 0 < L < 1 with
p = L(T p) we have

|p(t)| =
∣∣∣ $

Γ(ω)

∫ t

0
(t− s)ω−1v(s)ds− $

Γ(ω)

∫ T

0
(T − s)ω−1z(s)ds

∣∣∣
≤
∣∣∣ $

Γ(ω)

∫ t

0
(t− s)ω−1v(s)ds

∣∣∣+
∣∣∣ $

Γ(ω)

∫ T

0
(T − s)ω−1z(s)ds

∣∣∣
or

|p(t)| ≤ 1
Γ(ω)

∫ t

0
(t− s)ω−1|v(s)|ds+ 1

Γ(ω)

∫ T

0
(T − s)ω−1|z(s)|ds. (3.12)

By (H5)–(H7) we get that

|v(t)| ≤ ‖v‖A ≤
l∗ +m∗‖p‖A

1− n∗ − k∗ tσ

σΓ(δ)
+ i∗ + j∗‖p‖A

1− n∗ − k∗ tσ

σΓ(δ)

tσ

σΓ(δ) =: ~

and
|z(t)| ≤ ‖z‖A ≤

b∗ + c∗k

1− e∗ =: ~∗.

Thus from (3.12)

|p(t)| ≤ ~
Γ(ω)

∫ t

0
(t− s)ω−1ds+ ~∗

Γ(ω)

∫ T

0
(T − s)ω−1ds

≤ Tω

Γ(ω + 1)(~ + ~∗) =: N,

i.e |p(t)| ≤ N. This shows that the set L is bounded. Therefore, by the Schaefer’s
fixed point theorem, T has at least one fixed point. This confirms at least one
exact solution of (3.1).
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4. Ulam stability results

In this section, we are analyzing the HUS, GHUS, HURS and GHURS of the
considered anti–periodic integral boundary value problem (1.3).

Theorem 4.1
If the hypotheses (H1)–(H4) along with (3.6) are satisfied, then (3.1) is HUS as
well as GHUS.

Proof. Let q be an approximate solution of (2.1) and let p be the unique exact
solution of the following problem

cDωp(t) = G(t, p(t), cDωp(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), cDωp(s))ds;

for all t ∈ X , 0 < ω ≤ 1,

p(0) = −
∫ T

0

(T − s)ω−1

Γ(ω) F(s, p(s), cDωp(s))ds.

By Lemma 3.1 we have

p(t) = 1
Γ(ω)

∫ t

0
(t− s)ω−1v(s)ds− 1

Γ(ω)

∫ T

0
(T − s)ω−1z(s)ds,

where v, z ∈ A are given by

v(t) = G(t, p(t), v(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), v(s))ds

and
z(t) = F(t, p(t), z(t)).

Since we have assumed that q is a solution to (2.1), by Remark 2.9 we have

cDωq(t) = G(t, q(t), cDωq(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, q(s), cDωq(s))ds+ Ψ(t)

for 0 < ω ≤ 1,

q(0) = −
∫ T

0

(T − s)ω−1

Γ(ω) F(s, q(s), cDωq(s))ds.

(4.1)

Clearly, the solution of (4.1) will be

q(t) = 1
Γ(ω)

∫ t

0
(t− s)ω−1v(s)ds+ 1

Γ(ω)

∫ t

0
(t− s)ω−1Ψ(s)ds

− 1
Γ(ω)

∫ T

0
(T − s)ω−1z(s)ds,
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where v, z ∈ A are given as

v(t) = G(t, q(t), v(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), v(s))ds

and
z(t) = F(t, q(t), z(t)).

For each t ∈ X , we have

|q(t)− p(t)| ≤ 1
Γ(ω)

∫ t

0
(t− s)ω−1|v(s)− v(s)|ds

+ 1
Γ(ω)

∫ t

0
(t− s)ω−1|Ψ(s)|ds (4.2)

+ 1
Γ(ω)

∫ T

0
(T − s)ω−1|z(s)− z(s)|ds.

By (H2)–(H4) we get

|v(t)− v(t)| ≤ N1

1−N2 −N6
tσ

σΓ(δ)
|q(t)− p(t)|

+ N5t
σ

σΓ(δ)
(
1−N2 −N6

tσ

σΓ(δ)
) |q(t)− p(t)|

and

|z(t)− z(t)| ≤ N3

1−N4
|q(t)− p(t)|.

Using part (i) of Remark 2.9 in (4.2) we get

|q(t)− p(t)|

≤ tω

Γ(ω + 1)

[ N1

1−N2 −N6
tσ

σΓ(δ)
+ N5t

σ

σΓ(δ)
(
1−N2 −N6

tσ

σΓ(δ)
)]|q(t)− p(t)|

+ tω

Γ(ω + 1) |ψ(t)|+ Tω

Γ(ω + 1)
N3

1−N4
|q(t)− p(t)|

≤ Tω|q(t)− p(t)|
Γ(ω + 1)

[ N1

1−N2 −N6
tσ

σΓ(δ)
+ N5t

σ

σΓ(δ)
(
1−N2 −N6

tσ

σΓ(δ)
) + N3

1−N4

]
+ Tω

Γ(ω + 1)ε.
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Thus

‖q − p‖A ≤
εTω

Γ(ω+1)

1− Tω

Γ(ω+1)

[
N1

1−N2−N6
tσ

σΓ(δ)
+ N5tσ

σΓ(δ)(1−N2−N6
tσ

σΓ(δ) ) + N3
1−N4

] ,
i.e

‖q − p‖A ≤ εCG,f ,

where

CG,f =
Tω

Γ(ω+1)

1− Tω

Γ(ω+1)

[
N1

1−N2−N6
tσ

σΓ(δ)
+ N5tσ

σΓ(δ)(1−N2−N6
tσ

σΓ(δ) ) + N3
1−N4

] .
Therefore, (3.1) is HUS. Furthermore, if we setiing zG(ε) = CG(ε), z(0) = 0, we
see that (3.1) is GHUS.

For the proof of our next result we assume that:

(H8) there exists a nondecreasing function ψ ∈ C(X ,R+) and a constant Lψ > 0
such that

Iωψ(t) ≤ Lψψ(t) for all t ∈ X .

Theorem 4.2
Assume (H1)–(H8) along with (3.6) are satisfied, then (3.1) is HURS and conse-
quently it is GHURS.

Proof. Let q be an approximate solution of (2.3) and p be the unique solution of
the following problem

cDωp(t) = G(t, p(t),cDωp(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), cDωp(s))ds

for all t ∈ X , 0 < ω ≤ 1,

p(0) = −
∫ T

0

(T − s)ω−1

Γ(ω) F(s, p(s), cDωp(s))ds.

By Lemma 3.1 we have

p(t) = 1
Γ(ω)

∫ t

0
(t− s)ω−1v(s)ds− 1

Γ(ω)

∫ T

0
(T − s)ω−1z(s)ds,

where v, z ∈ A are given by

v(t) = G(t, p(t), v(t)) +
∫ t

0

(t− s)σ−1

Γ(δ) f(s, p(s), v(s))ds

and
z(t) = F(t, p(t), z(t)).
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From the proof of Theorem 4.1 it follows that for each t ∈ X we have

|q(t)− p(t)| ≤ 1
Γ(ω)

∫ t

0
(t− s)ω−1|v(s)− v(s)|ds

+ 1
Γ(ω)

∫ t

0
(t− s)ω−1|Ψ(s)|ds (4.3)

+ 1
Γ(ω)

∫ T

0
(T − s)ω−1|z(s)− z(s)|ds.

By (H2)–(H4) we get

|v(t)− v(t)| ≤ N1

1−N2 −N6
tσ

σΓ(δ)
|q(t)− p(t)|

+ N5t
σ

σΓ(δ)(1−N2 −N6
tσ

σΓ(δ) )
|q(t)− p(t)|

and
|z(t)− z(t)| ≤ N3

1−N4
|q(t)− p(t)|.

Thus using the last two inequalities and part (i) of Remark 2.10 in (4.3) we have

|q(t)− p(t)|

≤ tω

Γ(ω + 1)

[ N1

1−N2 −N6
tσ

σΓ(δ)
+ N5t

σ

σΓ(δ)
(
1−N2 −N6

tσ

σΓ(δ)
)]|q(t)− p(t)|

+ tω

Γ(ω + 1) |ψ(t)|+ Tω

Γ(ω + 1)
N3

1−N4
|q(t)− p(t)|

≤ Tω|q(t)− p(t)|
Γ(ω + 1)

[ N1

1−N2 −N6
tσ

σΓ(δ)
+ N5t

σ

σΓ(δ)(1−N2 −N6
tσ

σΓ(δ) )
+ N3

1−N4

]
+ Tω

Γ(ω + 1)εLψψ(t).

Thus

‖q − p‖A ≤
εLψψ(t)

1− Tω

Γ(ω+1)

[
N1

1−N2−N6
tσ

σΓ(δ)
+ N5tσ

σΓ(δ)(1−N2−N6
tσ

σΓ(δ) ) + N3
1−N4

] ,
i.e

‖q − p‖A ≤ CG,f ε,
where

CG,f = Lψψ(t)
1− Tω

Γ(ω+1)

[
N1

1−N2−N6
tσ

σΓ(δ)
+ N5tσ

σΓ(δ)(1−N2−N6
tσ

σΓ(δ) ) + N3
1−N4

] .
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Therefore, (3.1) is HURS. Along the same lines it is easy to check that the problem
under consideration is GHURS.

5. EXAMPLE

In this section, we are illustrating our theoretical results by an example.

Example 5.1

cD
1
2 p(t) = 7 + |p(t)|+ |cD 1

2 cD
1
2 p(t)|

105et+3(1 + |p(t)|+ |cD
1
2 p(t)|)

+ 1
Γ( 5

2 )

∫ 1

0
(t− s) 3

2

(s sin |p(s)|+ sin |cD 1
2 p(s)|

50

)
ds, t ∈ [0, 1],

p(0) = − 1
Γ( 1

2 )

∫ 1

0
(t− s) 1

2

(s sin |p(s)|+ sin |cD
1
2 p(s)|

50

)
ds.

(5.1)

From the anti–periodic integral problem (5.1), we see that ω = 1
2 , T = 1, δ = σ =

5
2 . Set

G(t, σ́, θ) = 7 + |σ́|+ |θ|
105et+3(1 + |σ́|+ |θ|) , σ́ ∈ C(X ,R).

f(t, σ́, θ) = t sin |σ́|+ sin |θ|
50 ,

F(t, σ́, θ) = t sin |σ́|+ sin |θ|
50 .

Clearly, the functions G, f , F are continuous. For each σ́, σ́ ∈ A, θ, θ ∈ R and
t ∈ [0, 1] we have

|G(t, σ́, θ)− G(t, σ́, θ)| ≤ |σ́ − σ́|+ |θ − θ|105e3 ,

which satisfies (H2) with N1 = N2 = 1
105e3 .

Observe that

|f(t, σ́, θ)− f(t, σ́, θ)| ≤ |σ́ − σ́|+ |θ − θ|50 ,

satisfies (H4) with N5 = N6 = 1
50 and

|F(t, σ́, θ)−F(t, σ́, θ)| ≤ |σ́ − σ́|+ |θ − θ|50 ,

satisfies (H3) with N3 = N4 = 1
50 . Hence

Tω

Γ(ω + 1)

( N1

1−N2 −N6
Tσ

σΓ(δ)
+ N5T

σ

σΓ(δ)(1−N2 −N6
Tσ

σΓ(δ) )
+ N3

1−N4

)
≈ 0.09906.
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We see, all the required conditions of Theorem 3.3 are fulfilled, hence (5.1) has at
least one solution. Also by letting ψ(t) = |t| for all t ∈ X we have

I
1
2ψ(t) = 1

Γ( 1
2 )

∫ t

0
(t− s)( 1

2−1)|s|ds = 4 3
2

3
√
π
≤ 2t√

π
.

Hence (H8) is satisfied with Lψ = 2√
π
. Therefore, by Theorem 4.2 the given

problem is HURS and consequently is GHURS.

6. CONCLUSION

We have derived some necessary conditions for the existence, uniqueness and
different kinds of stability in the sense of Ulam for the solution of implicit FDE
with an implicit integral boundary condition. We have successfully obtained some
appropriate and sufficient conditions which guarantee the uniqueness, existence
of at least one solution by means of the Banach contraction principle and the
Arzela–Ascoli theorem and its Hyers–Ulam stability analysis to a class of nonlinear
implicit FDE with an implicit anti–periodic integral boundary condition. For the
justification, we have presented an example which supported the main theoretical
results.
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