
Ann. Univ. Paedagog. Crac. Stud. Math. 18 (2019), 137-144
DOI: 10.2478/aupcsm-2019-0010

FOLIA 277

Annales Universitatis Paedagogicae Cracoviensis
Studia Mathematica XVIII (2019)

Ahmet Daşdemir
Gelin-Cesáro identities for Fibonacci and Lucas
quaternions

Abstract. To date, many identities of different quaternions, including the
Fibonacci and Lucas quaternions, have been investigated. In this study, we
present Gelin-Cesáro identities for Fibonacci and Lucas quaternions. The
identities are a worthy addition to the literature. Moreover, we give Catalan’s
identity for the Lucas quaternions.

1. Introduction

Sir W. R. Hamilton introduced quaternions as an expansion of complex num-
bers into higher spatial dimensions. The set of real quaternions is denoted by H
in honour of its discoverer and is defined as

H = {q = q0 + q̃ : q̃ = q1i + q2j + q3k and q0, q1, q2, q3 ∈ R},

where i, j and k are basis vectors with the multiplication rule

i2 = j2 = k2 = ijk = −1. (1)

Note that q0 is called the scalar part of q, whereas q̃ is its vector part.
Quaternions have been extensively investigated, because they have very im-

portant features. Horadam [1] presented one of the most interesting investigations
and defined the Fibonacci and Lucas quaternions, respectively, by

Qn := Fn + Fn+1i + Fn+2j + Fn+3k (2)

and
Kn := Ln + Ln+1i + Ln+2j + Ln+3k. (3)
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Here, Fn and Ln are the n-th Fibonacci and Lucas numbers, respectively, in the
following forms

F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1 for n > 0 (4)

and
L0 = 2, L1 = 1 and Ln+1 = Ln + Ln−1 for n > 0. (5)

Note that equations (2) and (3) satisfy the recurrence relations

Qn+1 = Qn +Qn−1 for n > 0

and
Kn+1 = Kn +Kn−1 for n > 0.

In addition, Binet’s formulae of the Fibonacci and Lucas quaternions are respec-
tively [5],

Qn = α̃αn − β̃βn

α− β
and

Kn = α̃αn + β̃βn,

where α is the golden ratio, β = −α−1, α̃ = 1 + αi + α2j + α3k and β̃ = 1 + βi +
β2j + β3k. In [7], Iyer presented some remarkable results regarding the Fibonacci
quaternions.

Inspired by the definition given by Horadam [1], many important general-
izations of the Fibonacci quaternions have been defined by employing different
generalizations of the usual Fibonacci numbers. For example, Ramírez [3] gave
a new generalization of (2) associated with the k-Fibonacci numbers introduced
by Falcón and Plaza [2] as follows

Dk,n = Fk,n + Fk,n+1i + Fk,n+2j + Fk,n+3k,

where Fk,n is n-th term of the k-th Fibonacci sequence defined by

Fk,0 = 0, Fk,1 = 1 and Fk,n+1 = kFk,n + Fk,n−1 for n > 0.

Ramírez also anticipated a formula related to Catalan’s identity for the k-Fibonacci
quaternions. However, Polatlı and Kesim [4] showed that Ramírez’s conjecture was
incorrect, and then the authors proved the following Catalan’s identity

Dk,n−rDk,n+r −Dk,n
2 = (−1)n−r+1(2Fk,rDk,r − Lk,2Fk,2rk), (6)

where Lk,2 is the second term of the k-th Lucas sequence, which was defined by
Falcón [8] as follows

Lk,0 = 2, Lk,1 = k and Lk,n+1 = kLk,n + Lk,n−1 for n > 0.

For more detailed information on the generalizations of the Fibonacci quaternions,
the references in [10, 11] can be seen.
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Today, there are many multiplicative identities for the usual Fibonacci num-
bers. Two of their most famous are Catalan’s and Gelin-Cesáro identities. Within
the scope of the theory of quaternions, we update the notation introduced by
Fairgrieve and Gould [9] to the Fibonacci quaternions in the form of

Pn = Pn(ai, bi, r) =
r∏

i=1
Qn+ai −

r∏
i=1

Qn+bi ,

where r > 1, ai and bi are any integers. It is called Product Difference Fibonacci
Quaternion Identity (PDFQI) of order r. Depending on the choice of r, ai, bi and
n, PDFQI reduces to some multiplicative formulae investigated by Iyer [6]. Note
that it can be very difficult to calculate multiplicative identities for the Fibonacci
quaternions because the set of quaternions is non-commutative.

Based on the current literature, it is clear that the statements, that is Catalan’s
and Gelin-Cesáro identities, involving the difference of second- and fourth-order
products for the Fibonacci and Lucas quaternions have yet to be studied. To fill
this gap, in this paper, we present two important properties for the Fibonacci and
Lucas quaternions, which are the Gelin-Cesáro identities, followed by Catalan’s
identity for the Lucas quaternions.

2. Main Results

Here, we present the results of our investigation.
Lemma 1
Let p and q be any quaternions. Then, we obtain

pq = qp+ 2p̃× q̃ (7)

and
p2 = 2p0p− [N(p)]2, (8)

where N(p) is the norm of p, and the symbol “×” denotes the cross product over
the set of H.
Proof. The proof is immediate by employing the multiplication rule in (1).

Lemma 2
Let n and r be any integers. Then, we have

L2n+r = 5FnFn+r + (−1)nLr.

Proof. By Binet’s formulae of the Fibonacci and Lucas numbers, we can write

FnFn+r = αn − βn

α− β
αn+r − βn+r

α− β
= αnαn+r − αnβn+r − βnαn+r + βnβn+r

5

= α2n+r + β2n+r − αnβn(αr + βr)
5

= L2n+r − (−1)n
Lr

5 .

Thus, we complete the proof.
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We present the fundamental results of this study below.

Theorem 3
Let Qn be any Fibonacci quaternion. For any positive integer n, we have

Qn−2Qn−1Qn+1Qn+2 −Qn
4 = 1 + 4[(−1)n−1

Fn−1(Fn+3λ1 − 3Fn+4λ2) + λ3],

where

λ1 = i− 5j− 4k, λ2 = i + 2j− 3k, λ3 = 3− 14i− 19j + 12k. (9)

Proof. Substituting k = 1 into (6), we obtain Catalan’s identity for the usual
Fibonacci quaternions as follows

Qn−rQn+r −Qn
2 = (−1)n−r+1(2FrQr − 3F2rk).

Hence, for r = 1 and r = 2, respectively, we obtain (see Halici [5]),

Qn−1Qn+1 = Qn
2 + (−1)n(2Q1 − 3k) (10)

and
Qn−2Qn+2 = Qn

2 + (−1)n−1(2Q2 − 9k).

Therefore,

Qn−1Qn+1Qn−2Qn+2

= [Qn
2 + (−1)n(2Q1 − 3k)][Qn

2 + (−1)n−1(2Q2 − 9k)].
(11)

Now we consider both sides of equation (11) separately. Using (7) we obtain

Qn−1Qn+1Qn−2Qn+2 = Qn−2Qn−1Qn+1Qn+2 + 2(Q̃∗ × Q̃n−2)Qn+2,

where Q∗ = Qn−1Qn+1. With the aid of (8) and (10) we get

Q∗ = 2FnQn −N(Qn)2 + (−1)n(2Q1 − 3k).

Hence, we obtain

Qn−1Qn+1Qn−2Qn+2

= Qn−2Qn−1Qn+1Qn+2 (12)

+ 2(2FnQ̃n × Q̃n−2 + (−1)n(2i + 4j + 3k)× Q̃n−2)Qn+2.

Considering the definition of the cross product, we can write

Q̃n × Q̃n−2 = (−1)n(i + j− k)
and

(2i + 4j + 3k)× Q̃n−2 = (Fn + 4Fn−1)i− (2Fn − Fn−1)j + (2Fn − 4Fn−1)k.
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Substituting the last statements into (12) and making some mathematical arrange-
ments, we obtain

Qn−1Qn+1Qn−2Qn+2

= Qn−2Qn−1Qn+1Qn+2 (13)
+ 2(−1)n((3Fn+1 + Fn−1)i + Fn−1j− 4Fn−1k)Qn+2.

Now we consider the right-hand side of (11). We get

[Qn
2 + (−1)n(2Q1 − 3k)][Qn

2 + (−1)n−1(2Q2 − 9k)]

= Qn
4 + (−1)n(2Q1 − 3k)Qn

2 +Qn
2(−1)n−1(2Q2 − 9k)

+(−1)n(2Q1 − 3k)(−1)n−1(2Q2 − 9k) (14)
= Qn

4 + (−1)n[(2Q1 − 3k)Qn
2 −Qn

2(2Q2 − 9k)]
− (2Q1 − 3k)(2Q2 − 9k).

From (13) and (14), we can write

Qn−2Qn−1Qn+1Qn+2 −Qn
4

= (−1)n[−2((3Fn+1 + Fn−1)i + Fn−1j− 4Fn−1k)Qn+2

+ (2Q1 − 3k)Qn
2 −Qn

2(2Q2 − 9k)] + 31 + 2i− 30j− 4k.

We let ∆ denote the term in brackets. After the use of (1) and very extensive
mathematical operations, we obtain

∆ = −2[9(Fn−1Fn+1 − Fn
2) + (15Fn−1

2 + 5Fn−1Fn − 29Fn
2)i

− (33Fn−1
2 + 67Fn−1Fn + 23Fn

2)j

+ 2(6Fn−1
2 + 20Fn−1Fn + 13Fn

2)k].

(15)

Recall that Cassini’s identity for the usual Fibonacci number is

Fn−1Fn+1 − Fn
2 = (−1)n. (16)

Considering equations (4) and (16), we can rearrange (15) in the following form

∆ = −2Fn−1[(15Fn−1 + 5Fn − 29Fn+1)i− (33Fn−1 + 67Fn + 23Fn+1)j
+ 2(6Fn−1 + 20Fn + 13Fn+1)k] + 2(−1)n(9 + 29i + 23j− 26k).

Applying the recurrence relation in (4) to the last equation, we complete the
proof.

The next theorem presents Catalan’s identity of Lucas quaternions.

Theorem 4
Let n and r be any integers. Then, we have

Kn−rKn+r −Kn
2 = 5(−1)n−rFr[2Qr − 3Lrk].
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Proof. By Binet’s formula of the Lucas quaternions, we can write

Kn−rKn+r −Kn
2 = (α̃αn−r + β̃βn−r)(α̃αn+r + β̃βn+r)

− (α̃αn + β̃βn)(α̃αn + β̃βn)

= αn−rβn−r[α̃β̃β2r + β̃α̃α2r − αrβr(α̃β̃ + β̃α̃)].

In addition, the following equations can be proved

α̃β̃ = 2β̃ + 3
√

5k and β̃α̃ = 2α̃− 3
√

5k.

Hence, we can write

Kn−rKn+r −Kn
2

= (−1)n−r[(2β̃ + 3
√

5k)β2r + (2α̃− 3
√

5k)α2r

− (−1)r(2β̃ + 3
√

5k + 2α̃− 3
√

5k)]
= (−1)n−r[2(α̃α2r + β̃β2r)− 3

√
5(α2r − β2r)k− 2(−1)r(β̃ + α̃)]

= (−1)n−r[2K2r − 15F2rk− 2(−1)r
K0].

By Lemma 2,

K2r = L2r + L2r+1i + L2r+2j + L2r+3k
= 5Fr(Fr + Fr+1i + Fr+2j + Fr+3k) + (−1)r(L0 + L1i + L2j + L3k)
= 5FrQr + (−1)rK0.

As a result, we get

Kn−rKn+r −Kn
2 = (−1)n−r[2K2r − 15F2rk− 2(−1)r

K0]

= (−1)n−r[10FrQr + 2(−1)r
K0 − 15F2rk− 2(−1)r

K0]

= 5(−1)n−r[2FrQr − 3FrLrk]

= 5Fr(−1)n−r[2Qr − 3Lrk],

and the result follows.

Note that for r = 1 in Theorem 4, we obtain the following result, which is
Cassini’s identity of the Lucas quaternions.

Corollary 5
Let n be any integer. Then we have

Kn−1Kn+1 −Kn
2 = 5(−1)n−1[2Q1 − 3k]. (17)

Now we present the Gelin-Cesáro identity of the Lucas quaternions.

Theorem 6
Let n be any positive integer. Then, the following equation is satisfied

Kn−2Kn−1Kn+1Kn+2 −Kn
4 = 25 + 20[(−1)n

Ln−1(Ln+3λ1 − 3Ln+4λ2) + 5λ3],

where λ1, λ2 and λ3 were defined in (9).
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Proof. To prove Theorem 6, we proceed like in Theorem 3. First, we substitute
r = 2 in Theorem 4 to obtain

Kn−2Kn+2 −Kn
2 = 5(−1)n[2Q2 − 9k]. (18)

Considering (17) and (18), we can write

Kn−1Kn+1Kn−2Kn+2

= [Kn
2 + 5(−1)n−1[2Q1 − 3k]][Kn

2 + 5(−1)n[2Q2 − 9k]].
(19)

We will compute both sides of (19) separately and start with the left-hand side.
Using (7), (8) and (17), we obtain

Kn−1Kn+1Kn−2Kn+2 = Kn−2Kn−1Kn+1Kn+2

+ 2(2LnK̃n × K̃n−2 + 5(−1)n−1(2i + 4j + 3k)× K̃n−2)Kn+2.
(20)

Applying the definition of the cross product to (20), we have

K̃n × K̃n−2 = 5(−1)n−1(i + j− k)
and

(2i + 4j + 3k)× K̃n−2 = (Ln + 4Ln−1)i− (2Ln − Ln−1)j + (2Ln − 4Ln−1)k.

As a result, we obtain

Kn−1Kn+1Kn−2Kn+2 = Kn−2Kn−1Kn+1Kn+2

+ 10(−1)n−1((3Ln+1 + Ln−1)i + Ln−1j− 4Ln−1k)Kn+2.
(21)

Expanding the right-hand side of (19) yields

[Kn
2+5(−1)n−1[2Q1 − 3k]][Kn

2 + 5(−1)n[2Q2 − 9k]]

= Kn
4 + 5(−1)n(Kn

2(2 + 4i + 6j + k)− (2 + 2i + 4j + 3k)Kn
2) (22)

+ 25(31 + 2i− 30j− 4k).

If we combine (21) and (22) and use (1), we obtain

Kn−2Kn−1Kn+1Kn+2 −Kn
4 = 5(−1)n∇+ 25(31 + 2i− 30j− 4k),

where

∇ = 2[9(Ln−1Ln+1 − Ln
2) + (15Ln−1

2 + 5Ln−1Ln − 29Ln
2)i

− (33Ln−1
2 + 67Ln−1Ln + 23Ln

2)j + 2(6Ln−1
2 + 20Ln−1Ln + 13Ln

2)k].

Using the Cassini’s identity of Lucas numbers given by

Ln
2 − Ln−1Ln+1 = 5(−1)n,

we can write
∇ = 2Ln−1[(15Ln−1 + 5Ln − 29Ln+1)i− (33Ln−1 + 67Ln + 23Ln+1)j

+ 2(6Ln−1 + 20Ln + 13Ln+1)k] + 10(−1)n(9 + 29i + 23j− 26k).
(23)

Applying (5) into (23) with some algebraic arrangements, we complete the proof.
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