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Abstract. The convex hull of the subgraph of the prime counting function
x → π(x) is a convex set, bounded from above by a graph of some piece-
wise affine function x → ε(x). The vertices of this function form an infinite
sequence of points (ek, π(ek))∞

1 . The elements of the sequence (ek)∞
1 shall

be called the extremal prime numbers. In this paper we present some obser-
vations about the sequence (ek)∞

1 and we formulate a number of questions
inspired by the numerical data. We prove also two – it seems – interesting re-
sults. First states that if the Riemann Hypothesis is true, then lim ek+1

ek
= 1.

The second, also depending on Riemann Hypothesis, describes the order of
magnitude of the differences between consecutive extremal prime numbers.

1. Introduction

This paper is a revised and enlarged version of our preprint [7] and of the
paper [8] (in Polish). As the preprint [7] attained some interest in the field, we
decided to make it published, in spite of the fact that some conjectures stated
there were have been in the meantime proved. More precisely, [7] concerns the
convex hull of the graph of the function π : [2,∞) → [1,∞), which counts the
prime numbers in the interval [2, x], and which is usually defined by the formula

π(x) =
∑

p∈P,p≤x
1 (1)

where P = {2, 3, 5, 7, 11, . . .} denotes the set (or the sequence, if necessary) of prime
numbers. Some properties related to the graph of the function π were studied in
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1979 by Carl Pommerance [5] and more recently (2006) by H.L. Montgomery and
S. Wagon [6]. In [7], we formulated a number of conjectures concerning the subject
and we proved one of them, however assuming the Riemann Hypothesis. Quite
recently McNew [2], in his PhD thesis [3], written under the supervision of C.
Pommerence, found, applying similar methods as in [7], the proofs of some of the
conjectures from [7] without using the Riemann Hypothesis. In the same paper [2],
the author discusses the pioneering paper of Pommerence [5] and presents some
further results concerning the different types of "extremal" prime numbers.

In this paper we present large parts of the original text of [7]. Some changes are
necessary because of the results of McNew, which we will comment in details below
and because our set of numerical data is now bigger. The paper of Pommerance [5]
was perhaps the first, where the study of convexity of the graph of the function π
appeared, but as far as we know, it is in [7] that the sequence (ek)∞1 of extremal
prime numbers appears for the first time as an independent mathematical object.
It was noticed by OEIS and lives there under the number A246033. The precise
definition of the sequence (ek)∞1 will be presented in Part 1 of this paper (see
also [2]), but at this moment we give an intuitive description. Setting π(1) = 0
we may consider in the plane R2 the set of points G = {(n, π(n)) : n ∈ N}
and its convex hull conv(G). One may say that this convex hull is an unbounded,
convex polygon, whose boundary consists of the graph of two continuous functions,
namely of the constant function ε0(x) = 0 and of a polygonal function x →
ε(x). The vertices of conv(G) form the sequence (ek, π(ek))∞0 (where e0 = 1
and π(e0) = 0) and the sequence (ek)∞1 is just the sequence of extremal primes.
In [7], in [2] and in this paper a number of results and a number of questions are
presented, concerning the geometrical structure of conv(G). Before formulating
these results, it should be noticed, that this geometrical structure of conv(G) is
relatively easy to study numerically. Namely, we consider the bounded polygons
Gx = conv(G) ∩ ([1, x]× [0,∞)) and we count for example its number of vertices
πε(x) or we calculate the length of its sides. Passing with x to infinity we may
study the geometry of conv(G). In [7] and [8] we presented the selected elements
of (ek) for x ≤ 1012. In [2] some data are presented for x ≤ 1013. In this paper
we will present some data for x ≤ 1017. The present paper is an example of the
papers, where the analysis of a large set of numerical data is a start point to some
purely theoretical consideration. Another example worth mentioning is the article
of A. Odlyzko, M. Rubinstein and M. Wolf about "jumping champions" [4].

One may ask what is the reason to study the sequence of extremal primes.
Well, the function x → ε(x) is the smallest "reasonable" function bounding the
function π(x) from above, but on the other hand, the set (ek)∞1 of extremal primes
is very thin in comparison with the set P of all primes and then one may hope,
that it should be easier to tame. Basing on the numerical data we formulated
in [7] a number of conjectures. All these conjectures concern the distribution of
extremal primes in N. First of them states, that the set of extremal primes is a
small subset of P. More exactly

Conjecture A: The series
∑∞

1
1
ek

is convergent.
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The second conjecture states that the set of extremal primes is not to small, since

Conjecture B: The series
∑∞

1
1

ln(ek) diverges.

These conjectures are both proved in [2]: Conjecture A is a consequence of The-
orem 2.2 there and Conjecture B is stated as Corollary 2.7. Another conjecture
speaks about the range of growth at infinity of the function πε(x) counting the
extremal primes. This was mentioned in [7] and is named in the present paper
the γ/2 conjecture. It states – roughly speaking – that the right range of πε(x) at
infinity is comparable to xγ/2, where γ is the Euler constant. More exactly,

Conjecture C: There exists infimum

β = inf{α > 0 : πε(x) = o(xα)}

and it is positive. Moreover β = γ
2 , where γ is the Euler constant.

In [2] (Theorem 2.2) it is observed, that β ≤ 2
3 , but this evaluation seems to be

far from the best possible. Further discussion of this conjecture will be continued
in Part III.

In [7] also the following two conjectures were formulated.

Conjecture D: For the sequence of extremal primes we have

lim ek+1

ek
= 1.

Conjecture E: For the sequence of extremal prime numbers we have

ek+1 − ek = o(ek).

These two last Conjectures are strictly related to each other and they were proved
in [7] assuming the Riemann Hypothesis. McNew proves them unconditionally
(Corollary 2.8 in [2]).

Part I of this paper contains the precise definition of the extremal primes, the
presentation of the selected numerical data and the formulation of the number of
conjectures. The contents of the present paper is essentially the same as in [7],
however there are some differences. In Part II we give the proof of Conjecture D,
practically unchanged relative to the original version in [7]. In Part III we show
that an important observation from [2] (Theorem 2.4) concerning Conjecture E,
can be deduced from the formulas presented in [7].

2. Part I

2.1. Definition of extremal prime numbers

In [7] (as well as in [2]) one speaks about the so called extremal prime numbers
or convex prime numbers, which may be defined as below. Let us observe first
that
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conv({(x, y) : x ∈ [2,∞), y ∈ [1, π(x)]})
= conv({(x, y) : x ∈ N, 2 ≤ x, y ∈ [1, π(x)]})
= conv({(x, y) : 2 ≤ x, x ∈ P, y ∈ [1, π(x)]}).

It is easy to observe that there are many proper subsets F ⊂ P such that

conv({(x, y) : 2 ≤ x, x ∈ P, y ∈ [1, π(x)]})
= conv({(x, y) : 2 ≤ x, x ∈ F, y ∈ [1, π(x)]}).

(2)

It is also not hard to observe that among the sets F ⊂ P having the above property
(2), there exists the smallest subset (in consequence only one) E ⊂ P and this
is exactly, by definition, the set of extremal primes. Clearly, E is infinite (see
Proposition 1) and in many situations it will be more convenient to speak about
the strictly increasing sequence E = (ek)∞1 of extremal prime numbers. It should
be noticed here, that in [2] the author considers the convex hull of the set {(n, pn) :
pn ∈ P}, which, clearly, does not make any essential difference. We present below
an inductive method of finding ek+1 provided that ek is known.

Proposition 1
The set E is infinite.

Proof. Consider the piecewise affine function ε : x → ε(x), whose vertices form
exactly the set E. Let lk denote the straight line (the affine function) passing
through the points (ek−1, π(ek−1)) and (ek, π(ek)). It follows from the definition
of extremal points that the graph of the function ε lies below the line lk. This
gives a simple inductive method of finding the next extremal prime ek+1 providing
that we know e1, e2, . . . , ek−1, ek (in fact it is sufficient to know only ek−1 and ek).
We can do it as follows. We consider the difference quotients of the form

Ik(p) = π(p)− π(ek)
p− ek

,

for p ∈ P, p > ek. It follows from the remark above, that for each p > ek we have

0 < Ik(p) < π(ek)− π(ek−1)
ek − ek−1

= Ik−1(ek).

Using the commonly known fact

lim
p→∞

π(p)
p

= 0,

we have limp→∞ Ik(p) = 0. Then there exists a finite set Pk ⊂ P of primes such
that q ∈ Pk → q > ek and such that Ik(p) ≤ Ik(q) for p > ek. We set then
ek+1 = maxPk. This implies that the set E is infinite. Clearly, this means that

lim
k→∞

ek = +∞.
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Let us return to the piecewise affine function ε : x → ε(x) and consider the
sequence

δk = π(ek+1)− π(ek)
ek+1 − ek

,

i.e. δn is the slope of the n-th segment lying on the graph of the function ε. Since
the function ε is strictly increasing and concave, the sequence (δk)∞1 is positive
and strictly decreasing. Let us observe, that the sequence (δk)∞1 may be identified
with the derivative of the function ε. Since δk is decreasing then the limit δ =
limk→∞ δk ≥ 0 exists and it must be δ = 0. Indeed, suppose for instance, that
δ > 0. Hence for each j ∈ N∗ we have π(ej+1)−π(ej) > δ(ej+1−ej). This implies
(adding the above inequalities for 1 ≤ j ≤ k) that for each k ∈ N∗ the following
inequality holds π(ek+1) − 1 > δ(ek+1 − 2). But the last inequality is impossible
since (once more) limn→∞

π(n)
n = 0. The property δ = limk→∞ δk = 0 makes it

possible to observe that the set P \ E is infinite.

Proposition 2
The set P \ E is infinite.

Proof. This is almost obvious from the intuitive point of view. However, a short
proof we present here is related to the very non-trivial results about small gaps
between primes. Suppose, for the sake of contradiction, that P \E is finite. Hence
for sufficiently great a > 0 we have E ∩ [a,∞) = P ∩ [a,∞). In consequence we
have

0 = δ = lim
k→∞

δk = lim
k→∞

π(ek+1)− π(ek)
ek+1 − ek

= lim
n→∞

π(pn+1)− π(pn)
pn+1 − pn

= lim
n→∞

1
pn+1 − pn

,

where pn ∈ P. This would imply, that limn→∞(pn+1 − pn) = ∞. But this is
impossible, because we know now from many recent results (for example of Zhang,
[9]), that lim inf(pn+1−pn) < 7 ·107. Since the paper of Zhang the constant 7 ·107

was considerably diminished.

The observations about the extremal primes made above are rather elementary.
We will speak later about some deeper results. The problem with the sequence of
extremal primes is in some sense similar to the problem we have with sequence of
all primes and with its subsequences like for example the sequence (conjectured
infinite) of twin primes. Namely, it is relatively easy to produce the consecutive
elements of the sequence (ek)∞1 but it is rather hopeless to find an (exact) analytical
formula describing the set of extremal primes. Now, it is perhaps a good moment
to notice, that it is practically impossible to calculate "by hand" the elements of
the sequence E. Using Proposition 1 we may find ten or twenty first terms of the
sequence (ek)∞1 without using computers, but for to go further we need strong
calculating machines.
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We have calculated more than the first 50000 extremal primes and after study-
ing these numerical data, we can formulate a number of more or less interesting
questions. It is impossible to give here the complete list of the first 50000 extremal
primes, but we present below some selected data. The first forty nine terms of the
sequence E are

n 1 2 3 4 5 6 7
en 2 3 7 19 47 73 113
n 8 9 10 11 12 13 14
en 199 283 467 661 887 1129 1327
n 15 16 17 18 19 20 21
en 1627 2803 3947 4297 5881 6379 7043
n 22 23 24 25 26 27 28
en 9949 10343 13187 15823 18461 24137 33647
n 29 30 31 32 33 34 35
en 34763 37663 42863 43067 59753 57797 82619
n 36 37 38 39 40 41 42
en 96017 102679 129643 130699 142237 155893 187477
n 43 44 45 46 47 48 49
en 194419 210533 211949 230393 267961 272423 284839

The list of ek, where k ≤ 3000 and k ≡ 0(mod 100) and the list of ek, where
k ≤ 50000 and k ≡ 0(mod 10000).

e100 5253173 e1600 157169830847
e200 67596937 e1700 196062395777
e300 314451367 e1800 241861008029
e400 883127303 e1900 296478801431
e500 2122481761 e2000 365234091199
e600 4205505103 e2100 435006680401
e700 7274424463 e2200 524320812671
e800 12251434927 e2300 625382499043
e900 19505255383 e2400 727995116377
e1000 28636137347 e2500 842057152381
e1100 40001601779 e2600 975455207557
e1200 55036621907 e2700 1098339926353
e1300 73753659461 e2800 1234264464703
e1400 97381385771 e2900 1388032354369
e1500 125232859691 e3000 1563678255869
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e10000 92375151455953
e20000 981254018753539
e30000 3757752577836253
e40000 9797619494633261
e50000 20596671738838703

The examination of the sequence of the first 50000 extremal primes allows
us to formulate a number of questions. First of all it seems to be interesting to
say something about the density of the sequence (ek)∞1 . Our experimental data
support some conjectures. Namely,

Conjecture F: (see [7], Conjecture A in Introduction, Theorem 2.2 [2]) The
series

∞∑
k=1

1
ek

is convergent.

It follows from our data that
50000∑
k=1

1
ek
∼= 1, 090298 . . . .

Conjecture G: (see [7], Conjecture B in Introduction, Corollary 2.7 in [2]) The
series

∞∑
k=1

1
ln(ek)

is divergent.

Our data gives
50000∑
k=1

1
ln(ek) > 1486.

Let us remember that, as it was mentioned in Introduction, this two conjec-
tures are proved in [2].

Since the set E of extremal prime numbers is infinite and, clearly, the problem
of finding any reasonable explicit formula describing the correspondence N 3 n→
en is rather out of reach, we will define and try to study a function, which may be
called extremal primes counting function πε. The formula for πε is analogous to
formula (1). We set

πε(x) =
∑

p∈E, p≤x
1.

Unfortunately we know only 50000 values of πε(x) for x ≤ 1017. However, it seems
to be possible to formulate some conjectures about πε. Clearly, πe(x) ≤ π(x) and
the growth of πε is much slower than the growth of π. For example, πε(x0) = 1700,
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when x0 = 196062395777 and for the same x0 we have π(x0) = 7855721212. In
particular, we may try to find the best α < 1 such that πε(x) = o(xα) observing
the ratio ln(n)

ln(en) when n tends to infinity (in our case only for n ≤ 1017). Maybe
only accidentally, but the best α obtained from our data is near to γ

2 , where γ is
the Euler constant. Hence we formulate.

Conjecture H: (see [7], Conjecture C in Introduction, also [2]) There exists
infimum

β = inf{α > 0 : πε(x) = o(xα)}

and is positive. Moreover, β = γ
2 , where γ is the Euler constant.

Our numerical data support strongly also the following interesting conjecture.

Conjecture I: (see [7], Conjecture D in Introduction, Corollary 2.8 in [2]) In
the notations as above, we have:

lim
k→∞

ek+1

ek
= 1.

We will prove below, in Part II, that the Riemann Hypothesis implies Con-
jecture I. This conjecture is interesting itself, but also because of the following
observation.

Proposition 3
If

lim
k→∞

ek+1

ek
= 1

then
lim
n→∞

pn+1

pn
= 1,

where pn ∈ P.

Proof. For each n ∈ N there exists k(n) ∈ N such that

ek(n) ≤ pn < pn+1 ≤ ek(n)+1.

Thus
pn+1

pn
≤
ek(n)+1

ek(n)

and the last sequence tends by our assumption to 1. Let us recall here, that
limn→∞

pn+1
pn

= 1 implies Prime Number Theorem. This was proved by P. Erdös
in his elementary proof of PNT (see [1]).

It follows directly from the definitions of the functions π and πε that π(ek+1)−
π(ek) ≥ 1 and the equality may occur. Except for trivial e1 = 2 and e2 = 3 we
have found two such "twin extremal primes" for k = 116 and k = 976. Namely,
e116 = 8787901, e117 = 8787917 and π(e116) = 589274, e976 = 26554262369,
e977 = 26554262393 and π(e976) = 1156822345. We may state the question.
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Question 4
Does there exist infinitely many k ∈ N such that π(ek+1)− π(ek) = 1.

Another phenomenon is related to the inequality Ik(p) ≤ Ik(po), which is
described in Proposition 1. One may ask if the number of points p > ek such
that Ik(p) = Ik(po) is greater than 1. In our numerical data we have only three
such examples, namely for k = 2 we have I2(5) = I2(7) , I3(13) = I3(19) and also
I4(23) = I4(31) = I4(43) = I4(47) = 1

4 = δ4 but in fact our programme searching
next extremal primes was not written to search such exceptions.

3. Part II

As we announced in Introduction in this Part we present the original proof of
Conjecture I (from [7]) depending on Riemann Hypothesis.

3.1. Definition of lenses

The gaps between extremal primes will be called lenses. More exactly,

Definition 5
Given a positive integer k ∈ N the lens Sk is a set

Sk = {n ∈ N : ek ≤ n < ek+1} .

The difference ek+1−ek will be called the length of the lens Sk and will be denoted
by |Sk|.

Since we will apply in the sequel the language of differential calculus, it will
be more comfortable to work with the function [2,∞) 3 x→ S(x) ∈ [1,∞), where

x ∈ [ek, ek+1)⇒ S(x) = |Sk|.

We consider the following – well known – functions L and ε called integral
logarithm and error term respectively, defined by the following formulae:

L(x) := Li(x) =
∫ x

2

1
ln tdt (3)

and
ε(x) =

√
x · ln x. (4)

Together with L and ε we consider the function

ϕ(x) = L(x)− ε(x)

and for x ∈ (2,∞) and h ∈ R,

l(x, h) = ϕ′(x) · h+ ϕ(x).
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Clearly, all these functions are analytic at least in (2,∞). We will use the deriva-
tives of the considered functions to the order four and we shall write y instead of
ln x to present some formulas in more compact form. Hence we have

L(1)(x) = 1
ln x = 1

y
,

and further derivatives

L(2)(x) = −1
x · y2 ,

L(3)(x) = y + 2
x2 · y3 ,

L(4)(x) = −(2 · y2 + 6y + 6)
x3 · y4 .

The derivatives of error term function, written in an analogous manner, run
as follows

ε(x) =
√
x · ln x =

√
x · y,

ε(1)(x) = y + 2
2
√
x
,

ε(2)(x) = −y
4x
√
x
,

ε(3)(x) = 3y − 2
8x2√x

,

ε(4)(x) = −15y + 16
16x3√x

.

Let us observe, that the second derivatives of the functions L and ε are negative,
so both these functions are concave. The second derivative of the function ϕ has
the form

ϕ(2)(x) = −4
√
x+ ln3 x

x
√
x ln2 x

= −4
√
x+ y3

4x
√
xy2 ,

then taking into account that

lim
x→∞

(−4
√
x+ ln3 x) = −∞

we can state

Proposition 6
There exists x0 ∈ (2,∞) such that the function ϕ is concave in the interval [x0,∞).

3.2. A remark on Taylor polynomials of considered functions

Let us fix a point x ∈ (2,∞). Let T (3)
x,L denote the Taylor polynomial of order

three of the function L with the center at x. Hence

T
(3)
x,L(h) = L(x) + L(1)(x) · h+ 1

2 · L
(2)(x) · h2 + 1

6 · L
(3)(x) · h3. (5)
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The remainder R(3)
x (h) = L(x+h)−T (3)

x,L(h), written in the Lagrange form, is
given by the formula

R(3)
x (h) = 1

24L
(4)(ξ) · h4, (6)

where ξ is a point from the (x, x + h). Since L(4) < 0 in all its domain, we have
the inequality.

Proposition 7
For each x ∈ (2,∞) and for each h ∈ (2− x,∞) the following inequality is true

L(x+ h) ≤ T (3)
x,L(h).

Let T (3)
x,ε denote the Taylor polynomial of order three of the function ε with

the center at x, i.e.

T (3)
x,ϕ(h) = ε(x) + ε(1)(x) · h+ 1

2 · ϕ
(2)(x) · h2 + 1

6 · L
(3)(x) · h3. (7)

Using an analogous argumentation as in the case of the function L we have

Proposition 8
For each x ∈ (2,∞) and for each h ∈ (2− x,∞) the following inequality is true

ε(x+ h) ≤ T (3)
x,ε (h). (8)

In consequence, we have the inequality (true for all h ∈ (2− x,∞))

L(x+ h) + ε(x+ h) < T
(3)
x,L(h) + T (3)

x,ε (h). (9)

3.3. Definition of two functions

In this section we will define two functions h+ : (x0,∞) 3 x→ h+(x) ∈ R and
h− : (x0,∞) 3 x → h−(x) ∈ R, where x0 is the point defined in Proposition 6.
First we will describe in details the definition of the function h+. The definition
of h− will be similar.

Let us fix a point x ∈ (x0,∞). Take into account the tangent line l(x, h) to
the graph of the function ϕ at the point (x, ϕ(x)). Its equation for h ∈ R is given
by

l(x, h) = ϕ′(x) · h+ ϕ(x) = L′(x)h− ε′(x)h+ L(x)− ε(x). (10)

The tangent half-lines obtained, when we restrict ourselves in the formula (10) to
h ∈ [0,∞) or h ∈ (−∞, 0] will be denoted by l+(x, h) or l−(x, h), respectively. For
h = 0 we have the inequality

l(x, 0) = ϕ(x) = L(x)− ε(x) < L(x) + ε(x).

This means that the half-line l+ starts from the interior point (x, ε(x)) of the
subgraph of the function L+ ϕ, which is a convex set. Since

d

dh
L(x+ h) = 1

ln(x+ h)
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and
d

dh
ε(x+ h) = ln(x+ h) + 2

2
√
x+ h

,

then
lim
h→∞

d

dh
(L(x+ h) + ε(x+ h)) = 0.

On the other hand,
d

dh
l(x+ h) = ϕ′(x) > 0,

hence the half-line l+(x, h) must intersect the graph of the strictly concave function
L(x+ h) + ε(x+ h) in exactly one point. Hence we have proved the following

Proposition 9
For each x ∈ (x0,∞) there exists exactly one positive number h+(x) such that

L(x+ h+(x)) + ε(x+ h+(x)) = ϕ′(x) · h+(x) + ϕ(x).

In other words, for each x ∈ (x0,∞) the equation (with unknown h)

L(x+ h) + ε(x+ h) = ϕ′(x) · h+ ϕ(x) (11)

has exactly one positive solution, which we will denote by h+(x). If one replaces
the half-line l+(x, h), by the half line l−(x, h), then applying the same arguments
as above, we obtain

Proposition 10
For each x ∈ (x0,∞) there exists exactly one negative number h−(x) such that

L(x+ h−(x)) + ε(x+ h−(x)) = ϕ′(x) · h−(x) + ϕ(x).

In other words, equation (11) has exactly one negative solution, which we will
denote by h−(x).

3.4. An auxiliary equation

In this paper we would like to establish the order of magnitude of the functions
x→ h+(x) and x→ h−(x) (in fact of the difference h+(x)−h−(x), when x tends to
+∞). Since the equation (11) is rather hard to solve, we will consider an auxiliary
equation

T
(3)
x,L(h) + T (3)

x,ε (h) = ϕ′(x) · h+ ϕ(x), (12)

which can be written in the form

Wx(h) := 1
6(L(3)(x) + ε(3)(x)) · h3 + 1

2(L(2)(x) + ε(2)(x)) · h2

+ 2ε(1)(x) · h+ 2ε(x) = 0.
(13)

Equation (13) is an algebraic equation of degree three. It has at least one real
root. We will see that it can have (and has) more then one real root and we will
be interested not only in the existence of roots of equation (13), but also on theirs
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signs. Let us observe, that since Wx(0) = 2ε(x) > 0, the number h = 0 cannot
be a root of considered equation. Let us also observe that, in fact, equation (13)
is not a single algebraic equation, but it is a one parameter family of algebraic
equations, where the parameter is x ∈ (x0,∞).

We will prove the following result.

Lemma 11
(i) There exists x+ ∈ (x0,∞), such that for each x > x+ the equation Wx(h) = 0
has a positive root.
(ii) There exists x− ∈ (x0,∞), such that for each x > x− the equation Wx(h) = 0
has a negative root.

The proof of the lemma is done together with the proof of Proposition 16. Assume
now that Lemma 11 is true. This allows us to define two new functions h∗+ and
h∗−. We will describe in details the definition of h∗+. We set

Definition 12
Let x ∈ (x+,∞). Then the set of positive roots of Equation (13) is not empty and
we set

h∗+(x) = min{h > 0 : Wx(h) = 0}.

The relation between the functions h+ and h∗+ is the following

Proposition 13
If Lemma 11 is true, then for x ∈ (x+,∞) we have the inequality h+(x) < h∗+(x).

Proof. Let us fix x ∈ (x+,∞). In the interval [x, x+h+(x)], i.e. for h ∈ [0, h+(x)]
the line l(x, h) lies below the graph of the function L + ε. This follows directly
from the definition of the function h+(x). Hence in this interval the line l(x, h)
cannot intersect the graph of the function T

(3)
x,ε + T

(3)
x,L because of inequality (9).

Hence the equation Wx(h) = 0 has no roots in the interval h ∈ [0, h+(x)]. But
this means that h+(x) < h∗+(x), which ends the proof of Proposition 13.

Assume once more that Lemma 11 is true. We have

Definition 14
Let x ∈ (x−,∞). Then the set of negative roots 13 is not empty and we set

h∗−(x) = max{h < 0 : Wx(h) = 0}.

The relation between the functions h− and h∗− is as follows

Proposition 15
If Lemma 11 is true, then for x ∈ (x−,∞) we have h−(x) > h∗−(x).

The proof of Proposition 15 is similar to the proof of Proposition 13, so we skip it.
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3.5. The proof of the main result

Now we will prove the Proposition 16 formulated below. Equation (13) we are
interested in, can be written in the form

A3(x) · h3 +A2(x) · h2 +A1(x) · h+Ao(x) = 0 (14)

where, using formulas (5)–(13) we have

A3(x) = 1
6(L(3)(x) + ε(3)(x)) = 1

48 ·
8
√
x(y + 2) + y3(3y − 2)

x2√xy3 ,

A2(x) = 1
2(L(2)(x) + ε(2)(x)) = −1

8 ·
4
√
x+ y3

x
√
xy2 ,

A1(x) = y + 2√
x
,

A0(x) = 2
√
xy.

Now, taking into account the fact, that for x sufficiently large A3(x) > 0, we
divide equation (14) by A3(x) in order to obtain the form

h3 +B2(x) · h2 +B1(x) · h+B0(x) = 0, (15)

where

B2(x) = A2(x)
A3(x) = −6x 4

√
xy + y4

8
√
xy + 16

√
x+ 3y4 − 2y3 ,

B1(x) = A1(x)
A3(x) = 48x2 y3

8
√
xy + 16

√
x+ 3y4 − 2y3 ,

B0(x) = Ao(x)
A3(x) = 96x3 y4

8
√
xy + 16

√
x+ 3y4 − 2y3 .

For further analysis of (15) it will be convenient to use some Landau symbols.
Let us recall that for a function g defined in the neighbourhood of +∞ one writes
g = o(1) if and only if limx→+∞ g(x) = 0. Using this convention, we can write

B2(x) = −6x
1
2 + o(1)
1 + o(1) ,

B1(x) = 48x2 o(1)
1 + o(1) ,

B0(x) = 96x3 o(1)
1 + o(1) .

This makes it possible to write 15 in the form

h3 − 6x
1
2 + o(1)
1 + o(1) h

2 + 48x2 o(1)
1 + o(1)h+ 96x3 o(1)

1 + o(1) = 0.
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Now apply the substitution h = θx, which leads to the form

θ3x3 − 6x
1
2 + o(1)
1 + o(1) θ

2x2 + 48x2 o(1)
1 + o(1)θx+ 96x3 o(1)

1 + o(1) = 0. (16)

Since we work only with x > 0, we can divide the last equation by x3, and obtain
the following equation (with unknown θ),

θ3 − 6
1
2 + o(1)
1 + o(1) θ

2 + 48 o(1)
1 + o(1)θ + 96 o(1)

1 + o(1) = 0. (17)

Finally, taking into account the equality

1
2 + o(1)
1 + o(1) = 1

2 + o(1)

we can write equation (16) in the form

θ3 − 3θ2 + v2(x)θ2 + v1(x)θ + v0(x) = 0, (18)

where v1(x), v2(x), v0(x) are three positive functions defined in a neighbourhood
of +∞ and tending to 0 when x tends to +∞. If for a fixed x′ we find a number
θ′ being a root of equation (17), then the number h′ = θ′ · x′ is a root of 15. It is
then enough to study equation (17). We shall prove much more. Namely we have
the following result.

Proposition 16
For each α > 0 there exists a point x2 such that for each x > x2 equation (18) has
in the interval [−α, α] exactly two roots θ− and θ+, and moreover θ− < 0 < θ+.

Proof. Indeed, Proposition 16 is stronger than Lemma 11, where we need only the
existence of a negative root and of a positive root. In Proposition 16 we prove not
only that the roots exist, but also that we can find the solutions in an arbitrary
open interval containing the origin. Without loss of generality, we may assume,
that α ≤ 1. Let us fix then a positive number 1 ≥ α > 0 and choose x2 so large,
that for x > x2 we have

v2(x) · α2 + v1(x) · α+ v0(x) < 2α2 (19)

and

v2(x) · α2 − v1(x) · α+ v0(x) < 2α2. (20)

Such an x2 exists since all three functions v2, v1, v0 are o(1) when x tends to +∞.
Let us fix x > x2. We rewrite equation (17)) in the form f(θ) = g(θ), where

f(θ) = θ3 + v2(x) · θ2 + v1(x) · θ + v0(x)

and
g(θ) = 3 · θ2.
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Let us set h(θ) = f(θ) − g(θ) and let us consider the interval [0, α]. We have
h(0) = f(0) − g(0) = v0(x) > 0 and, (since α < 1 and using the inequality (19))
we obtain

h(α) = f(α)− g(α) = α3 + v2(x) · α2 + v1(x) · α+ v0(x) < α2 + 2α2 − 3α2 = 0.

Thus equation (17) has a root θ+ ∈ (0, α).
Now we will consider the interval [−α, 0]. For θ = 0 we have, as above h(0) =

v0(x) > 0. For θ = −α we have (since −α3 < 0 and we have inequality (20))

h(−α) = f(−α)− g(−α) = −α3 + v2(x) · α2 − v1(x) · α+ v0(x)− 3α2

< v2 · α2 − v1(x) · α+ v0(x)− 3α2 < 2α2 − 3α2 < 0.

Once more the continuity argument implies the existence of the root θ− of the
equation in the interval (−α, 0). Let us remark, that θ− · x = h∗−(x) and θ+ · x =
h∗+(x). This ends the proof of Proposition 16 and hence moreover, the proof of
Lemma 11.

3.6. The order of magnitude of lenses

By the results of the previous subsection, we can consider four functions h−,
h+, h∗− and h∗+, which are defined in an interval (M,∞), and such that the fol-
lowing inequalities hold for each x ∈ (M,∞),

h∗−(x) < h−(x) < 0 < h+(x) < h∗+(x).

Our aim is to establish the order of magnitude at +∞ of the difference H(x) =
h+(x)− h−(x). We will prove the following result.

Proposition 17
The function H satisfies the relation

H(x) = o(x),

when x tends to +∞.

Proof. This follows directly from the property formulated in Proposition 16. In-
deed, it is sufficient to show separately that h+(x) = o(x) and |h−(x)| = o(x). To
prove the first relation, let us fix a positive number ε > 0. It follows from Proposi-
tion 16 (setting α = ε) that there exists M1 > M , such that x > M1 implies, that
there exists a number θ < ε (θ depending on x) such that h∗+(x) = θ · x. But this
means that

h∗+(x)
x

< ε

for x > M1. The proof for h∗− is similar.

Now we can prove a theorem on the order of magnitude of the length of lenses
Sk using Proposition 17. First we shall prove the following lemma about sequences
tending to +∞.
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Lemma 18
Suppose that we have four sequences (x−k )∞1 , (x+

k )∞1 , (zk)∞1 and (ek)∞1 such that

0 < x−k ≤ ek < ek+1 ≤ x+
k , (21)

x−k ≤ zk ≤ x+
k , (22)

lim
k→∞

ek = +∞, (23)

lim
k→∞

x+
k − x

−
k

zk
= 0. (24)

Then
lim
k→∞

ek+1 − ek
ek

= 0.

Proof. From (21) and (23) we deduce that

lim
k→∞

x+
k = +∞.

It must be also
lim
k→∞

x−k = +∞.

Indeed, suppose that there exists an infinite subset L ⊂ N and a constant K > 0
such that 0 ≤ x−n ≤ K for n ∈ L. Then for n ∈ L we have

0 ≤ x+
n −K
zn

≤ x+
n − x−n
zn

.

Hence by (24),
x+
n −K
zn

→ 0, n ∈ L.

This implies that limn∈L zn = +∞. In consequence,

lim
n∈L

x+
n

zn
= 0,

thus there exists n ∈ L such that x+
n < zn, but this is impossible.

From the inequality
x+
k − x

−
k

x+
k

≤
x+
k − x

−
k

zk

we deduce that
lim

k→+∞

x−k
x+
k

= 1

which gives

lim
k→+∞

x+
k − x

−
k

x−k
= 0.

But
x+
k − x

−
k

ek
≤
x+
k − x

−
k

x−k
,
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then
lim
k→∞

x+
k − x

−
k

ek
= 0.

Since
ek+1 − ek

ek
≤
x+
k − x

−
k

ek

we have
lim
k→∞

ek+1 − ek
ek

= 0

and this ends the proof of Lemma 18.

Lemma 19
The graph of the function π∗ lies between the graphs of the functions L − ε and
L+ ε, where the functions L and ε are defined by (3) and (4).

Proof. Suppose the opposite. Then there exist two consecutive prime numbers pn
and pn+1 such that the points A = (pn, n) and B = (pn+1, n + 1) lie between
L− ε and L+ ε and the segment [A;B] cuts the graph of L− ε or L+ ε. But the
subgraph of L+ ε is convex, then [A;B] cuts only the graph of L− ε. This means,
that there exists a point x ∈ (pn, pn+1) such that the point X = (x, n) lies below
the graph of L− ε. But X = (x, π(x)), then from the definition of the error term,
X lies between the graphs of L−ε and L+ε. This ends the proof of Lemma 19.

Lemma 20
Let Sk be a lens defined by the extremal prime numbers ek and ek+1. Then the
straight line joining the points U = (ek, π(ek)) and V = (ek+1, π(ek+1)) cannot
cut the graph of L− ε in two distinct points.

Proof. This follows from the Lemma 19 since, by the definition of extremal points,
the whole graph of π∗ lies below the straight line joining the points U and V .

The main theorem of this section is the following.

Theorem 21
With the notations as above if the Riemann Conjecture is true, then

lim
k→+∞

ek+1

ek
= 1.

Proof. Let U and V be as in Lemma 20. Take the straight line l(U, V ) joining U
and V and translate it to the position l∗, where the straight line l∗ is parallel to
l(U, V ) and tangent to the graph of L − ε. This line l∗ cuts the graph of L + ε
in points U∗ and V ∗, whose first coordinates are x−k and x+

k respectively, and the
tangent point is zk. It is not hard to check, that the sequences (x−k )∞1 , (x+

k )∞1 ,
(zk)∞1 and (ek)∞1 satisfy the assumptions of Lemma 18. Then this ends the proof
of the theorem.

We have an equivalent formulation.

Corollary 22
The length of lenses x→ S(x) satisfies the equality S(x) = o(x).
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4. Part III

4.1. Additional remarks

In [7] we wrote: It is natural to ask if one can prove the results like Theorem 21
or Corollary 22 without assuming the Riemann Hypothesis. Maybe this is possible,
but it seems, that the method used in this paper is insufficient. And also: I was
not able to prove Theorem 21 using L(x) = Li(x) and

ε(x) = O

(
x · exp

(
A(ln x) 3

5

(ln(ln x)) 1
5

))
. (25)

(Un)fortunately it appeared, that we were to pessimistic. McNew in [2], using
similar methods as in [7], but applied to the Vinogradow error term (25), proved
Conjecture I without assuming the Riemann Hypothesis. In the same paper [2],
he gave unconditional proofs of Conjectures F and G.

4.2. The conjecture γ/2

Among the conjectures formulated in [7], the Conjecture H seems to be the
most interesting. It is related to the stronger version of the Corollary 22, which is
proved in the present paper with the use of the Riemann Hypothesis, but which is
true, as it was proved in [2], unconditionally. In the same paper [2] it is observed,
that the Riemann Hypothesis allows us to formulate a stronger version of Corollary
22. McNew deduces this version from his proof of the theorem on the behaviour of
the sequence (ek)∞1 of extremal primes. We will check below, that a little deeper
analysis of the proof of Corollary 22 given in the present paper, leads to the same
conclusion as Theorem 2.4 in [2]. Namely, we have the following.

Theorem 23
In the notation as in the previous section, there exists a constant C > 0 such that

S(x) ≤ C · x 3
4 · y 3

2 ,

where y = ln(x).

Before proving this theorem, we will return to the proof of the relation S(x) = o(x).
As we have observed, the function S(x) is controlled by the function H(x) =
h+(x)− h−(x) considered in Proposition 17. Hence to control the function H(x)
it is sufficient to control the function x→ h∗+(x) defined by the relation h∗+(x) =
θ(x) · x, where the function θ(x) satisfies the implicit equation (16))

θ3 − 3θ2 + v2(x)θ2 + v1(x)θ + v0(x) = 0. (26)

We have proved above, that this implicit equation has a positive solution x→ θ(x),
such that limx→∞ θ(x) = 0 and this was enough for S(x) = o(x).

First we will prove a proposition, which is weaker than Theorem 23 but
stronger than S(x) = o(x).
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Proposition 24
For each k ∈ N there exists Mk > 0 such that

θ(x) < 3 k2
y
k
2
, (27)

for x > Mk.

Proof. We will use the inductive argument. Taking into account the particular
form of the coefficients v2(x), v1(x) and v0(x) we may state, that there exist the
polynomials U2(y), U1(y) and U0(y) (with respect to y = ln(x)) such that the
following inequality holds

3θ2 < θ3 +
6
y + 1√

x
U2(y)

1 + 2
y

θ2 +
1√
x
U1(y)

1 + 2
y

θ +
1√
x
U0(y)

1 + 2
y

. (28)

Clearly, we may assume, that 0 < θ < 1 (for x sufficiently large), and in conse-
quence, that θ3 < θ2. Hence, we may deduce from (28) that

2θ2 <

6
y + 1√

x
U(y)

1 + 2
y

,

where U(y) is a polynomial with respect to y = ln(x). Hence, for x large enough,
we have the inequality

2θ2 <
6
y
,

which gives the inequality from (27) for k = 1.
Assume now, that there exists Mk > 0 such that for x > Mk we have

θ(x) < 3 k2
y
k
2
.

We will prove that there exists Mk+1 > 0 such that for x > Mk+1 we have

θ(x) < 3 k+1
2

y
k+1

2
.

We return once more to inequality (28). Using θ < 1 we can obtain from this
inequality that

2θ2 <
6

y + 2θ
2 + 1√

x
U3(y),

where U3(y) is a polynomial with respect to y = ln(x). Hence, for sufficiently large
x > Mk+1, we have the inequality

2θ2 <
6
y
θ2.
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Since, clearly we may assume that Mk+1 > Mk then it follows from the inductive
assumption, that for x > Mk+1 we have

2θ2 <
6
y

3k

yk
,

and thus

θ2 <
3k+1

yk+1 .

This ends the proof of Proposition 24.

It appears, that one can "squeeze" much more from equation (26) in order to
obtain the proof of Theorem 23 presented below.

Proof of Theorem 23. We return to inequality (28). Namely,

3θ2 < θ3 +
6
y + 1√

x
U2(y)

1 + 2
y

θ2 +
1√
x
U1(y)

1 + 2
y

θ +
1√
x
U0(y)

1 + 2
y

.

To obtain Proposition 24 we used only the fact that the functions U2(y), U1(y) and
U0(y) are polynomials. Clearly, one may find many polynomials, U2, U1, U0 for
which inequality (28) holds. In particular, one may choose the above polynomials
to have all the degree 3 and not to big coefficients. More exactly, there exists a
constant M > 0 such that for x > M we get θ(x) < 1 and

3θ2 < θ3 + 6
y + 2θ

2 + 1√
x

y3

1 + 2
y

θ2 + 1√
x

8y3

1 + 2
y

θ + 1√
x

12y3

1 + 2
y

.

Taking into account the fact that θ < 1 and θ3 < θ2 we obtain the inequality

2θ2 <
6

y + 2θ
2 + 1√

x

(
y3

1 + 2
y

+ 8y3

1 + 2
y

)
θ + 1√

x

12y3

1 + 2
y

.

Let us consider now the term
9y4

y + 2θ.

Applying Proposition 24 we find M ′ > M > 0 such that for x > M ′ there is
θ(x) ≤ 3

y . Thus
9y4

y + 2θ <
33

y

y4

y + 2

for x > M ′. Hence there exists M ′′ > M ′ such that for x > M ′′ we have

9y4

y + 2θ <
y4

y + 2 ,
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which gives the inequality

2θ2 <
6

y + 2θ
2 + 1√

x

10y4

y + 2 ,

or equivalently, the inequality(
2− 6

y + 2

)
θ2 <

1√
x

y

y + 210y3,

which may be rewritten in the form

θ2 < 5 y

y − 1
1√
x
y3.

Finally, we choose a constant K > M ′′ such that y
y−1 < 5

4 and we obtain the
inequality

θ <
5
2

1
x

1
4
y

3
2 ,

which is valid for x > K. Clearly, it is enough to prove the Theorem 23 since
h∗+(x) = θ(x) · x.

Theorem 23 brings us some information about Conjecture H. Since the sum
of lenses contained in the interval [2, x] equals – roughly speaking – x and their
number is of order xα, then xα · x 3

4 must be as large as x. Hence α ≥ 1
4 . This

observation is mentioned in [2] (Corollary 2.6). On the other hand, there is a strong
numerical argument supporting the conjecture α = γ/2. We will present these
numerical data in a future paper, however, in the next subsection, we give some
tables and some graphs for to illustrate what we mean by the term "supporting
argument".

4.3. Some more numerical data

At present we know the exact values of the sequence ek for k ≤ 8 · 104. The
tables inserted below contain some selected data, which one may use to confirm
(or – if one prefers – to disprove) the γ

2 conjecture formulated as follows. Let us
denote βk = ln(k)

ln(ek) . Then the γ/2 conjecture say simply that lim βk = γ/2. The
presented data seem to be promising with respect to the γ/2 conjecture. On the
other hand, the examples like the conjecture of Mertens, show that one should be
careful. The fact, that the constant γ is present in many theorems of analytical
theory of numbers is, perhaps, an additional argument for optimists.

Below we present also two pictures. First of them shows the convex hull of the
graph of the function π(x) for 1 ≤ x ≤ 113. The second shows the behaviour of
the ratio πe(x)/x

γ
2 depending on log(x).
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The list of ek, where 2000 < k ≤ 5000 and k ≡ 0(mod 100).

e2000 366475869647 e3500 2629506983759
e2100 435449834927 e3600 2913566116711
e2200 526631656829 e3700 3190893571937
e2300 625382499043 e3800 3510196910639
e2400 727995116377 e3900 3833525419133
e2500 842057152381 e4000 4199423202899
e2600 975455207557 e4100 4572918641341
e2700 1098339926353 e4200 4955275213949
e2800 1234264464703 e4300 5341974321851
e2900 1388032354369 e4400 5816608130917
e3000 1563678255869 e4500 6325581587071
e3100 1746099699947 e4600 6803401026713
e3200 1940953406761 e4700 7330968666577
e3300 2143710526487 e4800 7891749045409
e3400 2407357435771 e4900 8431057440089

e5000 9007738703933

The list of ek, where 5000 ≤ k ≤ 80000 and k ≡ 0(mod 5000).

e5000 8993279276101 e45000 14561650764869701
e10000 92375151455953 e50000 20596671738838703
e15000 365792669405717 e55000 27207858885194953
e20000 981254018753539 e60000 37527564754591409
e25000 206980315408291 e65000 48947619329037853
e30000 3757752577836253 e70000 62377984224294623
e35000 6306717938948543 e75000 78299477848810957
e40000 9797619494633261 e80000 97052934098045459

The next table illustrates the behaving of the ratio πe(x)
xγ/2 .

πe(x) x πe(x)
xγ/2 πe(x) x πe(x)

xγ/2

1 2 1,457 414 1017804913 1,041
4 19 1,710 757 10016844407 0,984
7 113 1,788 1410 100124651999 0,944

13 1129 1,711 2622 1000519435087 0,902
23 10343 1,596 5151 10005000431033 0,912
37 102679 1,324 10242 100054690967381 0,933
66 1021487 1,217 20113 1000045596177333 0,943

122 10716313 1,141 40241 10000581581252813 0,970
224 102611477 1,091 80748 100009811119192067 1,002
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